JPS589381A - Josephson logical circuit - Google Patents

Josephson logical circuit

Info

Publication number
JPS589381A
JPS589381A JP56105575A JP10557581A JPS589381A JP S589381 A JPS589381 A JP S589381A JP 56105575 A JP56105575 A JP 56105575A JP 10557581 A JP10557581 A JP 10557581A JP S589381 A JPS589381 A JP S589381A
Authority
JP
Japan
Prior art keywords
josephson
terminal
current
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56105575A
Other languages
Japanese (ja)
Other versions
JPH033396B2 (en
Inventor
Yutaka Harada
豊 原田
Nobuo Kodera
小寺 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56105575A priority Critical patent/JPS589381A/en
Publication of JPS589381A publication Critical patent/JPS589381A/en
Publication of JPH033396B2 publication Critical patent/JPH033396B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/195Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices
    • H03K19/1952Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices with electro-magnetic coupling of the control current

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a DC driven circuit with large signal amplitude voltages by a method wherein two Josephson device free of hysteresis in their voltage/current characteristics are serially combined and a first controlling line is provided in their vicinity and a second in the vicinity of one of the two devices. CONSTITUTION:A first Josephson device 401 lacking a hysteresis featue in its voltage/current characteristics has a terminal connected to a power source terminal 311. The other terminal is connected to a circuit output terminal 310 and to one of the terminals of a second Josephson device 402 also lacking a hysteris feature. The other terminal of the device 402 is grounded. Next, a first load resistor 303 is provided across the terminals 311 and 310, and a second load resistor 304 is provided across the terminal 310 and the ground. A second controlling circuit 308 with a constant current source 309 is provided in the vicinity of the network just referred to. And a first controlling circuit 307 with terminals 305 and 307 is positioned in the vicinity of the two devices. The magnetic fluxes generated by the two devices are rendered to interlock, or to neutralize, each other.

Description

【発明の詳細な説明】 本発明は、ジョセフソン素子を使った論理回路で特に直
流電源駆動方式の回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a logic circuit using a Josephson element, and particularly to a circuit driven by a DC power supply.

従来のジョセフソン素子を使ったディジタル回路は、主
に交流電源駆動方式が検討され、直流電源駆動方式の回
路が見過されていた。しかし、交流電源駆動方式の回路
はその構造が簡単である反面、交流電源駆動回路をおさ
める実装構造が複雑となるため最近では直流電源駆動方
式が見直され色々な形式の回路が提案されている。以下
に従来技術による直流電源駆動回路の問題点をあげる。
For digital circuits using conventional Josephson elements, AC power drive systems were mainly considered, and DC power drive systems were overlooked. However, although the AC power drive type circuit has a simple structure, the mounting structure that houses the AC power drive circuit is complicated, so recently, the DC power drive type has been reconsidered and various types of circuits have been proposed. Problems with the conventional DC power supply drive circuit are listed below.

第1a図、第1b図は例えば超電導材料の間に絶縁層を
もうけた構造の、いわゆるサンドイッチ構造のジョセフ
ソン素子の電圧−電流特性である。
FIGS. 1a and 1b show the voltage-current characteristics of a Josephson element having a so-called sandwich structure in which an insulating layer is provided between superconducting materials, for example.

ジョセフソン素子に流れうる最大の超電導電流はジョセ
フソン素子と鎖交する磁束によって制御される。例えば
第1a図ではジョセフソン素子に磁束が鎖交していない
ため、ジョセフソン素子に流れうる最大の超電導電流は
多いが、第1b図ではジョセフソン素子に磁束が鎖交し
ているため、ジョセフソン素子に流れうる最大の超電導
電流は少いことを示している。電圧状態にあるジョセフ
ソン素子の両端にかかる直流電圧をある値以下にすると
ジョセフソン素子が超電導状態にもどる現象は良く知ら
れている。電圧状態にとどまっていられる最小の電圧V
ms+aは近似的に(1)式で記述される。
The maximum superconducting current that can flow through the Josephson device is controlled by the magnetic flux that interlinks with the Josephson device. For example, in Figure 1a, the Josephson element is not linked with magnetic flux, so the maximum superconducting current that can flow through the Josephson element is large, but in Figure 1b, the Josephson element is linked with magnetic flux, so the maximum superconducting current that can flow through the Josephson element is large. This indicates that the maximum superconducting current that can flow through the Sonn element is small. It is well known that when the DC voltage applied across a Josephson element in a voltage state is lowered below a certain value, the Josephson element returns to a superconducting state. The minimum voltage V that can remain in a voltage state
ms+a is approximately described by equation (1).

