JPS5893903A - Variable inlet guide vane - Google Patents

Variable inlet guide vane

Info

Publication number
JPS5893903A
JPS5893903A JP19075381A JP19075381A JPS5893903A JP S5893903 A JPS5893903 A JP S5893903A JP 19075381 A JP19075381 A JP 19075381A JP 19075381 A JP19075381 A JP 19075381A JP S5893903 A JPS5893903 A JP S5893903A
Authority
JP
Japan
Prior art keywords
inlet guide
guide vane
vane
plate
edge part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19075381A
Other languages
Japanese (ja)
Inventor
Yutaro Matsuura
松浦 祐太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19075381A priority Critical patent/JPS5893903A/en
Publication of JPS5893903A publication Critical patent/JPS5893903A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line

Abstract

PURPOSE:To easily obtain an optimum inflow condition to a moving blade, by constituting a variable inlet guide vane in an axial flow fluidic machine from a leading edge part and a trailing edge part connected with a pin to the leading edge part, moving said trailing edge part through thermal deformation of a thermally deforming metallic plate and changing an outflow angle of the guide vane. CONSTITUTION:A variable inlet guide vane is divided into a leading edge part 5 fixed to a wall surface of a casing 1 and trailing edge part 6 behind the part 5, and the both parts 5, 6 are turnably combined by connecting supporting parts 7, 8 provided internally of said parts 7, 8 with a single of pin 9. While a thermally deforming metallic plate 10 like a bimetal or shape memory alloy is secured to one end of both vane surface parts to smooth the vane surface, while a flexible plate material 11 of rubber plate or the like combines the both vane surfaces in the other end of the vane surface, further a heating wire 12 is provided neighboring to said plate 10. In this way, the plate 10 is extended and contracted by adjusting a heat quantity of the wire 12, and an outflow angle of the inlet guide vane can be changed.

Description

【発明の詳細な説明】 本発明は、軸流形流体機械に係り、特に周方向に不均一
な流2Lが流入する場合の性能改善に好適な可変人口案
内翼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an axial flow type fluid machine, and particularly to a variable population guide vane suitable for improving performance when a circumferentially non-uniform flow 2L flows into the machine.

軸流形流体機械の部分負荷時の運転では、回転数や流量
などが変わる。このため、動翼への流入角が変わシ、最
適流入状態から離れ、性能が低下する。このような部分
負荷時の性能改善の一つの方法として可変人口案内翼の
方法がある。これは部分負荷時に入口案内翼の取付角を
変化させ、こ扛につづく動翼への流入角を最適化し、性
能改善をはかるものである。第1図に従来の入口案内真
可汲装置を示す。従来の入口案内に可変装置ではケーシ
ング1の周囲に歌合されたリング2と2ケのリンク機構
3.3′會齢翼支軸4に結合して構成式れている。別置
の躯動装置によシ、リング2全周方向に動かすと、第2
図に示すようにリンク機構によυ、入口案内翼の取付角
を変えることができる。この方法では、−列の入口案内
翼は全て、一つのリングに連結されているので、輿取付
角は周方向に同一で、従って、入口案内翼からの流出角
も周方向に一定である。しかしながら、実際の圧縮機な
どでは、上流ケーシングの軸弁対象性に起因し、圧縮機
へ流入する流れが周方向に均一でないことが多い。この
ような場合、従来の可変人口案内翼では動翼への相対流
入角が周方向に不均一になる。すなわち、従来の可変人
口案内翼では、周方向の一部では最適流入角となるが、
他の部分では動翼への流入角が過大または過小になシ、
このため圧縮機性能の低下を生ずる欠点があった。
When operating an axial flow type fluid machine under partial load, the rotational speed and flow rate change. As a result, the inflow angle to the rotor blade changes, deviates from the optimum inflow state, and performance deteriorates. One method for improving performance under such partial loads is the method of variable population guide vanes. This is intended to improve performance by changing the mounting angle of the inlet guide vane during partial load, optimizing the inflow angle to the rotor blade following this. FIG. 1 shows a conventional entrance guiding device. In the conventional variable inlet guide device, a ring 2 is fitted around a casing 1 and two link mechanisms 3, 3' are connected to a wing support shaft 4. When the separately installed sliding device is used to move the ring 2 in the entire circumferential direction, the second
As shown in the figure, the installation angle of the inlet guide vane can be changed by using the link mechanism. In this method, all the inlet guide vanes in the - row are connected to one ring, so the palanquin attachment angle is the same in the circumferential direction, and therefore the outflow angle from the inlet guide vanes is also constant in the circumferential direction. However, in actual compressors, the flow flowing into the compressor is often not uniform in the circumferential direction due to the axial valve symmetry of the upstream casing. In such a case, in the conventional variable population guide blade, the relative inflow angle to the rotor blade becomes non-uniform in the circumferential direction. In other words, with conventional variable population guide blades, the optimum inflow angle is achieved in a part of the circumferential direction, but
In other parts, the inflow angle to the rotor blade is too large or too small.
For this reason, there was a drawback that the performance of the compressor deteriorated.

