JPS5891532A - Magnetic disk storage medium - Google Patents

Magnetic disk storage medium

Info

Publication number
JPS5891532A
JPS5891532A JP18863981A JP18863981A JPS5891532A JP S5891532 A JPS5891532 A JP S5891532A JP 18863981 A JP18863981 A JP 18863981A JP 18863981 A JP18863981 A JP 18863981A JP S5891532 A JPS5891532 A JP S5891532A
Authority
JP
Japan
Prior art keywords
magnetic disk
alloy
substrate
wafer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18863981A
Other languages
Japanese (ja)
Inventor
Akira Terada
寺田 章
Takayuki Nakamura
貴幸 中村
Hidefumi Asano
秀文 浅野
Osamu Ishii
修 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18863981A priority Critical patent/JPS5891532A/en
Publication of JPS5891532A publication Critical patent/JPS5891532A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To reduce defective errors, and to elevate surface accuracy, head detaching and attaching resistance characteristics, productivity, etc., by using a single crystal Si wafer as a substrate, and manufacturing a gamma-Fe2O3 thin film magnetic disk. CONSTITUTION:On a single crystal Si wafer 30 whose thickness is >=0.3mm., a gamma-Fe2O3 thin film 31 whose thickness is <=0.2mum is formed by means of sputtering, etc., and also in order to make a disk have mechanical strength, a reinforcing plate 32 consisting of light metal such as Al, Ti, etc., or a light alloy such as an Al alloy, a Ti alloy, etc. is stuck to the other surface of the Si wafer 30 by an adhesive material 33, by which a magnetic disk is obtained.

Description

【発明の詳細な説明】 本発明は超高記録密度にして、超小型、経済的な磁気デ
ィスク記憶媒体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultra-small and economical magnetic disk storage medium with ultra-high recording density.

従来、磁気ディスク記憶装置の記録媒体としては、針状
のy−Fa寓Os微粒子を有機物バインダーと混合して
、At−MQ合金基板上にスピンコードしたものが用い
られてきたが、最近では媒体面上の面記録密度を増加さ
せ、装置を小型・経済化するために、表面を陽極酸化し
てAl401を形成したAt−M1合金基板上に7−F
m20m連続薄膜を形成した磁気ディスク記憶媒体や、
下地層として非磁性のN(−pで補強したA t−M1
合金基板上にメッキ法でC0−N1−P合金磁性薄膜を
形成し、さらに合金膜の保護のため54(h膜でコート
した磁気ディスク記憶媒体が使用され始めている。この
2つの薄膜形ディスク媒体上での磁化反転領域密度は2
4,000 bit/1yctlを達成しておシ、スピ
ンコード型媒体の約6倍となっている。
Conventionally, the recording medium of magnetic disk storage devices has been a mixture of needle-shaped y-Fa Fold Os fine particles mixed with an organic binder and spin-coded onto an At-MQ alloy substrate. In order to increase the areal recording density on the surface and make the device smaller and more economical, 7-F
A magnetic disk storage medium formed with a continuous thin film of m20m,
A t-M1 reinforced with non-magnetic N (-p) as the underlayer.
Magnetic disk storage media are beginning to be used in which a C0-N1-P alloy magnetic thin film is formed on an alloy substrate by a plating method and is further coated with a 54 (H film) to protect the alloy film. The magnetization reversal region density on the top is 2
It achieves 4,000 bits/1 yctl, which is about 6 times that of spin code media.

ところで、大型プロセッサシステムや小型プロセッサシ
ステム、さらには情報処理機能を有する端末装置では5
iLSIテクノロジーの発展により、CPU 、主記憶
装置、データチャネル等の本体装置は、急激に高性能化
、小型化、経済化、高信頼度化を達成し続けている。こ
のため、プロセッサシステムにおいては、ファイルメモ
リ、プリンタ。
By the way, in large processor systems, small processor systems, and even terminal devices with information processing functions,
With the development of iLSI technology, main body devices such as CPUs, main storage devices, data channels, etc. continue to rapidly achieve higher performance, smaller size, economy, and higher reliability. For this reason, in a processor system, file memory, printer.