1、:ジョセフソン素子に流れうる最大の超電導電流 CJ:ジョセフソン接合容量 f =ブランク定数を2胃でわったものe :電子電荷 ■、1.はα)で明かな様にジョセフソン素子に流れう
る最大電流の平方根に比例する。そのため第1a図のv
、1.11は第1b図のVat□よシも大きい。
1.: Maximum superconducting current that can flow through the Josephson element CJ: Josephson junction capacitance f = Blank constant divided by two stomachs e: Electronic charge ■, 1. is clearly proportional to the square root of the maximum current that can flow through the Josephson element. Therefore, v in Figure 1a
, 1.11 is also larger than Vat□ in Fig. 1b.

第2図は従来技術による公知の直流電源駆動回路の例で
ある。ジョセフソン素子101の1端は接地され、他端
は端子104に接−続される。負荷抵抗102の1端は
接地され、他端は端子104に接続される。この端子1
04は回路の出力端子である。直流電流源103の1端
は接地され、他端は端子104に接続される。コントロ
ール配線107はジョセフソン素子101の近傍におか
れ、端子105,106を介してコントロール配線10
7を流れるコントローを電流によ多発生する磁束はジョ
セフソン素子101と鎖交する。第2図で点線で囲んだ
領域は磁気的に結合している範囲を表している。ジョセ
フソン素子101は第1虐図、第1b図に示す電圧−電
流特性を持つ。以下に第2図に示す回路の動作を説明す
る。第3図は第1a図に抵抗102の負荷直線を、第4
図は第1b図に抵抗102の負荷直線を書き加えた図で
4る。コントロール電流が流れない場合の動作点は第3
図のA点である。すなわちジョセフソン素子101に磁
束が鎖交していないため、最大の超電導電流が多く、か
つVwalmも大きい。負荷抵抗102の抵抗値を第3
図の様に電圧状態の動作点がV、川よシ小さい値になる
様に設定しておけば、この状態における回路の安定点は
第3図のA点しか無い。そのためジョセフソン素子10
1は超電導状態にあシ、出力端子104は接地電位、す
なわちOvであル負荷抵抗102には電流が流れない。
FIG. 2 is an example of a known DC power supply drive circuit according to the prior art. One end of Josephson element 101 is grounded, and the other end is connected to terminal 104. One end of the load resistor 102 is grounded, and the other end is connected to the terminal 104. This terminal 1
04 is the output terminal of the circuit. One end of the DC current source 103 is grounded, and the other end is connected to the terminal 104. The control wiring 107 is placed near the Josephson element 101 and is connected to the control wiring 107 via terminals 105 and 106.
The magnetic flux generated by the current flowing through the controller 7 interlinks with the Josephson element 101. The region surrounded by dotted lines in FIG. 2 represents the magnetically coupled range. The Josephson element 101 has voltage-current characteristics shown in Figure 1 and Figure 1b. The operation of the circuit shown in FIG. 2 will be explained below. Figure 3 shows the load line of the resistor 102 in Figure 1a, and
The figure is a diagram obtained by adding the load line of the resistor 102 to Figure 1b. The operating point when no control current flows is the third
This is point A in the figure. That is, since no magnetic flux is linked to the Josephson element 101, the maximum superconducting current is large and Vwalm is also large. The resistance value of the load resistor 102 is
If the operating point of the voltage state is set to a smaller value than V, as shown in the figure, the only stable point of the circuit in this state is point A in FIG. 3. Therefore, Josephson element 10
1 is in a superconducting state, and the output terminal 104 is at ground potential, that is, Ov, so no current flows through the load resistor 102.