本発明は、上述の事柄に基づき成されたもので、動翼入
口流れが周方向に不均一な場合にも、全ての動翼が最適
流入状態を保ち、軸流形流体機株の効率の最適化全図る
ことを目的としていや。
The present invention has been achieved based on the above-mentioned matters, and even when the flow at the inlet of the rotor blades is non-uniform in the circumferential direction, all the rotor blades maintain the optimum inflow state, thereby improving the efficiency of the axial flow type fluid machine. The purpose is to achieve full optimization.

第3図に従来υ可変人口案内翼の場合の動翼入口の速度
三角形を示す。図において、軸流速度C1、動翼の回転
周速’1、動翼の数例角βBが与えられている時、動翼
への最適流入角α1は実線のような値となる。したがっ
て、入口案内翼の流出角tα1に設定すれば、動翼の流
入状態は最適となる。しかし、周方向の一部に軸流速度
の小さい所がiG)ると、図に点線で示すような速度三
角形となる為、この部分では、動翼への流入が最適状態
かし離れ、圧縮機の効率低下ケ及ぼす。これは、従来の
可変人口案内翼では、流出角が周方向に一定である為で
ある。周方向に軸流速度が大きく変わるような場合には
、それに応じて入口兼内翼の流出角を食化さぜれは、周
方向全ての位置で、@翼へのwt人状態が良好となり、
圧縮機の効率が改善される。本発明では、入口案内翼を
ケーシングに同定された前縁部と、前縁部にビン結合さ
れた後縁部に分割し、両者を熱変形性金属板で連結し、
内部に設けられた発熱線によシ熱質)杉性金属板を伸縮
きせ、これにょシ局方向個々の入口案内翼流出角を単独
に変えることができる。第4図に本発明の入口案内翼上
流の速度三角形を示す。点線に示すような軸流速度の小
さい部分でも、それに応じた入口案内翼出角を設定すれ
ば、この部分でも動翼の流入状態が般過となり、圧縮機
の効率が改善される。逆に軸流速度が過大な部分でも、
同様な効果が得られることは自明である。
Figure 3 shows the velocity triangle at the rotor blade inlet in the case of a conventional υ variable population guide blade. In the figure, when the axial velocity C1, the rotational peripheral speed of the rotor blade '1, and the angle βB of the rotor blade are given, the optimum inflow angle α1 to the rotor blade takes a value as shown by the solid line. Therefore, if the outflow angle of the inlet guide vane is set to tα1, the inflow state of the rotor blade will be optimal. However, if there is a part in the circumferential direction where the axial flow velocity is low (iG), the velocity triangle as shown by the dotted line in the figure will result, and in this part the flow into the rotor blade will be far from the optimum state, causing compression. This may cause a decrease in machine efficiency. This is because in conventional variable population guide vanes, the outflow angle is constant in the circumferential direction. If the axial velocity changes greatly in the circumferential direction, the outflow angle of the inlet/inner blade will be adjusted accordingly, and the flow condition to the wing will be good at all positions in the circumferential direction. ,
Compressor efficiency is improved. In the present invention, the inlet guide vane is divided into a leading edge portion identified to the casing and a trailing edge portion bonded to the leading edge portion, and both are connected by a heat-deformable metal plate.
By expanding and contracting the heat-generating cedar metal plate using the heating wire provided inside, it is possible to independently change the outflow angle of each inlet guide vane in the local direction. FIG. 4 shows the velocity triangle upstream of the inlet guide vane of the present invention. Even in a portion where the axial flow velocity is low as shown by the dotted line, if the inlet guide vane exit angle is set accordingly, the inflow state of the rotor blade will be normal even in this portion, and the efficiency of the compressor will be improved. Conversely, even in areas where the axial velocity is excessive,
It is obvious that similar effects can be obtained.