ディスプレイ等の周辺装置がシステムコストや床面積の
大部分を占めるようになりつつある。これはプロセッサ
本体のMO5RAMLSI(主記憶用)のチップ当りの
素子数が微細化技術等の進展により、過去10年間に約
4,000倍の増加を見たのに対して、ファイルメモリ
の中核である磁気ディスク記憶装置の媒体面上の記録密
度の増加が10倍710年に留っていたことからも上述
の事情は容易に推定できる。 54LSIの次にGgj
s LSIやジョセフソン(zoaaphaas) L
SIがひかえている仁とから、この傾向は止ることなく
進み、プロセッサシステムの周辺装置がシステムコスト
、床面積の95%以上を占めるのも遠い将来ではない。
Peripheral devices such as displays are beginning to occupy a large portion of system costs and floor space. This is because the number of elements per chip in the MO5 RAM LSI (main memory) in the processor itself has increased approximately 4,000 times over the past 10 years due to advances in miniaturization technology, but in the core of the file memory. The above-mentioned situation can be easily inferred from the fact that the increase in recording density on the medium surface of a certain magnetic disk storage device was only 10 times 710 years. After 54LSI, Ggj
s LSI and Josephson (zoaaphaas) L
As SI continues to grow, this trend will continue unabated, and it won't be long before processor system peripherals account for more than 95% of the system cost and floor space.

従って、磁気ディスク記憶装置を始めとする周辺装置は
急激な技術進展が望まれている。
Therefore, rapid technological progress is desired in peripheral devices such as magnetic disk storage devices.

周知のように、水平磁化方式の磁気ディスク面上の記録
密度の向上は、水平磁化記録の原理を表わす第1図及び
磁気ディスク記録装置の記録再生系の寸法(媒体性能指
数)の年次推移を表わす第2図に示すように、主に記録
再生系の寸法の微細化により達成されてきた。即ち、磁
気ヘッド1のコア@T曾の減少、磁気ヘッドギャップ長
2!の減少、磁気ヘッド浮上量dの減少、磁気ディスク
媒体表面粗さRの減少、磁性膜厚δの減少、磁性薄膜2
の磁気特性(媒体指数:z)の向上である。
As is well known, the improvement in the recording density on the magnetic disk surface using the horizontal magnetization method is shown in Figure 1, which shows the principle of horizontal magnetization recording, and the annual change in the dimensions of the recording and reproducing system (medium performance index) of the magnetic disk recording device. As shown in FIG. 2, this has been achieved mainly by miniaturizing the dimensions of the recording/reproducing system. That is, the core @T of the magnetic head 1 decreases, and the magnetic head gap length 2! decrease, magnetic head flying height d decrease, magnetic disk medium surface roughness R decrease, magnetic film thickness δ decrease, magnetic thin film 2
This is an improvement in the magnetic properties (media index: z) of .

なお、第2図におけるIEM2514. IBM555
0−1.JAN3330−11 、18M354D (
IP’1NCHESTER) 、 IEM555D 、
はそれぞれIBM社製のディスク装置を示し、1545
70.l54680は日本電信電話公社製のディスク装
置を示す、第2図のJS4580装置はγ−Fm10B
薄膜を用いたものであるが、従来のスピンコード媒体に
比べてδ、Rが大幅に減少し、2が大幅に向上している
ことから、今後の面記録密度の向上に対しても媒即ち、
媒体表面粗さR,記録信号のドロップアウトエラー、磁
気ヘッドの媒体上への離着陸耐性。
In addition, IEM2514. in FIG. IBM555
0-1. JAN3330-11, 18M354D (
IP'1NCHESTER), IEM555D,
1545 and 1545 respectively indicate disk devices manufactured by IBM.
70. 154680 indicates a disk device manufactured by Nippon Telegraph and Telephone Public Corporation. The JS4580 device in Figure 2 is γ-Fm10B.
Although it uses a thin film, compared to conventional spin code media, δ and R are significantly reduced, and 2 is significantly improved, making it an excellent medium for future improvements in areal recording density. ,
Media surface roughness R, recording signal dropout error, magnetic head take-off and landing resistance on the media.

γ−11!01薄膜の製造性に関する問題であシ、これ
らは全て磁気ディスク基板に起因している。
These are problems related to the manufacturability of the γ-11!01 thin film, and all of these problems are caused by the magnetic disk substrate.