コントロール電流がコントロール線107を流れた場合
の動作点は第4図のB点である。すなわちジョセフソン
素子101に磁束が鎖交しているため、最大の超電導電
流は少く、かつVaim も小さいためこの状態におけ
る回路の安定点はB点しか無い。そのためジョセフソン
素子101は電圧状態にあシ、出力端子104には第3
図B点に相当する電位になシ、負荷抵抗102には直流
電流源103から流れ出るゲート電流工、の一部が流れ
る。コントロール電流の有無を入力信号の@1m1 °
Omに対応させ負荷抵抗に流れる電流の有無を又は端子
104の電位の高低を出力信号の@l#、@Q”に対応
させれば第2図の回路はいわゆるコンバータ回路動作を
していることは明かである。しかし第2図に示す回路は
信号振幅、特に出力端子104の“l”、′0”レベル
の電位の差が小さい欠点がある。すでに説明した様に第
2図に示す回路の信号振幅電圧Vムは(@式で示される
範囲にある。
The operating point when the control current flows through the control line 107 is point B in FIG. That is, since the magnetic flux is interlinked with the Josephson element 101, the maximum superconducting current is small and Vaim is also small, so the only stable point of the circuit in this state is point B. Therefore, the Josephson element 101 is in a voltage state, and the output terminal 104 has a third
At a potential corresponding to point B in the figure, a portion of the gate current flowing from the DC current source 103 flows into the load resistor 102. Control current presence/absence of input signal @1m1°
If the presence or absence of current flowing through the load resistance is made to correspond to Om, or the level of the potential at the terminal 104 is made to correspond to the output signals @l#, @Q'', the circuit in Fig. 2 operates as a so-called converter circuit. However, the circuit shown in FIG. 2 has the disadvantage that the signal amplitude, especially the difference between the potentials of the "1" and '0' levels of the output terminal 104 is small. As already explained, the signal amplitude voltage Vm of the circuit shown in FIG. 2 is within the range shown by the expression (@).

V−1−*<Vム< V 、t□ ・・・・・・・・・
・・・・・・ (2)約0.3 m V以下であるため
、信号振幅電圧Vムはそれ以下になる。
V-1-*<Vmu<V,t□・・・・・・・・・
(2) Since it is about 0.3 mV or less, the signal amplitude voltage Vm becomes less than that.

