JPS58938B2 - Foundry sand moisture control device - Google Patents
Foundry sand moisture control deviceInfo
- Publication number
- JPS58938B2 JPS58938B2 JP2750980A JP2750980A JPS58938B2 JP S58938 B2 JPS58938 B2 JP S58938B2 JP 2750980 A JP2750980 A JP 2750980A JP 2750980 A JP2750980 A JP 2750980A JP S58938 B2 JPS58938 B2 JP S58938B2
- Authority
- JP
- Japan
- Prior art keywords
- moisture
- foundry sand
- trough
- sand
- slit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Mold Materials And Core Materials (AREA)
Description
【発明の詳細な説明】
本発明は鋳物砂の水分測定及び調節方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring and controlling the moisture content of foundry sand.
従来に於けるこの種の方法は鋳物砂に耐着した水分の量
に併なう鋳物砂の成型性の変動に着目し、これを測定す
ることによって鋳物砂の水分量を知り水分添加を行なう
水分調節方法が良く知られている。This type of conventional method focuses on the variation in moldability of molding sand that depends on the amount of moisture adhering to the sand, and by measuring this, the amount of moisture in the molding sand can be determined and water can be added. Moisture control methods are well known.
以下第1図〜第4図に基づき従来例について説明する。A conventional example will be explained below based on FIGS. 1 to 4.
第1図は従来に於ける水分測定装置である。FIG. 1 shows a conventional moisture measuring device.
上部トラフ1の下方に於いて右方にbくにつれて次第に
間隔を大きくしたスリット5,7.9を設け、且つ底が
右方にいくにつれ低くなるようにした4ケの中間トラフ
4,6,8.10を設ける。Four intermediate troughs 4, 6 are provided below the upper trough 1 with slits 5, 7.9 whose spacing gradually increases as they move toward the right, and whose bottoms become lower as they move toward the right. 8.10 shall be established.
又、中間トラフ4の上方に位置するよう上部トラフ1の
底部2ヘスリツト3を設ける。Further, a slit 3 at the bottom 2 of the upper trough 1 is provided so as to be located above the intermediate trough 4.
更に中間トラフ4.6,8,10の下方に下部トラフ1
1を設けて上部トラフ1の本体にて支承し、該下部トラ
フ11の底部側壁にスリット5,7.9より落下する鋳
物砂18を検出する光電管12P。Furthermore, below the intermediate troughs 4.6, 8, and 10, there is a lower trough 1.
1 is provided and supported by the body of the upper trough 1, and detects the foundry sand 18 falling from the slits 5, 7.9 on the bottom side wall of the lower trough 11.
13P、14P及び投光器12P′、13P′、14P
′(第2図)の透光用の孔12,13.14を設ける。13P, 14P and floodlight 12P', 13P', 14P
' (Fig. 2) are provided with holes 12, 13, and 14 for transmitting light.
こうした構成からなる鋳物砂分離装置1′を振動装置1
5を備えた弾性支承体16によって支持し、更に混練装
置(図示せず)から前記鋳物砂18を該鋳物砂分離装置
1′へ供給する為のシュート17を設ける。The foundry sand separator 1' having such a configuration is
5 and is further provided with a chute 17 for feeding the foundry sand 18 from a kneading device (not shown) to the foundry sand separation device 1'.
第2図は第1図の一点鎖線部をA、R矢視方向から見た
断面図である。FIG. 2 is a cross-sectional view of the dashed-dotted line portion in FIG. 1 viewed from the direction of arrows A and R.
1は上部トラフ、2は上部トラフ1の底部、8は中間ト
ラフ、11は下部トラフ12.13,14は透光用の孔
、12P。1 is an upper trough, 2 is a bottom of the upper trough 1, 8 is an intermediate trough, 11 is a lower trough 12, 13 and 14 are holes for light transmission, and 12P.
13P、14Pは光電管12P′、13P′14P′は
投光器である。13P and 14P are phototubes 12P', 13P' and 14P' are projectors.
次に作用について説明する。Next, the effect will be explained.
第1図に於いて振動装置15を作動して分離装置1′全
体を振動させながら、混練装置(図示せず)より上部ト
ラフ1へ鋳物砂18をシュート17を経て供給する。In FIG. 1, molding sand 18 is supplied from a kneading device (not shown) to the upper trough 1 through the chute 17 while the vibration device 15 is operated to vibrate the entire separator 1'.
供給された鋳物砂18は上部トラフ1上を右方へ移動し
て、はとんどの鋳物砂18はスリット3から落下する。The supplied molding sand 18 moves to the right on the upper trough 1, and most of the molding sand 18 falls from the slit 3.