TS−4580用媒体では、基板表面のALSO,層を
ポリシュして、1′rlvnピツチの平均粗さ0.02
μ45常愼ピツチでの局部うねり 0.04μfi、 
10tm+t  ピッチのうねり0.1μ惰を得て、磁
気ヘッドの高速(〜20m/5ac)。
For the TS-4580 media, the ALSO layer on the substrate surface is polished to an average roughness of 0.02 per 1'rlvn pitch.
Local waviness at μ45 Joshin pitch 0.04μfi,
10tm+t pitch waviness of 0.1μ inertia and high speed magnetic head (~20m/5ac).

低浮上量化(〜0.25μ惧)に対処しているが、超高
密度記録領域では、例えば速度〜5 Q’In1aa6
 を浮上量0.05μ常程度を達成する必要がある。し
かし、従来技術の延長では、上記条件で磁気ヘッドの浮
上を安定化し、浮上量変動を±5%程度に押えることは
困難である。
Although it is dealing with a low flying height (approximately ~0.25 μ), in ultra-high density recording areas, for example, the speed is ~5 Q'In1aa6
It is necessary to achieve a flying height of approximately 0.05μ. However, as an extension of the conventional technology, it is difficult to stabilize the flying of the magnetic head under the above conditions and suppress the flying height variation to approximately ±5%.

次にγ−Fm30B薄膜媒体の信号エラーの原因として
は陽極酸化At−Ml基板が有する直径1〜20μ情。
Next, the cause of signal errors in the γ-Fm30B thin film medium is the 1-20 μm diameter of the anodized At-Ml substrate.

深さ1〜10μ悔の凹みがある。これは、合金中のF−
25i、M曽不純物が金属間化合物を作シ、陽極酸化時
にA1109層とならないためである。不純物の減少等
で対処しているが、陽極酸化は液中反応であることも相
乗して、現状以上に凹みを減すことは極めて困難である
。従って、1w5μ情の磁気ヘッドを用いる場合にはl
5−4580の7’w1Bμ鵠ヘッドに比べて100倍
の信号工ツーを生じ、装置のエラーレートを満足できな
いこととなる。
There is a pit of regret 1-10μ deep. This is because F− in the alloy
This is because the 25i and M impurities form intermetallic compounds and do not form an A1109 layer during anodic oxidation. Measures have been taken to reduce impurities, but because anodic oxidation is a reaction in liquid, it is extremely difficult to reduce the dents any further than at present. Therefore, when using a 1w5μ magnetic head, l
Compared to the 7'W1Bμ head of 5-4580, this causes 100 times as much signal error, making it impossible to satisfy the error rate of the device.

第5は、磁気ヘッドの媒体面上への離着陸耐性では、上
述の平均粗さを超える突起が基板上に分散してい″るた
め、それと離着陸時に接触し、媒体表面とヘッドスライ
ダ−に損傷を生じ、ヘッドフラッシュに至ることである
。現状では回避できるが、例えば0.03μ常の突起を
陽極酸化At−Mf合金基板から除去するのは極めて困
難である。
Fifth, regarding the durability of the magnetic head when taking off and landing on the medium surface, protrusions exceeding the above-mentioned average roughness are scattered on the substrate. Although this can be avoided at present, it is extremely difficult to remove, for example, a 0.03 μm thick protrusion from an anodized At-Mf alloy substrate.

第4はγ−Fm@03薄膜媒体製法に対する陽極ば化A
t−M1合金基板からの制約である。At−M1合金は
低融品合金であることから高温下では再結晶化を生じ、
前述の表面精度が維持できなくなる。このためγ−Fa
20B薄膜の製造プロセスは320@C以下に強く制限
される。g造プロセスではスパッタリングでα−Fm3
0B膜を形成し、雰囲気の入れ換えを伴なう還元・酸化
処理で7−F、、01とするが、スパッタリング時の膜
形成速度と基板温度が大体比例するために形成速度が約
100J/mtsに制限されること、還元・酸化時の高
温側の安定条件を用いられないこと等の欠品が生じてい
る。従って、γ−FBO2薄膜作製に対する温度制約が
取シ除かれれば、生産性や磁気特性向上に対するメリッ
トははかり知れない。
The fourth is anode conversion A for the γ-Fm@03 thin film media manufacturing method.
This is a restriction from the t-M1 alloy substrate. Since the At-M1 alloy is a low-melting alloy, recrystallization occurs at high temperatures.
The above-mentioned surface accuracy cannot be maintained. Therefore, γ-Fa
The manufacturing process for 20B thin films is strongly limited to below 320@C. In the g manufacturing process, α-Fm3 is produced by sputtering.
A 0B film is formed and then reduced to 7-F,. There is a shortage of products due to restrictions such as restrictions on the temperature of the product and the inability to use stable conditions on the high temperature side during reduction and oxidation. Therefore, if temperature constraints on the production of γ-FBO2 thin films are removed, there will be immeasurable benefits in improving productivity and magnetic properties.