第5図は第2図に示す回路を改良した従来例である。第
1のジョセフソン素子301に第1の負荷抵抗303を
並列接続したものと、第2のジョセフソン素子362に
第2の負荷抵抗304を並列接続ものを直列に接続し、
その1端を接地し、他端を電源端子311に接続すると
同時に、該直列接続の中点を、出力端子310に接続す
る。第1のジョセフソン素子301の近傍にノ(イデス
線308を配置し、直流電流源309よシ/<イアス線
308に流れるバイアス電流によ多発生する磁束は第1
のジョセフソン素子と鎖交する。コントロール配線30
7は第1、第2のジョセフソン素子301,302の近
傍に置かれ、端子305゜306を介して流れるコント
ロール電流によ多発生する磁束は溶1、第2のジョセフ
ソン素子301゜302と鎖交する。この場合コントロ
ール電流とバイアス電流の方向を互いに逆向きにしてお
き各各の電流が発生し、第1のジョセフソン素子301
と鎖交する磁束は互いに打ち消し合う様にしておく。第
5図で点線で囲んだ領域は磁気的に結合している範囲を
表わしている。次に第5図の回路動作を説明する。コン
トロール電流が流れない場合の第1のジョセフソン素子
301の電圧−電流特性は第1b図で表わされ、第2の
ジョセフソン索子302の電圧−電流特性は第1a図で
表わされる。コントロール電流が流れる時は、第1のジ
ョセフソン索子301の電圧−電流特性は第1a図で表
わされ、第2のジョセフソン素子302の電圧電流特性
は第1b図で表わされる。電源端子311に印加する電
圧を(3)式 %式%(3) の様にすると、第1、第2のジョセフソン索子301、
:102のどちらか一方が超電導状態であシ、他方が電
圧状態になる。コントロール電流が流れない場合は第1
のジョセフソン素子301は電圧状態にあシ、第2のジ
ョセフソン素子302は超電導状態にあるため出力端子
31O//′i接地電位すなわちOvである。コントロ
ール電流が流れる場合は$1のジョセフソン重子301
は超電導状態、ジョセフソン素子302は電圧状態にあ
シ、出力端子310は電源端子と同電位すなわちVtt
ボルトである。第5図に示した回路の信号振幅電圧Vム
はv8ボルトとなる。以上の説明から明かな様に第5図
に示す回路は第2図に示す回路よシも信号振幅電圧を大
きくできる。しかし第5図に\、 示す回路はスイッチングの過渡時に回路出力に発振波形
が現われ不安定となることがある。この出力の発振現象
は約10PS乃至100PS程度続く場合もある。これ
はスイッチングの過渡時には(3)式の条件を満さない
時があシ、そのために第1、第2のジョ・セフソン素子
301,302の両者が電圧状態になシ、出力端子の電
圧が不安定になるためである。
FIG. 5 shows a conventional example in which the circuit shown in FIG. 2 is improved. A first Josephson element 301 with a first load resistor 303 connected in parallel and a second Josephson element 362 with a second load resistor 304 connected in parallel are connected in series,
One end thereof is grounded, the other end is connected to the power supply terminal 311, and at the same time, the middle point of the series connection is connected to the output terminal 310. An Ides wire 308 is placed near the first Josephson element 301, and the magnetic flux generated by the bias current flowing through the DC current source 309 and Is wire 308 is
interlinks with the Josephson element. control wiring 30
7 is placed near the first and second Josephson elements 301 and 302, and the magnetic flux generated by the control current flowing through the terminals 305 and 306 is connected to the melt 1 and the second Josephson elements 301 and 302. interlink. In this case, the directions of the control current and bias current are opposite to each other, and each current is generated, and the first Josephson element 301
Make sure that the magnetic fluxes interlinked with each other cancel each other out. The region surrounded by dotted lines in FIG. 5 represents the magnetically coupled range. Next, the operation of the circuit shown in FIG. 5 will be explained. The voltage-current characteristic of the first Josephson element 301 when no control current flows is shown in FIG. 1b, and the voltage-current characteristic of the second Josephson element 302 is shown in FIG. 1a. When a control current flows, the voltage-current characteristics of the first Josephson element 301 are shown in FIG. 1a, and the voltage-current characteristics of the second Josephson element 302 are shown in FIG. 1b. When the voltage applied to the power supply terminal 311 is set as shown in equation (3), the first and second Josephson ropes 301,
:102 is in a superconducting state, and the other is in a voltage state. If the control current does not flow, the first
Since the second Josephson element 301 is in a voltage state and the second Josephson element 302 is in a superconducting state, the output terminal 31O//'i is at the ground potential, that is, Ov. If control current flows, $1 Josephson Shigeko 301
is in a superconducting state, the Josephson element 302 is in a voltage state, and the output terminal 310 is at the same potential as the power supply terminal, that is, Vtt.
It's a bolt. The signal amplitude voltage Vm of the circuit shown in FIG. 5 is v8 volts. As is clear from the above description, the circuit shown in FIG. 5 can increase the signal amplitude voltage more than the circuit shown in FIG. 2. However, in the circuit shown in FIG. 5, an oscillation waveform appears in the circuit output during a switching transition, and the circuit may become unstable. This output oscillation phenomenon may continue for about 10 PS to 100 PS. This is because there are times when the condition of equation (3) is not satisfied during switching transients, so both the first and second Jo-Sefson elements 301 and 302 are not in a voltage state, and the voltage at the output terminal is This is because it becomes unstable.

本発明の目的は信号振幅電圧が大きく、かつ又スイッチ
ング時の過渡特性が安定な直流駆動回路を提案すること
Kある。
An object of the present invention is to propose a DC drive circuit that has a large signal amplitude voltage and stable transient characteristics during switching.