しかし水分量がある限度以上になると鋳物砂18はスリ
ット30間隔より大きく凝集してスリット3からは落下
せず、そのまま上部トラフ1上を右方へ移動し底部2の
右端より落下する事となる。However, when the moisture content exceeds a certain limit, the foundry sand 18 aggregates larger than the slit 30 interval and does not fall from the slit 3, but instead moves to the right on the upper trough 1 and falls from the right end of the bottom 2. .
スリット3から下方の中間トラフ4へ落下した鋳物砂1
8は更に中間トラフ4,6,8,10の順に右方へ移動
する。Foundry sand 1 falling from slit 3 to intermediate trough 4 below
8 further moves to the right in the order of intermediate troughs 4, 6, 8, and 10.
この移動する過程に於いて水分量の少ない程スリット5
,7.9の順に落下する。In this moving process, the smaller the moisture content, the more the slit 5
, 7.9.
しかし水分量がある限度以上になるとスリット5,7.
9の間隔より大きく凝集してスリット5,7.9からは
落下せず右方へ移動し中間トラフ10の右端より落下す
る。However, when the water content exceeds a certain limit, the slits 5 and 7.
The particles aggregate larger than the interval 9 and do not fall from the slits 5 and 7.9, but move to the right and fall from the right end of the intermediate trough 10.
スリット5,7.9から落下した鋳物砂18はトラフ1
1上を再び右方へ移動する。The molding sand 18 that fell from the slits 5 and 7.9 is in the trough 1.
1 Move to the right again.
この移動過程に於いてスリット5から落下した鋳物砂1
8が孔12の位置に来ると光電管12Pによって検出さ
れる。The foundry sand 1 that fell from the slit 5 during this movement process
8 comes to the position of the hole 12, it is detected by the phototube 12P.
同様にスリット7.9から落下した鋳物砂18を夫々孔
13.14に於いて光電管13P。Similarly, the molding sand 18 falling from the slit 7.9 is placed in the holes 13 and 14, respectively, to the phototube 13P.
14Pにより検出する。Detected by 14P.
第3図は上記の光電管12P、13P、14Pの実際の
検出結果を示す。FIG. 3 shows the actual detection results of the phototubes 12P, 13P, and 14P.
グラフ20,21゜22は夫々光電管12P、13P、
14PのON、OFF状況を示す。Graphs 20, 21 and 22 are phototubes 12P, 13P, respectively.
Indicates the ON/OFF status of 14P.
第4図は水分調節方法の従来例を示す図である。FIG. 4 is a diagram showing a conventional example of a moisture adjustment method.
第4図に於ける12P、13P、14Pは第1図〜第3
図に於いて述べた光電管である。12P, 13P, and 14P in Figure 4 are from Figures 1 to 3.
This is the phototube mentioned in the figure.
12S。13S、14Sは各光電管12P、13P、1
4PのONの時の出力信号である。12S. 13S and 14S are each phototube 12P, 13P, 1
This is the output signal when 4P is ON.
23,24.25は順に流量を大きくした給水管である
。23, 24, and 25 are water supply pipes whose flow rates are increased in order.
23V。24V、25Vは各出力信号12S、13S。23V. 24V and 25V are the respective output signals 12S and 13S.
14Sに基づき作動する制御弁であり、順に流量が大き
くなっている。These are control valves that operate based on 14S, and the flow rate increases in order.
26は鋳物砂18の混練装置である。26 is a kneading device for the foundry sand 18.
27は各出力信号12S、1.3S。14Sを制御弁2
3V、24V、25Vの操作信号に変換する為の調節器
である。27 is each output signal 12S, 1.3S. 14S as control valve 2
This is a regulator for converting into 3V, 24V, and 25V operation signals.
次に作用について説明する。Next, the effect will be explained.
各光電管12P。13P、14Pの検出による夫々の出
力信号12S、13S、14Sは調節器27により制御
弁23V、24V、25Vの操作信号12S。Each photocell 12P. The respective output signals 12S, 13S, 14S resulting from the detection of 13P, 14P are generated by the regulator 27 as operation signals 12S for the control valves 23V, 24V, 25V.
13S、14Sに変換される。Converted to 13S and 14S.
こうして制御弁23V、24V、25Vを開閉すること
によって混練装置26に於いて鋳物砂18への水分添加
量を調節する。In this manner, the amount of water added to the foundry sand 18 in the kneading device 26 is adjusted by opening and closing the control valves 23V, 24V, and 25V.
こうした従来例に依る水分測定及び水分調節方法には次
の大きな4つの問題点がある為に通常の鋳物砂の水分管
理に対しての利用価値は極めて低いものであった。These conventional moisture measurement and moisture control methods have the following four major problems, and therefore have extremely low utility for controlling the moisture content of ordinary foundry sand.