以下、本発明の一実施例を第5図〜第7図に従って、さ
らに具体的に説明する。本発明では、入口案内Jkk、
第5図、第6図に示すようにケーシング1の壁面に固定
された前縁部5と、前縁部にピン結合された後縁部6に
分割されている。両翼部の内側には支持部7.8を設け
、ビン9にょシ両翼部が結合され、支点廻シに後線部6
が回動可能になっている。また、両翼部の翼面の一端に
は、バイメタルや形状記憶合金のごとき熱変形性金属板
10i固着し、翼面の接合部がなめらかな面となるよう
成形すると共に、他端の翼面にはゴム板等の可撓性板材
11で両翼部を結合すポ。さらに熱変形性金属板に臨接
して発熱線12を設けである。以上の構成において、発
熱線の熱tti加減すれは、熱変形性金属板が伸縮し、
これに伴ない入口案内翼の流出角を変化妊せることかで
きる。従来の可変人口案内翼では全ての翼の流出角は同
一となるが、本発明では個々の翼の発熱蓋の熱量を変え
れは、入口案内翼の流出角を変化させることかでさる。
Hereinafter, one embodiment of the present invention will be described in more detail with reference to FIGS. 5 to 7. In the present invention, entrance guide Jkk,
As shown in FIGS. 5 and 6, the casing 1 is divided into a front edge 5 fixed to the wall surface and a rear edge 6 connected to the front edge with a pin. Support parts 7.8 are provided on the inside of both wing parts, and both wing parts are connected to the bottle 9, and a rear line part 6 is provided around the fulcrum.
is rotatable. In addition, a heat deformable metal plate 10i such as bimetal or shape memory alloy is fixed to one end of the blade surface of both wing parts, and the joint part of the blade surface is formed into a smooth surface, and the blade surface of the other end is The two wing parts are connected by a flexible plate 11 such as a rubber plate. Further, a heating wire 12 is provided adjacent to the heat deformable metal plate. In the above configuration, the heat tti adjustment of the heating wire is caused by the expansion and contraction of the heat deformable metal plate.
Accordingly, the outflow angle of the inlet guide vane can be changed. In conventional variable population guide vanes, the outflow angle of all the blades is the same, but in the present invention, the amount of heat of the heating lid of each blade can be changed by changing the outflow angle of the inlet guide vane.

したがって流入速度の周方向変化の大きい場合でも、周
方向全ての動翼への流入状態の最適化が図れる。
Therefore, even when there is a large circumferential change in inflow velocity, the inflow state to all rotor blades in the circumferential direction can be optimized.