以下に本発明を実施例を使って説明する。第6図はヒス
テリシス特性を持たないジョセフソン索子の電圧−電流
特性である。ジョセフソン索子に流れうる最大の超電導
電流はジョセフソン索子に鎖交する磁束によりコントロ
ールされる。例えば第6図でジョセフソン素子に鎖交す
る磁束が零の場合は工で示す特性を、磁束が零でない場
合は■で示す特性となる。磁束はジョセフソン索子の近
傍においたコントロール配線に流れるコントロール電流
によって発生される。ブリッジ形のジョセフソン接合素
子、半導体を超電導材料ではさんだ構造のジョセフソン
接合素子、酸化物を超電導材料ではさんだ構造のジョセ
フソン接合素子で超電導電流密度が大きい場合の素子が
第6図に示す電圧−電流特性を示す。たとえば、2Xl
O@A/crr?以上の高電流密度を有するpb−ox
jde−Pb (In)ジョセフソン素子は4に以上で
はほとんどヒステリシス特性を示さなくなることが知ら
れている(L、D、Jackel et ml : I
EEE ’rrans、Mag。
The present invention will be explained below using examples. FIG. 6 shows the voltage-current characteristics of a Josephson cord without hysteresis characteristics. The maximum superconducting current that can flow through the Josephson cord is controlled by the magnetic flux that interlinks with the Josephson cord. For example, in FIG. 6, when the magnetic flux interlinking with the Josephson element is zero, the characteristics are shown by ., and when the magnetic flux is not zero, the characteristics are shown by . The magnetic flux is generated by a control current flowing in control wiring placed near the Josephson cord. When the superconducting current density is large for a bridge-type Josephson junction element, a Josephson junction element with a structure in which a semiconductor is sandwiched between superconducting materials, and a Josephson junction element in a structure in which an oxide is sandwiched between superconducting materials, the voltages shown in Figure 6 are shown. - Indicates current characteristics. For example, 2Xl
O@A/crr? pb-ox with a high current density of
It is known that the jde-Pb (In) Josephson element hardly exhibits hysteresis characteristics at a value of 4 or more (L, D, Jackel et ml: I
EEE'rrans, Mag.

凧G−17、295(1981) )。Kite G-17, 295 (1981)).

第7図は本発明の一実施例を示す図である。第7図に示
す回路は第2図にあるジョセフソン素子101を第6図
に示す電圧−電流特性を持つジョセフソン素子201に
おきかえたものである。第7図に示す回路の動作を以下
に説明する。コントロール配線107にコントロール電
流が流れない場合の回路の動作点は第8図のA点である
。この場合ジョセフソン素子201に流しうる最大の超
電導電流が多いため、ジョセフソン索子は超電導状態に
ある。そのため第7図の回路の出力端子104の電位は
OVである。コントロール配線107にコントロール電
流が流れる場合の回路の動作点は第9図のB点である。
FIG. 7 is a diagram showing an embodiment of the present invention. The circuit shown in FIG. 7 is obtained by replacing the Josephson element 101 shown in FIG. 2 with a Josephson element 201 having the voltage-current characteristics shown in FIG. The operation of the circuit shown in FIG. 7 will be explained below. The operating point of the circuit when no control current flows through the control wiring 107 is point A in FIG. In this case, the maximum superconducting current that can flow through the Josephson element 201 is large, so the Josephson probe is in a superconducting state. Therefore, the potential of the output terminal 104 of the circuit shown in FIG. 7 is OV. The operating point of the circuit when a control current flows through the control wiring 107 is point B in FIG.

この場合ジョセフソン素子201に流しうる最大の超電
導電流が少いため、ジョセフソン索子は電圧状態にあシ
、出力端子104の電位はB点に対応した。vでない電
位にある。ジョセフソン素子201の電圧−電流特性は
ヒステリシス特性を持たないため次にコントロール電流
を零にすれば動作点は第8図のA点にうつる。以上説明
したごとく第7図の回路はいわゆるコンバータ回路動作
をする。
In this case, since the maximum superconducting current that can flow through the Josephson element 201 is small, the Josephson element remains in a voltage state, and the potential of the output terminal 104 corresponds to point B. It is at a potential that is not v. Since the voltage-current characteristics of the Josephson element 201 do not have hysteresis characteristics, if the control current is then made zero, the operating point will move to point A in FIG. As explained above, the circuit shown in FIG. 7 operates as a so-called converter circuit.

