JPS5893312A - Transformer - Google Patents

Transformer

Info

Publication number
JPS5893312A
JPS5893312A JP19222281A JP19222281A JPS5893312A JP S5893312 A JPS5893312 A JP S5893312A JP 19222281 A JP19222281 A JP 19222281A JP 19222281 A JP19222281 A JP 19222281A JP S5893312 A JPS5893312 A JP S5893312A
Authority
JP
Japan
Prior art keywords
windings
cooling
winding
insulating
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19222281A
Other languages
Japanese (ja)
Inventor
Yasunobu Togawa
戸川 安信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP19222281A priority Critical patent/JPS5893312A/en
Publication of JPS5893312A publication Critical patent/JPS5893312A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling

Abstract

PURPOSE:To cool transformer-turns by an insulating medium enclosed in the tank by a method wherein a gap for distributing an insulating medium opened to the upper and lower ends of the winding is provided in the halfway portion of the winding between cooling ducts of a separate type foil wound transformer. CONSTITUTION:A transformer equipped with foil windings 4, 5 formed by winding a metal sheet 2 and an insulating sheet 3 on top of each other and supplied with self-contained cooling ducts 6 for distributing a cooling medium to the windings 4, 5 within a plurality of layers is contained in a tank 12. In that case, gaps 16 for distributing the cooling medium opened to the upper and lower ends of the windings 4, 5 are provided in the halfway portion of the windings 4, 5 btween the ducts 6. The gaps 16 are also provided in the intermediate portion between the cooling duct 6 of the winding 4 and a main iron core leg 1 and also the portion between the duct 6 and an insulating barrier 9. The insulating medium such as insulating oil or SF6 gas enclosed in the tank 12 containing the transformer proper is made to flow in each of the gaps 16, 16 because of a natural convection current. Due to this reason, the windings are cooled.

Description

【発明の詳細な説明】 発明の技術分野 本発明は金属シートと絶縁シートを重ねて巻いた箔状巻
線を備えかつ巻線内に冷媒が通される冷却ダクトを内蔵
した変圧器本体を絶縁媒体を封入したタンク内に収納し
た変圧−に関する。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to an insulating transformer body that has a foil winding formed by overlapping metal sheets and insulating sheets and has a built-in cooling duct through which a refrigerant is passed through the winding. It relates to a transformer housed in a tank containing a medium.

発明の技術的背景 6巻巻線を備えた箔巻変圧器は、占積率がよく、小形・
i量化を実現できる特長があるために、数kV、数10
0 kVム程度の比較的電圧の低い小容量の変圧器にお
いて紘すでに実用化され、かな9市場tcalまわりて
いる。
Technical Background of the Invention A foil-wound transformer with six windings has a good space factor, is compact and
Because it has the feature of realizing i-quantization, several kV, several tens of
Small-capacity transformers with relatively low voltages of about 0 kV have already been put into practical use, and are currently on the market.

最近、その優れた長所に艦み、よシ高電圧・大容量の変
圧器例えtf275kV、300MVA変圧器にも適用
拡大が研究されているが、最大の鍵はいかに冷却能力を
向上させ、高い絶縁能力を巻線にもたせられるかにかか
りている。tだこのような高電圧大容量変圧器は実用化
はされていないが、この箔巻変圧器の冷却方式としては
、巻線内に冷却ダクトを内蔵させ、絶縁特性の秀れた冷
媒を送シ込んで巻線損失から発生する熱を直皺的に冷や
す、いゎdヒートノ臂イブ式のものが考えられている。
Recently, taking advantage of its excellent advantages, research has been conducted to expand its application to high-voltage, large-capacity transformers, such as TF275kV and 300MVA transformers. It all depends on whether the ability can be imparted to the winding. High-voltage, large-capacity transformers like this one have not been put to practical use, but the cooling method for this foil-wound transformer is to have a cooling duct built into the windings to send a refrigerant with excellent insulation properties. A type of heat sink is being considered that cools the heat generated from winding loss in a straight line.