この場合、周方同各位置での軸流速度の値を知る必要が
ある。このため、本発明では、入口案内翼の前縁部に設
けた全圧孔13および入口案内翼上流のケーシング壁面
に設けた壁圧孔14がら全圧、靜圧櫃ヲ求め、さらに入
口案内真上流に設けた幅度計15によシ気流高度勿測定
し、以下の弐葡用いて動翼入口の軸流速度を求める。
In this case, it is necessary to know the value of the axial velocity at each circumferential position. Therefore, in the present invention, the total pressure and the static pressure chamber are determined from the total pressure hole 13 provided at the leading edge of the inlet guide vane and the wall pressure hole 14 provided at the casing wall upstream of the inlet guide vane, and the total pressure is determined from the inlet guide vane. The height of the airflow is measured using the width gauge 15 installed upstream, and the axial flow velocity at the inlet of the rotor blade is determined using the following formula.

ここに C,:勧業入口軸流速度 P :入口案内真前縁で測った全圧 p :入口案内翼上流で測った壁圧 T :入口案内翼上流で測った幅度 R二気体のガス常数 g :重力加速度 全圧孔13からの圧力は、導圧管16、圧力取出し管1
7を介し、第7図に示すごとく、圧力変換器18に尋か
れる。また、軸の一端に設けた回転数検出器19からの
測定信号を、前記圧力変換器18、篇度削15の測定値
と共に、演算装置20へ導く。演算装置では、弐fi+
により軸流速#C。
Here, C: Axial flow velocity at industrial inlet P: Total pressure measured at the leading edge of the inlet guide p: Wall pressure measured upstream of the inlet guide vane T: Width R measured upstream of the inlet guide vane Gas constant g of two gases : The pressure from the gravity acceleration total pressure hole 13 is
7 to a pressure transducer 18, as shown in FIG. Further, a measurement signal from a rotation speed detector 19 provided at one end of the shaft is guided to an arithmetic unit 20 together with the measurement values of the pressure transducer 18 and the knitting cutter 15. In the arithmetic unit, 2fi+
Due to the axial flow rate #C.

を算出すると共に、回転数の情報を元に動翼周速度を算
出し、動翼入口の速度三角形を求め、最適流出角を演算
する。さらに、この演算結果を元に、各入口案内翼の後
縁回転角および、この角度全達成するに要する発熱体の
電圧値?f−昇出し、この信号をトランス21に込シ、
各入口案内翼の流出角を変化させることができる。
At the same time, the rotor blade circumferential speed is calculated based on the rotational speed information, the velocity triangle at the rotor blade inlet is determined, and the optimal outflow angle is calculated. Furthermore, based on this calculation result, what is the trailing edge rotation angle of each inlet guide blade and the voltage value of the heating element required to achieve this angle? f- rise and put this signal into the transformer 21,
The outflow angle of each inlet guide vane can be varied.