本発明の他の実適例を第10図に示す。第1のジョセフ
ソン索子401の1つの端子は電源端子311に接続さ
れ、他の端子は回路の出方端子31Gに接続されると同
時に第2のジョセフソン索子402の1つの端子に接続
される。第2のジヨセ7ソン素子402の他端は接地さ
れる。第1の負荷抵抗303の1つの端子は電源端子3
11に接続され、他の端子は回路の出力端子310に接
続されると同時に第2の負荷抵抗304の1つの端子に
接続される。第2の負荷抵抗304の他の端子は接地さ
れる。第1のコントロール配線ao7は第1s第2のジ
ョセフソン素子401 。
Another embodiment of the invention is shown in FIG. One terminal of the first Josephson cable 401 is connected to the power supply terminal 311, and the other terminal is connected to the output terminal 31G of the circuit and simultaneously connected to one terminal of the second Josephson cable 402. be done. The other end of the second Josephson element 402 is grounded. One terminal of the first load resistor 303 is the power supply terminal 3
11, and the other terminal is connected to the output terminal 310 of the circuit and simultaneously connected to one terminal of the second load resistor 304. The other terminal of the second load resistor 304 is grounded. The first control wiring ao7 is the 1s second Josephson element 401.

402の近傍におかれ、端子305,306を介して第
1のコントロール配線307に流れるコントロール電流
によ多発生する磁束は第11第2のジョセフソン素子4
01,402と鎖交する。第2のコントロール配線30
8は第1のジョセフソン素子401の近傍におかれ、定
電流電源309よシ供給されるバイアス電流は第2のコ
ントロール配線を流れ、バイアス電流によ多発生する磁
束は第1のジョセフソン素子401と鎖交する様にする
。この場合第1のコントロール配flA307に流れる
コントロール電流と第2のコントロール配線308に流
れるバイアス電流の流れる方向を互いに逆向きにしてお
き、各々の電流が発生する第1のジョセフソン素子40
1と鎖交する磁束は互いに打ち消し合う様にしておく。
The magnetic flux generated by the control current flowing to the first control wiring 307 through the terminals 305 and 306 is placed near the 11th and 2nd Josephson element 402.
Interlinks with 01,402. Second control wiring 30
8 is placed near the first Josephson element 401, the bias current supplied from the constant current power supply 309 flows through the second control wiring, and the magnetic flux generated by the bias current is passed through the first Josephson element. Make it interlink with 401. In this case, the flow directions of the control current flowing through the first control wiring flA 307 and the bias current flowing through the second control wiring 308 are set to be opposite to each other, and the first Josephson element 40 where each current is generated
The magnetic fluxes interlinked with 1 are made to cancel each other out.

第10図で点線で囲まれた領域は磁気的に結合している
領域を示す。第11第2のジョセフソン素子は第6図に
示す電圧−電流特性を持つ。電源端子311には直流電
圧Vmボルトが印加されている。以下に第10図に示す
回路の動作を説明する。コントロール電流が流れない時
、第1のジョセフソン素子401には、バイアス電流に
よ多発生した磁束が鎖交するが、第2のジョセフソン素
子402には磁束が鎖交しない。そのため第1のジョセ
フソン素子401に流れうる最大の超電導電流は多く、
第2のジョセフソン素子402に流れうる最大の超電導
電流は少い。したがってコントロール電流が流れない場
合の動作点は第11図のA点となシ、第1のジョセフソ
ン素子は電圧状態、第2のジョセフソン素子は超電導状
態にあシ、出力端子310は接地電位すなわち0ボルト
になる。コントロール電流が流れる場合、第1のジョセ
フソン素子401にはコントロール電流とバイアス電流
の両方が発生する磁束が鎖交するが、先に説明した様に
磁束が互いに打ち消し合うため、第1のジョセフソン素
子401には等制約に磁束は鎖交しない状態となシ、第
2のジョセフソン素子402にはコントロール電流が発
生した磁束が鎖交する。そのため第1のジョセフソン素
子401に流れうる最大の超電導電流は多く、ts2の
ジョセフソン素子402に流れうる最大の超電導電流は
少い。したがってコントロール電流が流れる場合の動作
点は第12図のB点となシ、第1のジョセフソン素子4
01は超電導状態、第2のジョセフソン素子402は電
圧状態になシ、出力端子310には電源電圧と等電位、
すなわちV1ボルトとなる。以上の説明よシ第10図の
回路はいわゆるコンバータ回路動作をしていることは明
かである。又第2(7)コン)o−ル配+11308を
第2のジョセフソン素子402の近傍に置けば回路がい
わゆるインバータ回路動作をすることは明かである。第
10図に示す回路は第1、第2のジョセフソン素子40
1゜402を直列に接続しているため信号振幅電圧は大
きく、かつ第1、第2のジョセフソン素子401.40
2の電圧−電流特性にヒステリシス特性を持たないため
スイッチング時の過渡特性が不安定になる要因も無く安
定している。
The region surrounded by dotted lines in FIG. 10 indicates a magnetically coupled region. The eleventh second Josephson element has voltage-current characteristics shown in FIG. A DC voltage Vm volts is applied to the power supply terminal 311. The operation of the circuit shown in FIG. 10 will be explained below. When the control current does not flow, the first Josephson element 401 is linked with the magnetic flux generated by the bias current, but the second Josephson element 402 is not linked with the magnetic flux. Therefore, the maximum superconducting current that can flow through the first Josephson element 401 is large,
The maximum superconducting current that can flow through the second Josephson element 402 is small. Therefore, when no control current flows, the operating point is point A in Figure 11, the first Josephson element is in a voltage state, the second Josephson element is in a superconducting state, and the output terminal 310 is at ground potential. In other words, it becomes 0 volts. When the control current flows, the magnetic fluxes generated by both the control current and the bias current intersect with the first Josephson element 401, but as explained earlier, the magnetic fluxes cancel each other out, so the first Josephson element 401 The magnetic flux is not linked to the element 401 under equal constraints, and the magnetic flux generated by the control current is linked to the second Josephson element 402. Therefore, the maximum superconducting current that can flow through the first Josephson element 401 is large, and the maximum superconducting current that can flow through the ts2 Josephson element 402 is small. Therefore, the operating point when the control current flows is point B in FIG.
01 is in a superconducting state, the second Josephson element 402 is not in a voltage state, and the output terminal 310 is at the same potential as the power supply voltage.
That is, it becomes V1 volt. From the above explanation, it is clear that the circuit shown in FIG. 10 operates as a so-called converter circuit. It is also clear that if the second (7) conductor wiring 11308 is placed near the second Josephson element 402, the circuit operates as a so-called inverter circuit. The circuit shown in FIG. 10 includes first and second Josephson elements 40.
1°402 are connected in series, the signal amplitude voltage is large, and the first and second Josephson elements 401.40
Since the voltage-current characteristics of No. 2 do not have hysteresis characteristics, there are no factors that make the transient characteristics during switching unstable, and the characteristics are stable.