先ず第一に水分測定に関しては、第3図のグラフ20,
21.22にて示される様に、鋳物砂の実際の水分を数
値%として人が目読する為の指示が出来なかった点であ
る。First of all, regarding moisture measurement, graph 20 in Figure 3,
As shown in 21.22, it was not possible to provide instructions for visual reading of the actual moisture content of foundry sand as a numerical percentage.
従って目標水分値と比較することが出来ない為、混練過
程に於ける水分添加量が適切か否かの判断を人間に依っ
てすることが極めて困難であった。Therefore, since it is not possible to compare the moisture content with the target moisture value, it is extremely difficult for humans to judge whether or not the amount of moisture added during the kneading process is appropriate.
即ち水分の測定指示装置とし不利用する事が出来なかっ
た。In other words, it could not be used as a moisture measurement/instruction device.
第二に水分調節に関しては、第3図のグラフ20.21
,22にて示されるように各光電管のONからOFF、
あるいはONからOFFに移る時間が極めて短い為に制
御弁の開閉動作が追従出来ない点である。Second, regarding moisture control, graph 20.21 in Figure 3
, 22, from ON to OFF of each photocell,
Another problem is that the time required to change from ON to OFF is so short that the opening/closing operation of the control valve cannot follow it.
第三に同じく水分調節に関する問題点として次の事が挙
げられる。Thirdly, the following problems can also be raised regarding moisture control.
第1図に於いて鋳物砂の水分の小ない程、光電管12P
、13P、14Pの順に検出するのであるが、スリット
5,7,9.から鋳物砂が落下する場合、全体として同
一水分でありながら、混練の不均一やダマの影響等によ
り、ある鋳物砂はスリット5から落下し、ある鋳物砂は
スリット7から落下する場合があることである。In Figure 1, the lower the moisture content of the foundry sand, the more the photocell 12P
, 13P, 14P are detected in the order of slits 5, 7, 9 . When molding sand falls from the slit 5, some molding sand may fall from the slit 5 and some from the slit 7 due to uneven kneading or the influence of clumps, even though the moisture content is the same as a whole. It is.
更に同じ光電管例えば光電管12Pにて検出する鋳物砂
に於いても、当然水分量に、成る巾、即ちバラツキがあ
る。Furthermore, even in the molding sand detected by the same phototube, for example, the phototube 12P, there is naturally a variation in the moisture content.
これはスリット数に限度がある以上当然の事である。This is natural since there is a limit to the number of slits.
しかしながらこれに対し従来例の水分添加は同一光電管
で検出した場合には単一の水分添加しか行なわれない。However, in contrast, in the case of water addition in the conventional example, only a single water addition is performed when the same phototube is used for detection.
従って通常の鋳物砂の水分管理上に於いて、目標水分値
に対する水分調節の厳密な精度を維持することが困難と
なる。Therefore, in normal moisture management of foundry sand, it is difficult to maintain strict accuracy in moisture control with respect to the target moisture value.
更に第四の欠点を次に述べる。Furthermore, the fourth drawback will be described below.
第1図に於いてトラフ底部2上を混練装置より鋳物砂1
8が流れていない場合、検出光電管12P、13P、1
4Pは鋳物砂18を検出しない。In Figure 1, molding sand 1 is poured onto the trough bottom 2 from a kneading device.
8 is not flowing, the detection phototubes 12P, 13P, 1
4P does not detect the foundry sand 18.
又混練装置より鋳物砂18が流れていても水分が成る限
度以上に大きくなるとスリット3からは落下せずそのま
ま右方へ移行する為、光電管12P、13P、14Pは
やはり鋳物砂18を検出しない。Furthermore, even if the foundry sand 18 is flowing from the kneading device, if it becomes larger than the water content limit, it will not fall from the slit 3 but will move to the right, so the phototubes 12P, 13P, and 14P will not detect the foundry sand 18.
この様に、光電管12P、13P、14Pが鋳物砂18
を検出しない場合には以上述べた2つのケースが考えら
れる。In this way, the photocells 12P, 13P, and 14P are connected to the molding sand 18
There are two possible cases in which the above-mentioned cases are not detected.
従って、光電管12P。13P、14Pが鋳物砂18を
検出しない場合に於いて従来のようにこれが水分が成る
限度以上に高いと判断してこれに応じた水添加制御を行
なう事は適切でなく、上記2つのケースのいずれに属す
るのかと言う判断が必要である。Therefore, photocell 12P. When 13P and 14P do not detect foundry sand 18, it is not appropriate to judge that this is higher than the water content limit and control water addition accordingly, as in the case of the above two cases. It is necessary to judge which category it belongs to.
従来に於いては、この様にトラフ底部2上を鋳物砂18
が流れているか否かを判断する検出装置を設けていなか
った為に、適切な水分測定及び水添加制御が出来なかっ
た。Conventionally, the molding sand 18 was spread over the trough bottom 2 in this way.
Because there was no detection device to determine whether or not water was flowing, appropriate moisture measurement and water addition control were not possible.