以上説明したように、本発明によれは、入ロ案内Jll
=ケーシング壁に固定された#に一部と前縁部にビン結
合された恢隊部に分割し、更にR表面に熱変形性金属板
を設げ、これに瞬接して発熱体全般vl、発熱体の加熱
により前記熱変形性金属板を伸動さぜ、入口案内翼の流
出角音質えられるよう構成した。さらに、入口案内翼の
前縁に全圧孔、ケーシングに壁圧孔と幅度計、軸端に回
転数検出器全段け、圧力変換器、演算装置、トランスに
よシ、各員の最適流出角を達成できるようにしたので、
@翼入口軸流速度が不均一な場合にも全てのTm真が最
適流入状態を保つことができ、軸流形流体機械の効率の
峡適化が達成できる。
As explained above, according to the present invention, it is possible to
= It is divided into a part # fixed to the casing wall and a heat exchanger part connected to the front edge by a bottle, and further a heat deformable metal plate is provided on the R surface, and in instant contact with this, the entire heating element vl, The heat deformable metal plate is expanded and moved by the heating of the heating element, so that the sound quality of the outflow angle of the inlet guide vane can be changed. In addition, there is a total pressure hole on the leading edge of the inlet guide vane, a wall pressure hole and width gauge on the casing, a full rotation speed detector on the shaft end, a pressure transducer, a calculation device, a transformer, and an optimal outflow for each member. I made it possible to achieve the angle, so
@ Even when the axial flow velocity at the blade inlet is non-uniform, all Tm trues can be maintained in the optimum inflow state, and the efficiency of the axial flow type fluid machine can be optimized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の可変人口案内翼の構造を示す横1竹田1
図、第2図は、第11凶のA祝図、第31囚、第4図は
それぞれ従来と本発明の可変人口案内翼を用い変時の1
lil+翼入口の速度三角形の説明図、第5図〜第7図
は本発明の可変人口案内翼の説明図を示す。 1・・・ケーシング、5・・・前縁部、6・・・+lj
線部、10・・・熱変形性金属板、11・・・′o]撓
性根性板片2・・・発熱体、13・・・全圧孔、14・
・・壁圧孔、15・・・幅度計、18・・・圧力質侠器
、19・・・回転数検出器、20・・・演算装置、21
・・・トランス。 χ 1 区 ↓ 第2 図 第 3 目 %4  区 y 5 図 第 4 口 ′fJ 7 目
Figure 1 shows the structure of a conventional variable population guide wing.
Figures 2 and 2 are the 11th and 31st convicts, respectively.
An explanatory diagram of the velocity triangle at the lil+ blade inlet, FIGS. 5 to 7 show explanatory diagrams of the variable population guide vane of the present invention. 1...Casing, 5...Front edge, 6...+lj
Line part, 10... Heat deformable metal plate, 11...'o] Flexible root plate piece 2... Heating element, 13... Full pressure hole, 14...
... Wall pressure hole, 15 ... Width meter, 18 ... Pressure gauge, 19 ... Rotation speed detector, 20 ... Arithmetic device, 21
···Trance. χ 1 Ward ↓ Figure 2 Figure 3 %4 Ward y 5 Figure 4 Port'fJ 7

Claims (1)

【特許請求の範囲】 1、 ケーシングにより構成される環状流路内に取付け
られた入口案内翼と前記入口案内翼の後方に動翼を配置
して回転する回転軸とから成る軸流形回転機械において
、入口案内翼を、ケーシング壁に固定された前縁部と前
記前縁部にピン結合された後縁部に分割し、無異面を熱
変形性金楓板および可読性板片によシ固着し、前記熱変
形性金塊板の内側空間に発熱線を設け、発熱線の加熱に
よシ前記熱変形性金属板を伸縮させ、入口案内翼の流出
角を変化できるようにしたことを特徴とする可変人口案
内翼。 2、入口案内翼前縁に設けられた全圧測定孔と、入口案
内翼上流ケーシング壁面に設けられた壁圧孔と、上記両
圧力孔からの圧力全電気信号に変える圧力変換器と入口
案内翼上流の気流幅度を測る高度計と軸回転数を測る回
転数検出器と、前記圧力変換器、温度計、回転数検出器
からの信号から動翼への最適流入角1r演算する演算装
置と、前記演算装置からの信号に従って翼後縁部の回転
角度に相当する電圧を発生するトランスを備え、前記ト
ランスからの電圧によシ発熱線の熱量を加減することを
特徴とする特許侑求範白第1項記載の可変人口案内翼。
[Claims] 1. An axial-flow rotating machine comprising an inlet guide vane installed in an annular flow path formed by a casing, and a rotary shaft that rotates with moving blades arranged behind the inlet guide vane. , the inlet guide vane is divided into a leading edge fixed to the casing wall and a trailing edge pin-coupled to the leading edge, and the uniform surface is formed by a heat-deformable gold maple plate and a readable plate piece. A heating wire is provided in the inner space of the heat-deformable gold ingot plate, and the heat-deformable metal plate is expanded and contracted by heating of the heat-generating wire, thereby changing the outflow angle of the inlet guide vane. Variable population guide wing. 2. A total pressure measuring hole provided on the leading edge of the inlet guide vane, a wall pressure hole provided in the wall of the casing upstream of the inlet guide vane, and a pressure transducer and inlet guide that convert the pressure from both pressure holes into an electric signal. an altimeter that measures the airflow width upstream of the blade, a rotation speed detector that measures the shaft rotation speed, and a calculation device that calculates the optimum inflow angle 1r to the rotor blade from the signals from the pressure transducer, thermometer, and rotation speed detector; The patented invention is characterized in that it includes a transformer that generates a voltage corresponding to the rotation angle of the trailing edge of the blade according to a signal from the arithmetic unit, and adjusts the heat amount of the heating wire according to the voltage from the transformer. The variable population guide wing described in paragraph 1.
JP19075381A 1981-11-30 1981-11-30 Variable inlet guide vane Pending JPS5893903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19075381A JPS5893903A (en) 1981-11-30 1981-11-30 Variable inlet guide vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19075381A JPS5893903A (en) 1981-11-30 1981-11-30 Variable inlet guide vane