本発明は、上述のγ−FHO@薄膜磁気ディスク媒体の
欠品を克服して、超高記録密度でかつ小型。
The present invention overcomes the shortage of the above-mentioned γ-FHO@thin film magnetic disk medium, and achieves ultra-high recording density and small size.

経済的な磁気ディスク記憶装置を実現するために考案さ
れたもので、その目的は単結晶S4ウエハを基板として
r−FmlOj薄膜磁気ディスクを作製することによシ
、媒体の面精度向上、欠陥エラー減少、耐ヘツド離着陸
特性向上、薄膜の生産性向上を図ろうと”するものであ
る。
It was devised to realize an economical magnetic disk storage device, and its purpose was to improve the surface accuracy of the medium and reduce defect errors by fabricating an r-FmlOj thin film magnetic disk using a single-crystal S4 wafer as a substrate. The aim is to reduce the amount of water used, improve head take-off and landing characteristics, and improve thin film productivity.

市販されているS(単結晶ウェハの表面精度は上述の陽
極酸化したAt−M1合金基板に比べて約1ケタ優れて
おシ、1μ常オーダーのLSI作製に用いられるため1
μ惰以上の欠陥はほとんど無い。また、5(LSIプロ
セスは約10006Cの熱処理を含むことから、耐熱性
も十分であると思われる。現在、製造されている。f(
ウェハは約7.626m〜10.16e榊(3〜4イン
チ)直径が主流で〜あるが、プロセスのコスト、低減の
丸め約12.70c惧〜15.36cm (、,5〜6
インチ)径ウェハの試作が行なわれている。一方、磁気
ディスク媒体は約55.566m (14インチ)径が
標準でIるが、近年は約20.352〜25.40cm
 (8−10インチ)径の小型ディスクも出現しておシ
、端末用のフロッピーディスクでは約15.566m 
(1,インチ)径Oものも市販されている。従って、陽
極酸化At−M1合金の欠品がS(基板で克服されれば
、約10.16〜12.70cm (4〜5インチ)径
の磁気ディスク媒体においても約55.560WL (
14インチ)媒体と同等以上の記憶容量が実現できるこ
と、S(ウェハのコストは陽極酸化AL−M1合金基板
の約1/1oと推定されること等から、従来に比べて超
高記録密度、小型、低価格、さらには低消費電力のHD
A (Hgcm −j)(#& Aaattmbly 
)を提供することが可能となる。しかし、S(基板の問
題点はそのもろさにあるが、これは後述するようにS(
基板を軽金属または軽合金で補強することで解決される
。本発明はこのような着想の下に為されたものであシ、
以下実施例について詳細に説明する。
The surface precision of the commercially available S (single crystal wafer) is about one order of magnitude better than the above-mentioned anodized At-M1 alloy substrate, and since it is used for manufacturing LSIs on the order of 1 μm,
There are almost no defects beyond μCoastal. In addition, since the 5(LSI process involves heat treatment at approximately 10,006 C, it seems that the heat resistance is sufficient.Currently being manufactured.f(
The wafer diameter is approximately 7.626 m to 10.16 cm (3 to 4 inches), but the rounding process cost and reduction are approximately 12.70 cm to 15.36 cm (,5 to 6 cm).
Prototypes of inch-diameter wafers are being produced. On the other hand, the standard diameter of magnetic disk media is approximately 55.566 m (14 inches), but in recent years the diameter has become approximately 20.352 to 25.40 cm.
Small disks with a diameter of (8-10 inches) have also appeared, and floppy disks for terminals are approximately 15.566 m long.
(1, inch) diameter O type is also commercially available. Therefore, if the shortage of anodized At-M1 alloy can be overcome with S (substrate), magnetic disk media with diameters of approximately 10.16 to 12.70 cm (4 to 5 inches) can be approximately 55.560 WL (
14-inch) media, and the cost of S (wafers is estimated to be approximately 1/10 of that of anodized AL-M1 alloy substrates.) , low-cost, low-power HD
A (Hgcm -j) (# & Aaattmbly
). However, the problem with the S( substrate is its fragility, which is explained later)
This problem can be solved by reinforcing the substrate with a light metal or light alloy. The present invention was made based on this idea.
Examples will be described in detail below.