第1図線このような冷却方式の箔゛巻変圧器として従来
考えられているものを示したもので、図中4は鉄心主鰐
1の外側に巻かれ九低圧巻線、6は前記低圧巻線4の外
側に絶縁パーリヤ9を介して巻かれた高圧巻線でToシ
、これら巻*4゜5は金属シート2と絶縁シート1を重
ねて巻い九箔壱巻線とされている。6紘前記箔巻巻線4
゜5内の適所にそれぞれ内蔵されたステンレス等の金属
からなる冷却ダクトであり、この冷却!クト6は巻線中
に一緒に巻込まれて−る。この冷却ダクト6内には、フ
ロンR−113やFCl2等の冷媒が通されるようにな
っておシ、この冷媒は冷却ダクト6内を通る過程で巻線
内の発熱を冷媒の蒸発潜熱で奪って巻線を冷却する。
Figure 1 shows what has been conventionally considered as a foil-wound transformer with such a cooling system. A high voltage winding is wound on the outside of the high voltage winding 4 via an insulating purrier 9. These windings *4.5 are made by overlapping the metal sheet 2 and the insulating sheet 1 to form a nine foil winding. 6 Hiro foil-wound winding 4
It is a cooling duct made of metal such as stainless steel built into each suitable place within ゜5, and this cooling! The coils 6 are wound together in the winding. A refrigerant such as Freon R-113 or FCl2 is passed through the cooling duct 6, and in the process of passing through the cooling duct 6, the refrigerant converts heat in the windings into the latent heat of evaporation of the refrigerant. Cool the windings.

そしてこの冷媒は、凝縮器8において水冷却によシ冷却
されて凝縮され、液化した冷媒は冷媒タンク14に貯め
られて4ンプ7により巻線内に送9込まれる。すなわち
この冷媒循環回路と変圧器とは分離されている。また、
冷媒を導ひく導液管10はステンレスなど金属で作られ
ているが、それと冷却ダクトとの接続には絶縁パイプ1
1が用いられている。また、導波管10は変圧器本体を
収納するタンク12などのアース電位と電気的に接続さ
れ、冷却ダクトは巻線内に巻急込まれている関係上近接
する金属シートと同じ電位に電気的に結合されている。
This refrigerant is cooled and condensed by water cooling in the condenser 8, and the liquefied refrigerant is stored in a refrigerant tank 14 and sent 9 into the windings by a four-way pump 7. That is, the refrigerant circulation circuit and the transformer are separated. Also,
The liquid guide pipe 10 that guides the refrigerant is made of metal such as stainless steel, and an insulated pipe 1 is used to connect it to the cooling duct.
1 is used. In addition, the waveguide 10 is electrically connected to the ground potential of a tank 12 that houses the transformer body, and the cooling duct is electrically connected to the same potential as the adjacent metal sheet because it is wound inside the winding. are connected to each other.

また、いはSF4ガスといった絶縁媒体で絶縁されてい
る。
In addition, it is insulated with an insulating medium such as SF4 gas.

この冷却方式の変圧器は冷却のための冷媒が流れる循環
回路と絶縁のための絶縁媒体とは完全に分離(セパレー
ト)されている。このことから、この方式の箔巻変圧器
は、特にセパレート式箔巻変圧器と呼はれている。
In this cooling type transformer, the circulation circuit through which the refrigerant for cooling flows and the insulating medium for insulation are completely separated. For this reason, this type of foil-wound transformer is particularly called a separate foil-wound transformer.

この冷却方式の変圧器は、冷媒の蒸発潜熱を利用してい
るので、優れた冷却特性を期待でき、大容量変圧器に有
望である。
Transformers using this cooling method utilize the latent heat of vaporization of the refrigerant, so they can be expected to have excellent cooling characteristics, making them promising for large-capacity transformers.