第13図は第1O図に示した回路で他の回路を駆動する
場合の構成(図では第10図の回路を2段接続した場合
を示す)を示した図である。第10図に示す負荷抵抗3
04流れる電流を伝送線路501と駆動される回路の端
子305,306を介してコントロール配線307に流
すことによシ回路を駆動できる。
FIG. 13 is a diagram showing a configuration when another circuit is driven by the circuit shown in FIG. 1O (the figure shows a case where the circuit shown in FIG. 10 is connected in two stages). Load resistance 3 shown in Figure 10
The circuit can be driven by allowing the current flowing in the control wiring 307 to flow through the transmission line 501 and the terminals 305 and 306 of the circuit to be driven.

以上の説明でジョセフソン素子201,401゜402
は何ら規定しなかったが、これらのジョセフソン素子は
ジョセフソン接合でもジョセフソン干渉計でも良いこと
は明かである。
With the above explanation, the Josephson element 201, 401° 402
Although not specified in any way, it is clear that these Josephson elements may be either Josephson junctions or Josephson interferometers.

以上説明したごとく本発明によれば安定したスイッチン
グ動作をする、信号振幅電圧の大きい直流電源駆動回路
を容易に構成でき、ディジタルシステムの設計、動作マ
ージンを大きくすることができる。
As described above, according to the present invention, it is possible to easily configure a DC power supply drive circuit that performs stable switching operation and has a large signal amplitude voltage, and it is possible to increase the design and operation margin of a digital system.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図、第1b図はジョセフソン素子の電圧−電流特
性、第2図乃至第5図は従来例を説明するための図、第
6図は本発明で用いるジョセフソン素子の電圧、電流特
性を示す図、第7図、第10図、第13図は本発明の実
施例図、第8図、第9図、第11図、第12図は本発明
の実施例の動作を説明するための図である。 101.301,302・・・ヒステリシス特性を持つ
ジョセフソン素子、201,401,402・・・ヒス
テリシス特性を持たないジョセフソン素子、102.3
03,304・・・負荷抵抗、107,307第 1α
 目 第 To ’O Y 2 図 7/θ4 ノ ′fi13  悶 ■ 4 図 ′fJ 5 図 ’f)tθ 図 第 11 図 第 13  図 jOφ  −
Figures 1a and 1b are voltage-current characteristics of the Josephson element, Figures 2 to 5 are diagrams for explaining conventional examples, and Figure 6 is the voltage and current characteristics of the Josephson element used in the present invention. FIGS. 7, 10, and 13 are examples of the present invention, and FIGS. 8, 9, 11, and 12 are for explaining the operation of the embodiments of the present invention. This is a diagram. 101.301,302...Josephson element with hysteresis characteristics, 201,401,402...Josephson element without hysteresis characteristics, 102.3
03,304...Load resistance, 107,307th 1α
To 'O Y 2 Figure 7/θ4 ノ'fi13 Agony ■ 4 Figure 'fJ 5 Figure 'f) tθ Figure 11 Figure 13 Figure jOφ -