本発明の目的は第1図に示す測定装置を利用して、以上
4つの従来欠点を解消した鋳物砂の水分測定及び調節方
法を可能とすることである。An object of the present invention is to provide a method for measuring and adjusting the moisture content of foundry sand that eliminates the above four conventional drawbacks by using the measuring device shown in FIG.
本発明について第5図〜第9図の実施例に基づき説明す
る。The present invention will be explained based on the embodiments shown in FIGS. 5 to 9.
第5図は本発明の鋳物砂の水分測定指示及び調節方法の
一実施例図である。FIG. 5 is an embodiment of the method for measuring and adjusting the moisture content of foundry sand according to the present invention.
12P、13P。14Pは第1図〜第3図に於いて述べ
た光電管である。12P, 13P. 14P is the phototube described in FIGS. 1-3.
128,13S、14Sは各々の光電管12P、13P
、14PのONの時の出力信号である。128, 13S, 14S are phototubes 12P, 13P, respectively.
, 14P is the output signal when it is ON.
30は入力信号12S、13S、14Sにより演算を行
なう記憶演算装置、例えばマイクロコンピュータ−であ
る。Reference numeral 30 denotes a storage/arithmetic device, such as a microcomputer, which performs arithmetic operations based on input signals 12S, 13S, and 14S.
30′は入力信号30Sにより水分値(%)を表示する
指示制御装置、32は操作信号31Sにより作動する制
御弁、33は給水管である。Reference numeral 30' indicates an instruction control device that displays the moisture value (%) in response to an input signal 30S, 32 indicates a control valve operated in response to an operation signal 31S, and 33 indicates a water supply pipe.
18,26は第4図に示す鋳物砂及び混練装置である。18 and 26 are foundry sand and kneading devices shown in FIG.
次に本発明の作用について説明する。Next, the operation of the present invention will be explained.
各光電管12P、13P、14Pからの出力信号12S
。Output signal 12S from each phototube 12P, 13P, 14P
.
13S、14Sは従来例に於いて説明した様に第3図に
て示される。13S and 14S are shown in FIG. 3 as explained in the conventional example.
この出力信号12S、13S、14Sの組合せ、即ち各
光電管12P、13P、14PのON。This combination of output signals 12S, 13S, 14S, ie, ON of each phototube 12P, 13P, 14P.
OFFの組合せに基づき水分量を数値%として指示する
。The moisture content is indicated as a numerical percentage based on the OFF combination.
これは第1表に示す様に予め各光電管12P、13P、
14PのON、OFFの組合せに対応する水分値(%)
を求めておくものとする。As shown in Table 1, each photocell 12P, 13P,
Moisture value (%) corresponding to the combination of 14P ON and OFF
shall be sought.
(但し第1表に示すのは主な組合せのみである。(However, Table 1 shows only the main combinations.
)この第1表の水分値(%)を以下設定水分値と呼ぶこ
ととする。) The moisture value (%) in Table 1 will be hereinafter referred to as the set moisture value.
この設定水分値を求める方法は、各種の水分値(%)に
混練調整した鋳物砂を第1図の測定装置にて実際に測定
して各種水分値(%)に対応する各光電管12P、13
P、14PのON。The method of determining this set moisture value is to actually measure foundry sand that has been kneaded and adjusted to various moisture values (%) using the measuring device shown in Fig.
P, 14P ON.
OFF状態を知る事によって得られる。This can be obtained by knowing the OFF state.
この設定水分値%と、これに対応する各光電管のON、
OFFの組合せを記憶演算装置30に記憶させておき、
第6図に於いて示す様なグラフ20.21,22(第3
図に同じ)からなる出力信号128,138,148の
組合せとを記憶演算装置30にて比較を行ない、例えば
第6図に於けるa、b、c、d・・・j%という様に0
.1秒毎に水分量を数値(%)に置換する為の換算を行
なう。This set moisture value % and the corresponding ON of each photocell,
The OFF combination is stored in the storage/arithmetic device 30,
Graphs 20, 21, 22 (third
The combination of output signals 128, 138, 148 consisting of
.. Conversion is performed every second to replace the moisture content with a numerical value (%).
そシテ、この換算水分値(%)の100ケ毎について第
7図に示す様に、平均水分値a′、b′、c′・・・e
′%・・・を算出する。Then, as shown in Figure 7 for every 100 converted moisture values (%), the average moisture values a', b', c'...e
′%... is calculated.
即ち0.1秒毎に点線部で示す様に1ケの換算水分値%
を次々に更新して、常に100ケの換算水分値%につい
ての平均を行ない、平均水分値%を換算する。In other words, every 0.1 seconds, one converted moisture value % is displayed as shown by the dotted line.
is updated one after another, and the average of 100 converted moisture value % is always calculated to calculate the average moisture value %.