第3図は本−発明磁気ディスク記憶媒体の一実施例の断
面図であシ、30はS(ウェハ、31はr−Fan03
薄膜、S2は補強板、33は接着材である。また、第4
図は本発明磁気ディスク記憶媒体の一実施例の外観斜視
図であり、第5図と同一符号は同一部分を示し、40は
ディスク中央に設けられた穴である。
FIG. 3 is a sectional view of an embodiment of the magnetic disk storage medium of the present invention, where 30 is an S (wafer) and 31 is an r-Fan03
The thin film, S2 is a reinforcing plate, and 33 is an adhesive. Also, the fourth
This figure is an external perspective view of one embodiment of the magnetic disk storage medium of the present invention, where the same reference numerals as in FIG. 5 indicate the same parts, and 40 is a hole provided in the center of the disk.

本実施例の磁気ディスク記憶媒体は、同図に示すように
、ディスク基板として単結晶のS(ウェハ50を用い、
その上にγ−FazOB薄膜31を形成し為更にディス
クに機械的強度を持たせる為に軽金属または軽合金から
なる補強板32をS4ウエハ30の他方の面に接着材3
3で貼シ合せたものである。各部の厚さは、Sシウェハ
6oがQ、5mtn以上。
As shown in the figure, the magnetic disk storage medium of this embodiment uses a single crystal S (wafer 50) as a disk substrate.
A γ-FazOB thin film 31 is formed thereon, and a reinforcing plate 32 made of a light metal or light alloy is attached to the other side of the S4 wafer 30 with an adhesive 3 in order to further give the disk mechanical strength.
3 was pasted together. The thickness of each part is Q, 5mtn or more for S wafer 6o.

1−Fa茸Os薄膜31が0.2μm以下、軽金属板3
2が0.5…ト数mmが好ましい。軽金属板32の材質
は、At、74等の軽金属またはAt合金、74合金等
の軽合金が好ましい。また、接着材65としては有機系
接着材が使用できる。次に本発明の磁気ディスク記憶媒
体の製造方法について説明する。
1-Fa mushroom Os thin film 31 is 0.2 μm or less, light metal plate 3
It is preferable that 2 is 0.5 mm. The material of the light metal plate 32 is preferably a light metal such as At or 74, or a light alloy such as At alloy or 74 alloy. Further, as the adhesive 65, an organic adhesive can be used. Next, a method for manufacturing a magnetic disk storage medium according to the present invention will be explained.

まず、ポリシング法を十分に検討し、厚さ′5M054
の約10.166mウェハ(以下4インチウェハと称す
)を作成した。これの表面精度を表面粗さ針で測定した
ところ、1常常ピツチでの平均粗さは0.00254s
、 3mgピッチの局部うねシはO,,0038μm。
First, we carefully considered the polishing method, and the thickness was 5M054.
An approximately 10.166 m wafer (hereinafter referred to as a 4-inch wafer) was prepared. When the surface accuracy of this was measured with a surface roughness needle, the average roughness at one regular pitch was 0.00254s
, the local ridge with a 3 mg pitch is O,0038 μm.

10倶倶ピツチのうねりは0.01μ倶であ多、丁度、
陽極酸化At−M1合金の1/10の精度が達成されて
いることが判った。因に、市販の約7.626m (5
インチ)径、厚さQ、5mmのS4ウエハの表面精度を
表面粗さ針で測定したところ、1mmピッチの平均粗さ
は0.004μs 、 10mm iツチのうねシは0
.05μ常であった。また、約55.56cm (14
インチ)径の陽極酸化At−M1合金基板と上記作成し
た3mm厚の54ウエハとを大気中で4時間熱処理し、
処理温度に対する1 mmピッチの粗さの変化を調べて
みた。その結果を第5図に示す、同図から判るように、
−極酸化At−M1合金基板では520″Cよシ粗さが
増加し始め、340°CではA140.層全面にクラッ
クが生じるが、S1ウエハでの表面粗さは、実験上限の
soo@cまでほとんど変化を生じていない。
The undulation of 10 pitches is 0.01μ, just right.
It was found that an accuracy of 1/10 of that of the anodized At-M1 alloy was achieved. Incidentally, the commercially available approximately 7.626m (5
When measuring the surface accuracy of an S4 wafer with a diameter of
.. 05μ was constant. Also, approximately 55.56cm (14
The anodized At-M1 alloy substrate with a diameter of
We investigated the change in roughness of a 1 mm pitch with respect to processing temperature. The results are shown in Figure 5.As can be seen from the figure,
- In the extremely oxidized At-M1 alloy substrate, the roughness begins to increase at 520°C, and at 340°C, cracks occur over the entire A140 layer, but the surface roughness of the S1 wafer is at the experimental upper limit of soo@c There has been almost no change until now.