背景技術の問題点 ところで、上記箔巻変圧器においては、金属シート2の
各巻層相互間を絶縁シート3によって絶縁しているため
に、絶縁の信頼性を高めるためには絶縁シート3をでき
るだけ厚くするのが良いが、絶縁シー、ト3を厚くする
仁と紘、巻線の冷却効率を悪化させることにつながるこ
とに参る。
Problems with the Background Art By the way, in the above-mentioned foil-wound transformer, each winding layer of the metal sheet 2 is insulated by the insulating sheet 3, so in order to improve the reliability of the insulation, the insulating sheet 3 should be made as thick as possible. However, increasing the thickness of the insulation sheet will lead to a deterioration of the cooling efficiency of the windings.

すなわち、巻線4,5内での発生熱は、金属シート2及
び絶縁シート3の熱伝導によ抄冷却ダクト6に伝達され
、さらに冷却ダクト6内を通る冷媒によって外部に運ば
れるが、絶縁シート3の熱伝導率は金属に比べて非常に
悪く、絶縁シート3を厚くするとそれだけ絶縁シートs
内での温度勾配が大きくなるために、結果的に冷却ダク
ト相互間の巻線の中間部分と冷却ダクト近くの部分°と
の間に大きな温度差が生じることになる。−例をあけれ
は、厚さ0.3111の金属シートと、厚さ0.025
111の2枚の絶縁シートとを1ねて巻いた箔巻巻線に
おいては、金属シートの電流密度t−145V−とし、
冷却ダクト相互間の間隔をaossにとった場合で前記
温度差が約35℃となる。このように冷却ダクト相互間
の巻線の中間部分と冷却ダクト近くの部分との間に大き
な温度差が生じるということは、冷却ダクト相互間の巻
層の中間部分が効率良く冷i4されないことを示してい
る。
That is, the heat generated within the windings 4 and 5 is transferred to the cooling duct 6 by thermal conduction through the metal sheet 2 and the insulating sheet 3, and is further carried to the outside by the refrigerant passing through the cooling duct 6. The thermal conductivity of the sheet 3 is very poor compared to metal, and the thicker the insulation sheet 3, the more the insulation sheet s
The large temperature gradient within the windings results in large temperature differences between the intermediate portions of the windings between the cooling ducts and the portions close to the cooling ducts. - An example is a metal sheet with a thickness of 0.3111 and a metal sheet with a thickness of 0.025.
In the foil winding made by winding two insulating sheets of No. 111 in one twist, the current density of the metal sheet is t-145V-,
When the distance between the cooling ducts is set to aoss, the temperature difference is about 35°C. This large temperature difference between the middle part of the windings between the cooling ducts and the part near the cooling duct means that the middle part of the winding layers between the cooling ducts is not efficiently cooled. It shows.