そしてこの平均水分値%を指示制御装置30′への入力
信号308として人が目読できるように指示する。This average moisture value % is then given as an input signal 308 to the instruction control device 30' so that it can be visually read by a person.
(これにて従来の第一の問題点を解消できることとなる
。(This will solve the first problem of the conventional method.
)次に水分の調節に関しては指示制御装置30′にて前
記平均水分値%と、目標水分値%との偏差値を求めて、
これに応じた適切な水分添加を行なう様に制御弁32の
操作信号31Sに変換する。) Next, regarding moisture adjustment, the instruction control device 30' calculates the deviation value between the average moisture value % and the target moisture value %,
This is converted into an operation signal 31S for the control valve 32 so as to perform appropriate water addition accordingly.
そしてこの操作信号31Sは0.1秒毎に、規則的に出
力されることによって確実に制御弁32の動作が追従し
て、弁開度を調節することが出来る。By outputting this operation signal 31S regularly every 0.1 seconds, the operation of the control valve 32 can be reliably followed and the valve opening degree can be adjusted.
尚、前記平均水分値%は0.1秒毎に算出する場合を示
したが、制御弁32の動作特性に応じてこの算出時間の
間隔を適宜増減することにより、正確に制御弁32の動
作を追従せしめ得ることは明らかである。Although the average moisture value % is calculated every 0.1 seconds, the operation of the control valve 32 can be accurately controlled by appropriately increasing or decreasing the calculation time interval according to the operating characteristics of the control valve 32. It is clear that it is possible to follow the
(これにて従来の第二の問題点を解消できることとなる
。(This will solve the second conventional problem.
)次に、先に例示した様に換算水分値%100ケ毎につ
いて平均する目的について述べる。) Next, the purpose of averaging every 100 converted moisture values as exemplified above will be described.
このことは、先に述べた測定指示精度を向上させると共
に従来の第三の問題点を解消することに結びつくもので
あり、本発明の最も重要な点である。This is the most important point of the present invention, as it improves the measurement instruction accuracy mentioned above and also solves the third problem of the prior art.
従来の第三の問題点で述べた様に同一の光電管にて、検
出される鋳物砂にも水分量のバラツキがあり、更にスリ
ット5,7,9(第1図)から鋳物砂が落下する場合に
、同一水分量でありながら、ある鋳物砂はスリット5か
ら落下し、ある鋳物砂はスリット7から落下する場合が
起り得る。As mentioned in the third problem with the conventional method, there are variations in the moisture content of the foundry sand detected by the same phototube, and furthermore, the foundry sand falls from the slits 5, 7, and 9 (Fig. 1). In this case, some foundry sand may fall from slit 5 and some foundry sand may fall from slit 7 even though the water content is the same.
これに加えて前記設定水分値(第1表)の設定誤差等を
考慮すれば、第6図に示す0.1秒毎の換算水分値%a
、b、c・・・j%は、単に数値化した丈に過ぎず、そ
の数値%の信頼度は極めて低いものとなる。In addition to this, if we consider the setting error of the set moisture value (Table 1), the converted moisture value % a every 0.1 seconds as shown in Figure 6.
, b, c...j% are merely numerically expressed lengths, and the reliability of these numerical percentages is extremely low.
従ってこれを解消する為に以上例示した通り、100ケ
の換算水分値(%)を0.1秒毎に平均した、平均水分
値%を求めることによって、測定精度のバラツキを狭止
しようとするものである。Therefore, in order to solve this problem, as shown in the example above, 100 converted moisture values (%) are averaged every 0.1 seconds to find the average moisture value %, thereby trying to narrow down the variation in measurement accuracy. It is something.
こうして求めた平均水分値%に基づいて前に説明した様
に第5図の制御弁32を制御する為、目標水分値に対す
る厳密な精度を維持しつつ適切な水分添加を行なうこと
が可能となる。Since the control valve 32 shown in FIG. 5 is controlled as described above based on the average moisture value % thus obtained, it is possible to perform appropriate moisture addition while maintaining strict accuracy with respect to the target moisture value. .
具体的に数値で表現すれば従来精度±0.3%〜±0.
5%を±0.1%以下に向上できることとなる。Specifically expressed in numerical terms, the conventional accuracy is ±0.3% to ±0.
5% can be improved to ±0.1% or less.
次に従来の第四の欠点(第1図のトラフ底部2上を鋳物
砂18が混練装置より流れていない場合に於いて、光電
管12P、13P、14Pが鋳物砂18を検出しない為
に、この現象を鋳物砂18の水分値がスリット3から中
間トラフ4,6,8゜10に落下しない程に高くなった
ものと判断し、これに応じた水分添加の調節制御を行な
ってしまうという欠点)の解消法について説明する。Next, the fourth drawback of the conventional method (when the molding sand 18 is not flowing from the kneading device over the trough bottom 2 in FIG. 1, the phototubes 12P, 13P, and 14P do not detect the molding sand 18 The problem is that the moisture value of the foundry sand 18 has become too high to prevent it from falling from the slit 3 to the intermediate troughs 4, 6, 8° 10, and the moisture addition is adjusted accordingly. We will explain how to solve this problem.