Publications (1)

Publication Number Publication Date
JPS5893903A true JPS5893903A (en) 1983-06-03

Family

ID=16263158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19075381A Pending JPS5893903A (en) 1981-11-30 1981-11-30 Variable inlet guide vane

Country Status (1)

Country Link
JP (1) JPS5893903A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2592684A1 (en) * 1985-12-04 1987-07-10 Mtu Muenchen Gmbh DEVICE FOR CONTROLLING OR ADJUSTING A GAS TURBINE OR A TURBOREACTOR.
US4741665A (en) * 1985-11-14 1988-05-03 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh Guide vane ring for turbo-engines, especially gas turbines
EP0633392A1 (en) * 1993-07-07 1995-01-11 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Turbomachine blade with variable comber
WO1999054664A1 (en) * 1998-04-17 1999-10-28 Matsushita Electric Industrial Co., Ltd. Data transmitter, data receiver, rule communication device, rule communication method, and program recording medium
JP2001193695A (en) * 2000-01-12 2001-07-17 Mitsubishi Heavy Ind Ltd Compressor
GB2372296A (en) * 2001-02-16 2002-08-21 Rolls Royce Plc Gas turbine nozzle guide vane having a thermally distortable trailing edge portion
KR100422523B1 (en) * 2000-12-22 2004-03-11 기아자동차주식회사 turbin blade device of torque converter
DE102008033560A1 (en) * 2008-07-17 2010-01-21 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine engine with adjustable vanes
EP1612373A3 (en) * 2004-07-02 2012-03-07 Rolls-Royce Plc Adaptable fluid-foil
US20140060062A1 (en) * 2012-09-04 2014-03-06 General Electric Company Method, apparatus and system for controlling swirl of exhaust in a gas turbine
WO2016160510A1 (en) * 2015-03-27 2016-10-06 Dresser-Rand Company Moveable inlet guide vanes
GB2539095A (en) * 2015-06-04 2016-12-07 Rolls Royce Plc An actuation arrangement
JP2017031923A (en) * 2015-08-04 2017-02-09 株式会社東芝 Runner and hydraulic machine
EP3623585A1 (en) * 2018-09-12 2020-03-18 United Technologies Corporation Cover for airfoil assembly for a gas turbine engine
US20230235674A1 (en) * 2022-01-26 2023-07-27 General Electric Company Cantilevered airfoils and methods of forming the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4741665A (en) * 1985-11-14 1988-05-03 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh Guide vane ring for turbo-engines, especially gas turbines
FR2592684A1 (en) * 1985-12-04 1987-07-10 Mtu Muenchen Gmbh DEVICE FOR CONTROLLING OR ADJUSTING A GAS TURBINE OR A TURBOREACTOR.
EP0633392A1 (en) * 1993-07-07 1995-01-11 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Turbomachine blade with variable comber
FR2707338A1 (en) * 1993-07-07 1995-01-13 Snecma Variable camber turbomachine blade.
US5472314A (en) * 1993-07-07 1995-12-05 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Variable camber turbomachine blade having resilient articulation
US6653609B2 (en) 1998-04-17 2003-11-25 Matsushita Electric Industrial Co., Ltd. Data transmission apparatus, data receiving apparatus, rule communication apparatus, rule communication method and program recording medium
WO1999054664A1 (en) * 1998-04-17 1999-10-28 Matsushita Electric Industrial Co., Ltd. Data transmitter, data receiver, rule communication device, rule communication method, and program recording medium
US6420687B1 (en) 1998-04-17 2002-07-16 Matsushita Electric Industrial Co., Ltd. Data transmitter, data receiver, rule communication device, rule communication method, and program recording medium
JP2001193695A (en) * 2000-01-12 2001-07-17 Mitsubishi Heavy Ind Ltd Compressor
KR100422523B1 (en) * 2000-12-22 2004-03-11 기아자동차주식회사 turbin blade device of torque converter
GB2372296A (en) * 2001-02-16 2002-08-21 Rolls Royce Plc Gas turbine nozzle guide vane having a thermally distortable trailing edge portion
EP1612373A3 (en) * 2004-07-02 2012-03-07 Rolls-Royce Plc Adaptable fluid-foil
DE102008033560A1 (en) * 2008-07-17 2010-01-21 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine engine with adjustable vanes
US8257021B2 (en) 2008-07-17 2012-09-04 Rolls Royce Deutschland Ltd Co KG Gas-turbine engine with variable stator vanes
US20140060062A1 (en) * 2012-09-04 2014-03-06 General Electric Company Method, apparatus and system for controlling swirl of exhaust in a gas turbine
WO2016160510A1 (en) * 2015-03-27 2016-10-06 Dresser-Rand Company Moveable inlet guide vanes
GB2539095A (en) * 2015-06-04 2016-12-07 Rolls Royce Plc An actuation arrangement
GB2539095B (en) * 2015-06-04 2017-10-11 Rolls Royce Plc An actuation arrangement for effecting actuation of a pivotable vane in a gas turbine engine
US10100663B2 (en) 2015-06-04 2018-10-16 Rolls-Royce Plc Actuation arrangement
JP2017031923A (en) * 2015-08-04 2017-02-09 株式会社東芝 Runner and hydraulic machine
EP3623585A1 (en) * 2018-09-12 2020-03-18 United Technologies Corporation Cover for airfoil assembly for a gas turbine engine
US10934883B2 (en) 2018-09-12 2021-03-02 Raytheon Technologies Cover for airfoil assembly for a gas turbine engine
US20230235674A1 (en) * 2022-01-26 2023-07-27 General Electric Company Cantilevered airfoils and methods of forming the same