上記温度差を小さくする方法としては、従来、壱−に内
蔵する冷却ダクト数を多くして冷却メクト相互間の間隔
を狭まくする方法が考えられているが、この方法には次
のような問題があったO すなわち、冷却〆クト6の下端部と上端部には、第1図
に示すように、下側の絶縁/臂イゾ11から供給される
冷媒をダクト全周に分流させるためと、ダクト6内を通
りた冷媒な集めて上側の絶縁パイプ11に導びくための
導液路15゜15がそれぞれ設けられている。仁の導液
@15は、冷却ダクト6内の流量に見合った量の冷媒を
流すために、冷却ダクト6の厚さより大径なノ臂イブ状
になっており、こO導液路rso外径は冷却〆クト6の
厚さが2.5〜5譲であるのに対し−cxo−L2o謳
とな9ている。このため、冷却ダクト相互間の間隔を狭
まくすると、各冷却ダクト6.6の導液路15.15相
互の間隔が非常に小さくな9、各冷却ダクト6.6相互
間の絶縁が困難になる。また、冷却ダクト6、−6の数
を多くすることは、各冷却ダクト6.6の導液路15.
15と導液管10とを接続する絶縁・ンイノ11の数も
増すことになる九めに1冷却ダクト6.6と導液管1o
との間の絶縁が難しくなるし、また絶縁パイプJ l’
、 11の引きまわしも煩雑になるという問題もある。
Conventionally, as a method to reduce the above temperature difference, a method has been considered to increase the number of cooling ducts built into one unit and narrow the distance between the cooling ducts, but this method includes the following: In other words, as shown in FIG. 1, the lower and upper ends of the cooling duct 6 are designed to divide the refrigerant supplied from the lower insulation/arm hole 11 to the entire circumference of the duct. , liquid guiding paths 15 and 15 are respectively provided for collecting the refrigerant passing through the duct 6 and guiding it to the upper insulating pipe 11. In order to flow the refrigerant in an amount commensurate with the flow rate inside the cooling duct 6, the liquid guide @15 has an arm-like shape with a diameter larger than the thickness of the cooling duct 6. The diameter is -cxo-L2o, while the thickness of the cooling jacket 6 is 2.5 to 5 mm. For this reason, when the distance between the cooling ducts 6.6 is narrowed, the distance between the liquid guide paths 15.15 of each cooling duct 6.6 becomes extremely small9, making it difficult to insulate the cooling ducts 6.6 from each other. Become. Moreover, increasing the number of cooling ducts 6, -6 means that the liquid guiding path 15 of each cooling duct 6.6.
The number of insulators 11 connecting the cooling duct 6.6 and the liquid guiding pipe 10 will also increase.
It becomes difficult to insulate between the insulation pipe J l'
, There is also the problem that the routing of 11 becomes complicated.

発明の目的 本発明は上記のような実情に鑑みなされたものであって
、その目的とするところは、箔壱巻線内に内蔵する冷却
ダクトの数を多くすることなく、少ない冷却ダクト数で
効率良く巻線を冷却できるようにし大変圧器を提供する
ことKある。
Purpose of the Invention The present invention has been made in view of the above-mentioned circumstances, and its purpose is to reduce the number of cooling ducts without increasing the number of cooling ducts built into the first foil winding. It is an object of the present invention to provide a large voltage transformer that can efficiently cool windings.

発明の概要 すなわち、本発明の変圧器は、冷却ダクト相互間の巻線
の中間部分に巻線上下端に開放する絶縁媒体流通間隙を
設けることにょシ、タンク内に封入した絶縁媒体によっ
ても巻線を冷却するようにしたも、のである。
SUMMARY OF THE INVENTION That is, the transformer of the present invention includes an insulating medium circulation gap that is open to the upper and lower ends of the windings in the middle part of the windings between the cooling ducts, and that the windings are also protected by the insulating medium sealed in the tank. It was also made to cool down.

発明の実施例 以下、本発明の一実施例を図面を参照して説明する。Examples of the invention Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

金属シート2と絶縁シート3を重ねて巻いた低圧側及び
高圧側の箔巻巻線、6は前記巻線4゜6内に内蔵され九
冷却ダクトであル、この冷却〆クト6は低圧側巻線4内
には1層、高圧側巻線5内には複数層に設けられている
。1σは前記高圧側線5の各冷却〆り)6.6相互間の
中間部分に形成された巻線上1端に開放する絶縁媒体流
通間隙であり、この関@1r;は巻線全周にわ九りて設
けられている。この絶縁媒体流通。
Foil-wound windings on the low-voltage side and the high-voltage side are made by overlapping the metal sheet 2 and the insulating sheet 3, and 6 is a cooling duct built into the winding 4゜6, and this cooling duct 6 is on the low-pressure side. They are provided in one layer in the winding 4 and in multiple layers in the high voltage side winding 5. 1σ is an insulating medium circulation gap formed at the intermediate part between the high voltage side wires 5 and open to one end of the winding, and this gap @1r; It is set up nine times. This insulation medium distribution.