第8図は上記に関する本発明の実施例図である。FIG. 8 is an embodiment of the present invention related to the above.
第1図と同一構成から成る分離装置1′のトラフ底部2
上を混練装置より鋳物砂18が流れているか否かを判別
する為にトラフ底部2の上方の図示しない支承装置に光
電管20Pを設ける。Trough bottom 2 of a separating device 1' having the same configuration as in FIG.
A phototube 20P is provided on a support device (not shown) above the trough bottom 2 in order to determine whether or not the foundry sand 18 is flowing above from the kneading device.
尚トラフ底部2の材質は例えばAlの如き元押性を有し
光電管20Pに対する投光器の役目をするものを用いる
。The trough bottom 2 is made of a material such as Al, which has an extrusion property and serves as a light projector for the phototube 20P.
第9図は第8図のA−A′矢視方向から見た断面図であ
る。FIG. 9 is a sectional view taken along the line A-A' in FIG. 8.
次に上記作用について説明する。Next, the above effect will be explained.
第8図に於いてトラフ底部2上を混練装置側の都合によ
り鋳物砂18が流れなくなった場合は、流れなくなった
その瞬間に光電管20Pが鋳物砂18がトラフ底部2に
無くなった事を検知する。In FIG. 8, if the molding sand 18 stops flowing on the trough bottom 2 due to circumstances on the kneading device side, the phototube 20P detects that the molding sand 18 is no longer on the trough bottom 2 at the moment it stops flowing. .
尚この検知後の成る時間は最前布トラフ底部2上を流れ
ていた鋳物砂18は未だスリット3より中間トラフ4,
6゜8.10へ落下中であり鋳物砂18がトラフ底部2
上を流れなくなるという現象の生じる以前の普通通りの
運転状態で殆どの鋳物砂18はスリット5.7,9より
落下して、光電管12P、13P。Incidentally, at the time after this detection, the foundry sand 18 that was flowing on the bottom 2 of the front cloth trough still flows from the slit 3 to the intermediate trough 4,
6° 8.10 and the foundry sand 18 is falling to the trough bottom 2.
Under normal operating conditions before the phenomenon of no flow occurring above, most of the foundry sand 18 falls through the slits 5, 7 and 9 and passes through the phototubes 12P and 13P.
14Pにより検出され、その種々の検出組合せに基づき
水分値を目読可能に表示し且つこれに応じた適切な水分
添加の調節制御を継続中である。14P, the moisture value is visually readable based on the various detection combinations, and appropriate moisture addition control is being continued accordingly.
しかし、トラフ底部2上を鋳物砂18が流れなくなった
事を光電管20Pが検出以後成る時間以上経ると最前布
トラフ底部2上を流れていた鋳物砂18はスリット3か
ら中間トラフ4,6,8゜10への落下及び光電管12
P、13P、14Pによる検出を全て完了する。However, when the phototube 20P detects that the molding sand 18 has stopped flowing over the trough bottom 2, the molding sand 18 that had been flowing over the frontmost fabric trough bottom 2 flows from the slit 3 to the intermediate troughs 4, 6, and 8. Falling into °10 and photocell 12
All detections by P, 13P, and 14P are completed.
即ち、水分値の表示及び水分添加の調節制御の礎となる
データーが得られなくなる。That is, it becomes impossible to obtain data that serves as the basis for displaying moisture values and adjusting and controlling moisture addition.
従って、本発明は鋳物砂18がトラフ底部2上を流れて
いない事を検知したならば、その旨の表示を行ない、そ
の検知と同時にその検知時に於ける水分添加の調節制御
信号を記憶演算装置(第5図の30)にて記憶保持する
様にする。Therefore, in the present invention, when it is detected that the foundry sand 18 is not flowing on the trough bottom 2, a display to that effect is displayed, and at the same time as the detection, a control signal for adjusting the water addition at the time of the detection is stored in the arithmetic unit. It is stored in memory at (30 in FIG. 5).
(何故ならば後続の水分測定が出来ないのであるから水
分測定データーが完全に100個(既に前に述べた制御
方法の一例に依る場合)揃った時の最新の平均水分値は
この検知時に於いてのみ得られるからである。(This is because subsequent moisture measurements cannot be made, so the latest average moisture value when 100 pieces of moisture measurement data have been collected (according to the example of the control method already described) will be determined at the time of this detection. This is because it can only be obtained by
)そして前記検知以後の水分添加の調節制御は再び鋳物
砂18がトラフ底部2上に流れてきた事を光電管20P
が検知する時迄記憶演算装置(第5図の30)にて記憶
保持したこの制御信号により継続する。) After the above-mentioned detection, the water addition is controlled by phototube 20P to detect that the foundry sand 18 has flowed onto the trough bottom 2 again.