次に、上記作成した5mm厚の54クエへの中心に1.
5インチ径の穴をあけ、磁気ディスクの形状に、加工し
た。
Next, place 1.
A 5-inch diameter hole was drilled and machined into the shape of a magnetic disk.

次にこれを基板として、Xahta 7”js、rJ+
 Cog、6合金ターゲツトを分圧比9ONO,−At
の混合雰囲気8X10−”roff下の反応rfマグネ
トロンスパッタリング法で、付着速度210j/m<s
で、上記の6鵠厚のS(ウェハ基板上に、α−(Fee
、vaTio、aICoo、os>sOs膜を1050
1一方の面に付着させた。尚、この付着中に基板温度は
ヒートラベルの測定で約350°Cを示したが、面精度
の劣化拡認められなかった。
Next, using this as a board, Xahta 7”js, rJ+
Cog, 6 alloy target with partial pressure ratio 9ONO, -At
By reactive RF magnetron sputtering method under a mixed atmosphere of 8×10-”roff, the deposition rate was 210 j/m<s.
Then, α-(Fee
, vaTio, aICoo, os>sOs film 1050
1 was attached to one side. Although the substrate temperature during this adhesion was approximately 350° C. as measured by a heat label, no deterioration in surface accuracy was observed.

次に、上記9作成したα−(7#0.?4 r4s、a
t C66,6m h 08膜を水蒸気を含有した25
0”C〜3506C1好ましくは約320°CのH8ガ
ス気流中で2時間還元してFa。
Next, α-(7#0.?4 r4s, a
t C66,6m h 08 membrane containing water vapor 25
0''C to 3506C1, preferably reduced to Fa in a H8 gas stream at about 320°C for 2 hours.

04とした後、Hsガスをロータリーポンプで排除し、
空気を導入して同一温度で2時間大気中酸化して’f−
FBOB薄膜(r−(J’#a、ya 7’((1,I
T Coo、ones Os )を作成した。膜厚は0
.1鴫であった。因に、同様にしてr−FすOsを5(
クエへ両面に形成したものをダイアモンドカッターで5
mm x 5mm角に切シ出し、r−(yss、ti 
r(+1.gll Ces、ex )s Os膜の磁気
特性を振動式磁力計で測定した。その結果を陽極酸化A
t−M1合金上のr−(7’@jar(1141C@I
、@i )!01膜と比較して次表に示す。但し、次表
において、Bデは残留磁束密度、H−は保磁力、xrは
残留磁化、H4には外部磁場4kO−での磁化、Mデ/
M4&は角型比、S4)はコアシヴスクエアネス、HX
はメジャールーズが閉じる磁場である。
04, remove Hs gas with a rotary pump,
Air was introduced and oxidized in the atmosphere at the same temperature for 2 hours to form 'f-
FBOB thin film (r-(J'#a,ya 7'((1,I
T Coo, ones Os) was created. Film thickness is 0
.. It was 1 yen. Incidentally, in the same way, r-F Os is 5(
Formed on both sides of the square with a diamond cutter
Cut into mm x 5mm squares, r-(yss, ti
The magnetic properties of the r(+1.gll Ces, ex )s Os film were measured using a vibrating magnetometer. The result is anodized A
r-(7'@jar(1141C@I) on t-M1 alloy
, @i)! A comparison with 01 membrane is shown in the following table. However, in the following table, Bde is the residual magnetic flux density, H- is the coercive force, xr is the residual magnetization, H4 is the magnetization in an external magnetic field of 4kO-, and Mde/
M4 & is squareness ratio, S4) is core squareness, HX
is the magnetic field where the major loose is closed.