間隙16は、冷却ダクト6.6相互間に巻かれる巻数の
手分だけ金属シート2と絶縁シート3を巻いたとζろで
、その外側に、外面に複数の絶縁性凸条1B、1g−を
等間隔に貼付けた絶縁シート17を1回だけ巻付け、さ
らにその外側に前記金属シート2と絶縁シートsを続け
て巻くことによって形成され喪もので、この絶縁媒体流
通関−16は低圧側壱114の冷却ダクト6と鉄心主脚
1との間の中間部分及び冷却ダクト6と絶縁パーリヤ9
との間の中間部分にも形成されている。そして、こり各
絶縁媒体流通間隙16.16内には、変圧器本体を収納
するタンク12内に封入され九絶縁油あるいは8F、ガ
ス等の絶縁媒体が自然対流によりて流れるよう罠なって
いる。なお、図中第1図に示し良ものと同一のものにつ
いては図面に同符号を付してその説明を省略する。
The gap 16 is formed by winding the metal sheet 2 and the insulating sheet 3 by the number of turns wound between the cooling duct 6.6, and a plurality of insulating protrusions 1B and 1g on the outer surface thereof. It is formed by wrapping the insulating sheets 17 pasted at equal intervals only once, and then successively wrapping the metal sheet 2 and the insulating sheet s on the outside. 114 between the cooling duct 6 and the core main leg 1, and the cooling duct 6 and the insulating purrier 9
It is also formed in the middle part between. Each insulating medium flow gap 16.16 is a trap so that an insulating medium such as insulating oil, gas, or the like, which is sealed in the tank 12 housing the transformer body, flows by natural convection. Components in the drawings that are the same as those shown in FIG. 1 are given the same reference numerals in the drawings, and their explanations will be omitted.

しかして、この変圧器において杜、冷却ダクト6内に冷
媒を通すことによりて行なわれる巻線4,5の冷却に加
えて、前記絶縁媒体流通間隙16.16内をタンク12
内の絶縁媒体が流れることによっても巻線4,5が冷却
される。
In this transformer, in addition to the cooling of the windings 4 and 5 performed by passing a refrigerant through the cooling duct 6, the inside of the insulating medium flow gap 16.
The windings 4 and 5 are also cooled by the flow of the insulating medium therein.

この絶縁媒体による冷却効果は、冷却ダクト6による冷
却効果よシは小さiために、絶縁媒体流通関apr近傍
の巻線部分における巻線半径方向の温度勾配祉冷却ダク
ト6の近傍における温度勾配よりは大きく、従って冷却
ダクト6゜6相互間の巻線の温度分布は第4図(b)に
示すようになるが、前記絶縁媒体流通間HJgを設けな
い場合?温度分布が#I4図(a)に示すよう帆なるの
に比べれば、巻線の冷却効率はかなり改善されている。
Since the cooling effect of this insulating medium is smaller than the cooling effect of the cooling duct 6, the temperature gradient in the winding radial direction in the winding portion near the insulating medium flow connection apr is lower than the temperature gradient in the vicinity of the cooling duct 6. is large, so the temperature distribution of the windings between the cooling ducts 6°6 becomes as shown in Fig. 4(b), but what if HJg between the insulating medium channels is not provided? The cooling efficiency of the winding is considerably improved compared to the case where the temperature distribution becomes uneven as shown in Fig. #I4 (a).