This control signal stored in the storage/arithmetic unit (30 in FIG. 5) continues until the detection is detected.
即ちこの様な本発明の水分添加の制御様式は既に本発明
に依る従来の第三の欠点の解消法の箇所で述べた事から
も明らかなように混練時に於いて目標水分値に出来る限
シ近ずける様に水分添加を行なうには最善の方策である
と言える。In other words, as is clear from what has already been described in the section on how to solve the third drawback of the conventional method according to the present invention, the water addition control method of the present invention is to control the water addition as much as possible during kneading to achieve the target moisture value. It can be said that this is the best strategy to add moisture as close as possible.
(何故ならば水添加の調節制御の礎となる水分測定デー
ターが得られないという理由から、鋳物砂18がトラフ
底2上を流れない間のみ水分添加の調節制御を中断する
ことは混練装置が連続稼動している以上目標水分管理上
得策でないことは明らかであるから。(This is because it is not possible to obtain moisture measurement data, which is the basis for controlling the adjustment of water addition. Therefore, interrupting the adjustment control of water addition only while the foundry sand 18 is not flowing on the trough bottom 2 is difficult for the kneading equipment. It is clear that continuous operation is not a good idea in terms of target moisture management.
)以上本発明の効果を纏めて繰り返し述べると、第一に
従来に於いて出来なかった水分値(ハ)の監視を可能と
し、しかも指示精度を向上させた鋳物砂の水分測定指示
装置を可能とした。) To summarize and reiterate the effects of the present invention, firstly, it is possible to monitor the moisture value (c), which was not possible in the past, and also to provide a molding sand moisture measurement and instruction device with improved indication accuracy. And so.
第二に水分測定指示装置からの操作信号に対して、水分
添加調節部の作動が確実に追従出来るような鋳物砂の水
分調節装置を可能とした。Second, it has become possible to provide a molding sand moisture control device in which the operation of the moisture addition control section can reliably follow the operation signal from the moisture measurement instruction device.
第三に上記水分調節装置に於ける調節精度を従来の±0
.3%〜±0.5%から±0.1%以下に向上させるこ
とが出来る点である。Thirdly, the adjustment accuracy of the moisture adjustment device mentioned above has been improved to ±0 compared to the conventional one.
.. The point is that it can be improved from 3% to ±0.5% to ±0.1% or less.
第四に第8図に於いて説明した様に光電管12P、13
P、14Pのいずれもが鋳物砂を全く検出しない場合に
は鋳物砂が混練装置よシ分離装置1′へ流れて来ない為
に検出しないのかあるいは又鋳物砂は分離装置へ流れて
来ていてもスリット3より落下しない程に水分値が高く
なった為に検出しないのかを光電管20Pによシ判別し
て適確な水分表示及び水分添加の調節制御を行なうこと
が出来る。Fourth, as explained in FIG. 8, the phototubes 12P and 13
If neither P nor 14P detects any foundry sand, either the foundry sand is not detected because it is not flowing from the kneading device to the separator 1', or the foundry sand is flowing to the separator 1'. The phototube 20P determines whether the water content is not detected because the water content has become so high that it does not fall through the slit 3, thereby allowing accurate water content display and adjustment control of water addition.
第1図は従来の水分測定装置を示す断面図、第2図は第
1図の一点鎖線部をA、A′矢視方向から見た断面図、
第3図は第1図の測定装置による測定結果を示す図、第
4図は従来の水分調節方法の実施例図、第5図は本発明
の水分測定及び調節方法の実施例図、第6図は本発明に
於いて第3図の測定結果から水分値を換算する実施例図
、第7図は本発明による換算水分値の平均値を求める実
施例図、第8,9図は本発明による実施例図である。
1.4,6,8,10ニドラフ、3,5,7゜9ニスリ
ツト、12P、13P、14P:センサー、18:鋳物
砂、20P:検出装置、26:混練装置。Fig. 1 is a cross-sectional view showing a conventional moisture measuring device, Fig. 2 is a cross-sectional view of the dashed-dotted line in Fig. 1, viewed from the direction of arrows A and A';
FIG. 3 is a diagram showing the measurement results by the measuring device of FIG. 1, FIG. 4 is an example of the conventional moisture adjustment method, FIG. 5 is an example of the moisture measurement and adjustment method of the present invention, and FIG. The figure is an example diagram of converting the moisture value from the measurement results of Figure 3 in the present invention, Figure 7 is an example diagram of calculating the average value of the converted moisture value according to the present invention, and Figures 8 and 9 are examples of the present invention. FIG. 1.4, 6, 8, 10 Nidraft, 3, 5, 7°9 Nisrit, 12P, 13P, 14P: Sensor, 18: Foundry sand, 20P: Detection device, 26: Kneading device.