Similar Documents

Publication Publication Date Title
JPS5893903A (en) Variable inlet guide vane
CA2229883C (en) Gas turbine shroud and platform seal system
JPS5818502A (en) Shroud structure for gas turbine engine
JP3671063B2 (en) Gas turbine engine and cooling device manufacturing method thereof
US3999883A (en) Variable turbomachine stator
JP3105277B2 (en) Axial gas turbine
US6923051B2 (en) Flow vector analyzer for flow bench
US3990807A (en) Thermal response shroud for rotating body
GB1225445A (en)
US3563669A (en) Variable area nozzle
WO2002035063A1 (en) Variable displacement turbine
JPS61250304A (en) Axial flow turbine
EP0103260A2 (en) Clearance control for turbine blade tips
US3722279A (en) Apparatus for measuring fluid flow
JPH0325640B2 (en)
GB2112079A (en) Turbine disc cavity temperature sensing arrangement
EP0162340A1 (en) Apparatus for controlling the axial component of running clearance in radial gas turbine engines
US11788435B2 (en) Pin member for turbine
JPH0531222Y2 (en)
JP3468836B2 (en) Radial turbine
JPH057462Y2 (en)
GB833537A (en) Mechanism for controlling gaseous flow in machines such as turbines and compressors
JPH0723682B2 (en) Blade clearance adjustment device for axial flow fluid machinery
JPS5823482B2 (en) radial turbine
JPS60108501A (en) Disc structure for axial-flow machine