発明の効果 本発明の変圧器は上記のような構成のものであるから、
箔壱巻線内に内蔵する冷却ダクトの数を多くすることな
く、少ない冷却ダクト数で効率曳く巻線を冷却すること
ができる。
Effects of the Invention Since the transformer of the present invention has the above configuration,
The winding can be efficiently cooled with a small number of cooling ducts without increasing the number of cooling ducts built into the foil winding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の変圧器を示す断面図、#I2図は本発明
の一実施例を示す断面図、第3図れ同じく巻線の一部分
の拡大斜視図、第4図(、) 、 (b)L絶縁流体流
通間隙を設けない場合と設は九場合の冷却ダクト相互間
の巻線温度分布を示す図である。 2・・・金属シート、3・・・絶縁シート、4.5・・
・巻線、6・・・冷却〆クト、12・・・タンク、16
・・・。 絶縁媒体流通間隙。 出願人代理人  弁理士 鈴 江 武 彦11図 8 11      10 矛2図 11      1υ
Fig. 1 is a sectional view showing a conventional transformer, Fig. #I2 is a sectional view showing an embodiment of the present invention, Fig. 3 is an enlarged perspective view of a part of the winding, and Fig. 4 (, ), (b ) L is a diagram showing the winding temperature distribution between the cooling ducts when no insulating fluid flow gap is provided and when it is provided. 2... Metal sheet, 3... Insulating sheet, 4.5...
・Winding, 6... Cooling shutoff, 12... Tank, 16
.... Insulating media flow gap. Applicant's agent Patent attorney Takehiko Suzue 11 Figure 8 11 10 Spear 2 Figure 11 1υ

Claims (1)

【特許請求の範囲】[Claims] 金属シートと絶縁シートを重ねて巻いた箔巻巻線を備え
かつ巻線内に冷媒が通される冷却−クトt−複数層に内
蔵した変圧器本体を絶縁媒体を封入したタンク内に収納
した変圧器において、冷却ダクト相互間の巻線の中間部
分に巻線上下端に開放する絶縁媒体流通間隙を設けたこ
とを特徴とする変圧器。
The transformer body is equipped with foil-wound windings made by layering metal sheets and insulating sheets, and a cooling medium is passed through the windings. A transformer characterized in that an insulating medium circulation gap that is open to the upper and lower ends of the windings is provided in the middle part of the windings between the cooling ducts.
JP19222281A 1981-11-30 1981-11-30 Transformer Pending JPS5893312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19222281A JPS5893312A (en) 1981-11-30 1981-11-30 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19222281A JPS5893312A (en) 1981-11-30 1981-11-30 Transformer

Publications (1)

Publication Number Publication Date
JPS5893312A true JPS5893312A (en) 1983-06-03

Family

ID=16287687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19222281A Pending JPS5893312A (en) 1981-11-30 1981-11-30 Transformer

Country Status (1)

Country Link
JP (1) JPS5893312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150207A (en) * 1984-12-24 1986-07-08 Nissin Electric Co Ltd Transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150207A (en) * 1984-12-24 1986-07-08 Nissin Electric Co Ltd Transformer

Similar Documents

Publication Publication Date Title
JPS5893312A (en) Transformer
JPS5893204A (en) Transformer
JPS5889815A (en) Foil-wound transformer
JPS5891608A (en) Foil winding transformer
JPS5893203A (en) Transformer
JPS5889813A (en) Foil-wound transformer
JPS63164306A (en) Gas-insulated stationary induction electric apparatus
JPS58108726A (en) Transformer
JPS5875810A (en) Leaf wound transformer
JPH0669048A (en) Transformer connecting-lead-wire device
JPS6174310A (en) Foil wound transformer
JPS59121810A (en) Foil-wound transformer
JPS59159513A (en) Foil-wound transformer
JPS5933810A (en) Foil-wound transformer
JPS5984509A (en) Stationary induction electric apparatus
JPS59197112A (en) Foil-winding transformer
JPS5875814A (en) Leaf wound transformer
JPS61187311A (en) Foil-wound transformer
JPH02123712A (en) Foil-wound transformer
JPS5889816A (en) Foil-wound transformer
JPH0616453B2 (en) Foil winding transformer
JPS5879710A (en) Foil wound transformer
JPS5875816A (en) Leaf winding transformer
JPS59117206A (en) Foil winding transformer
JPS5978511A (en) Foil-wound transformer