Claims (1)
を設けたトラフに供給し、前記スリットのいずれから落
下したかを複数個のセンサーで検出して水分値を測定し
、且つこれに基づいて目標水分値を維持するように、水
分添加量を調節する鋳物砂の水分調節装置に於いて前記
鋳物砂が、前記混線装置から前記トラフに供給されてい
るか否かを判別する検出装置を設けたことを特徴とする
鋳物砂の水分測定装置及び調節装置。1. Molding sand is supplied from a crosstalk device to a trough provided with a plurality of slits of different widths, and a plurality of sensors detect which of the slits it has fallen from to measure the moisture content, and based on this, A detection device for determining whether or not the foundry sand is being supplied from the crosstalk device to the trough is provided in a foundry sand moisture control device that adjusts the amount of added water so as to maintain a target moisture value. A foundry sand moisture measuring device and regulating device, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2750980A JPS58938B2 (en) | 1980-03-05 | 1980-03-05 | Foundry sand moisture control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2750980A JPS58938B2 (en) | 1980-03-05 | 1980-03-05 | Foundry sand moisture control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56122642A JPS56122642A (en) | 1981-09-26 |
JPS58938B2 true JPS58938B2 (en) | 1983-01-08 |
Family
ID=12223095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2750980A Expired JPS58938B2 (en) | 1980-03-05 | 1980-03-05 | Foundry sand moisture control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58938B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210051778A (en) | 2019-10-31 | 2021-05-10 | 현대자동차주식회사 | An electrolyte membrane containing catalytic metal with improved electrical insulating property and a method for preparation thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58212834A (en) * | 1982-06-02 | 1983-12-10 | Komatsu Ltd | Measuring method of water to be added in sand mill for molding sand |
JPS60115345A (en) * | 1983-11-25 | 1985-06-21 | Sintokogio Ltd | Method and device for deciding reconditioned molding sand |
JP6315340B2 (en) * | 2014-11-28 | 2018-04-25 | 新東工業株式会社 | Sand debris removal device |
CN117960994B (en) * | 2024-04-02 | 2024-06-04 | 福建台屹精密机械有限公司 | Sand mould casting equipment |
-
1980
- 1980-03-05 JP JP2750980A patent/JPS58938B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210051778A (en) | 2019-10-31 | 2021-05-10 | 현대자동차주식회사 | An electrolyte membrane containing catalytic metal with improved electrical insulating property and a method for preparation thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS56122642A (en) | 1981-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7610117B2 (en) | System and method for flow monitoring and control | |
JP2602819B2 (en) | Automatic control of flowable material flow by continuous metering device | |
US20050016704A1 (en) | Method and apparatus for controlling the operation of stock preparation of a paper machine | |
SE457389B (en) | SIGNIFICANT KNOWLEDGE, SELF-ADJUSTING CONTROL | |
US6168305B1 (en) | System for precisely controlling discharge rates for loss-in-weight feeder systems | |
JPS58938B2 (en) | Foundry sand moisture control device | |
CN206639056U (en) | A kind of material-level measure control device | |
CN211619169U (en) | Belt feeder blanking regulator | |
CN114018382A (en) | Control method for improving weighing precision of weightless scale for batching | |
JPS602943B2 (en) | Method for measuring and adjusting moisture in foundry sand | |
US6782327B2 (en) | Method and apparatus for measuring material | |
JPH06231327A (en) | Automatic discrimination device for molding defect | |
CZ42893A3 (en) | Method of investigating quality parameters of an object or a state and apparatus for making the same | |
JP2812404B2 (en) | Valve opening control method | |
JPH0214118A (en) | Raw material consumption sensor for synthetic resin extruder and control method for extrusion quantity | |
JPS6026712A (en) | Intake of water stored in dam | |
JPS60185826A (en) | Method for controlling thickness of sliver | |
JPS5938424Y2 (en) | Material charging equipment for bellless blast furnace | |
JP2874295B2 (en) | Multi-layer paper machine controller | |
SU891548A1 (en) | Method and apparatus for automatic monitoring of delivery of material from hopper | |
SU760912A1 (en) | Method of automatic stabilisating of flowing cream fatness | |
JPS6255524A (en) | Instrument for measuring weight of liquid in tank | |
JPS5911128B2 (en) | Method for controlling the amount of glue added at a constant concentration | |
JPH0637757B2 (en) | Papermaking process control device | |
RU2026376C1 (en) | Method for automatic stabilization of sinter burden thickness on sintering machine |