Claims (1)

【特許請求の範囲】[Claims] 電圧−電流特性にヒステリシス特性を持たない第11第
2のジョセフソン素子を夫々直列に接続し、この第11
第2のジョセフソン素子の近傍に第1のコントロール配
線を設けるとともに第1、第2のジョセフソン素子のど
ちらか一方の近傍に第2のコントロール配線を設けたこ
とを特徴とするジョセフノン論理回路。
Eleventh and second Josephson elements having no hysteresis characteristic in voltage-current characteristics are connected in series, and the eleventh
A Josephson logic circuit characterized in that a first control wiring is provided in the vicinity of the second Josephson element, and a second control wiring is provided in the vicinity of either the first or second Josephson element. .
JP56105575A 1981-07-08 1981-07-08 Josephson logical circuit Granted JPS589381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56105575A JPS589381A (en) 1981-07-08 1981-07-08 Josephson logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56105575A JPS589381A (en) 1981-07-08 1981-07-08 Josephson logical circuit

Publications (2)

Publication Number Publication Date
JPS589381A true JPS589381A (en) 1983-01-19
JPH033396B2 JPH033396B2 (en) 1991-01-18

Family

ID=14411311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56105575A Granted JPS589381A (en) 1981-07-08 1981-07-08 Josephson logical circuit

Country Status (1)

Country Link
JP (1) JPS589381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115881A (en) * 1985-11-15 1987-05-27 Agency Of Ind Science & Technol Magnetic field coupling type josephson integrated circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525282A (en) * 1975-06-30 1977-01-14 Ibm Josephson junction circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525282A (en) * 1975-06-30 1977-01-14 Ibm Josephson junction circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115881A (en) * 1985-11-15 1987-05-27 Agency Of Ind Science & Technol Magnetic field coupling type josephson integrated circuit
JPH0334868B2 (en) * 1985-11-15 1991-05-24 Kogyo Gijutsuin

Also Published As

Publication number Publication date
JPH033396B2 (en) 1991-01-18

Similar Documents

Publication Publication Date Title
US4551638A (en) ECL Gate with switched load current source
US4672244A (en) Josephson logic integrated circuit
JPS589381A (en) Josephson logical circuit
US4611132A (en) Circuit utilizing Josephson effect
JPS6157738B2 (en)
JPS5840874A (en) Josephson logic circuit
JPH0199479A (en) Dc-ac converter
JP2924398B2 (en) Josephson polarity switching type drive circuit
US5336941A (en) Superconducting circuit and method for driving the same
JPS6053091A (en) Current injection type josephson switch circuit
JPH0218619B2 (en)
JP2550587B2 (en) The Josephson Gate
JPH01125115A (en) Superconductor circuit
JP2674652B2 (en) Josephson logic cell gate
JP2783032B2 (en) Josephson reverse current prevention circuit
JPS5995722A (en) Bistable circuit using superconduction element
JPH01125104A (en) Superconducting oscillation circuit
JP2728430B2 (en) Semiconductor integrated circuit
SU1173545A1 (en) Transistorized switch
JPH0357654B2 (en)
JPS6367773B2 (en)
JPS589380A (en) Josephson logical circuit
JPH0279481A (en) Fluxoid quantum logic element
JPS61129921A (en) Superconduction power supply circuit
JPS6362336A (en) Semiconductor integrated circuit device