S(基板と陽極酸化At−Ml基板上の膜の磁気特性の
比較衣 上表から判るように、本発明の媒体は、従来の媒体に比
べてMy/H41、5”が高く、HX/i、は小さい。
Comparison of magnetic properties of films on S(substrate and anodized At-Ml substrate)As can be seen from the table above, the medium of the present invention has a higher My/H41,5'' than the conventional medium, and a higher HX/i , is small.

即ち、ヒステリシスループの矩形性が高くなっておシ、
54基板のγ−Fg90@薄膜媒体は超高記録密度用の
特性を有していることが判る。
In other words, the rectangularity of the hysteresis loop increases,
It can be seen that the γ-Fg90@thin film medium with the 54 substrate has characteristics for ultra-high recording density.

また、上述のようにして作成したQ 、 1mflL厚
のr−(”@j47’4s、st COajl )10
1薄膜が形成され九厚さ5mmの4インチ径ウェハを、
ディスク回転系に取り付け、サファイアで作成した磁気
ヘッド型スライダーを回転する媒体上に浮上させた。そ
して、回転数を変えて、ヘッド媒体間隔を0.04〜0
.20膜mの範囲で変化させ、ヘッドアームに付けたア
コーステイクーエミ:/ シw y (acosat4
cmam4aaion)センサーで媒体とヘッドの接触
を調べた。この際、媒体表面には潤滑剤を塗シ、摩擦係
数を軽減した。この結果、測定の最低浮上量である0、
04μ常においても媒体とヘッドの接触は検出できず、
54基板媒体の突起高さは極めて低いことが確認できた
。これに対して陽極酸化At−M1合金上の媒体では0
.13/imlのヘッド・媒体間隔以下でも媒体とヘッ
ドとの接触が生じた。
In addition, the Q created as described above, r-("@j47'4s, st COajl)10 with a thickness of 1 mflL
1. A 4-inch diameter wafer with a thickness of 5 mm on which a thin film was formed,
It was attached to a disk rotation system, and a magnetic head-type slider made of sapphire was levitated above the rotating medium. Then, by changing the rotation speed, the head medium spacing was adjusted from 0.04 to 0.
.. The acosat emitter attached to the head arm was changed over a range of 20 m.
Contact between the medium and the head was checked using a cmam4aaion) sensor. At this time, a lubricant was applied to the media surface to reduce the coefficient of friction. As a result, the minimum flying height of the measurement is 0,
Even at 04μ, contact between the medium and the head cannot be detected.
It was confirmed that the protrusion height of the No. 54 substrate medium was extremely low. In contrast, the medium on the anodized At-M1 alloy has 0
.. Contact between the medium and the head occurred even when the head-medium distance was less than 13/iml.

更ニ、x%−Z%フエ2イトコアのギャップ長(2g)
0.25μ爲、ヘッドコア幅(rv) 1soμ湛、コ
イル巻数(2%)50ターンの磁気ヘッドを54基板デ
イスク媒体上に浮上させ、ヘッド媒体間隔を0.20μ
惰、0゜10μs、Q、05μ洛の3水準を選択して、
線記録密度の間隔依存性を測定した。その結果を第6図
に示す、同図から判るように、再生出力が50Xに減少
する線記録密度は、浮上量0.20μ常で19506%
(bitpar miLL4mater )、  浮上
量0−10#惰”t’ S 5506pyysp−e浮
上。
Sarani, x%-Z% Fe2ite core gap length (2g)
A magnetic head of 0.25μ, head core width (rv) of 1soμ, and coil turns (2%) of 50 turns was floated above a 54-substrate disk medium, and the head-medium spacing was 0.20μ.
Select three levels: inertia, 0゜10μs, Q, 05μs,
The spacing dependence of linear recording density was measured. The results are shown in Figure 6. As can be seen from the figure, the linear recording density at which the reproduction output decreases to 50X is 19506% at a flying height of 0.20μ.
(bitpar miLL4mater), floating height 0-10# inertia"t'S 5506pyysp-e floating.

量0.05μ惰では5200&pmが得られた。浮上量
0.05μ淋での線記録密度は現在の最先端の磁気ティ
スフ装置での値の約10倍であった。これに対して、陽
極酸化At−M1合金基板のディスクでの線記録密度は
浮上量0.20μ毒で1700b声であったが、浮上i
t 0.10μm、Q、[15μ毒では媒体とヘッドと
の接触の為に安定に記録再生特性を測定することはでき
なかった。
With an amount of 0.05μ inertia, 5200&pm was obtained. The linear recording density at a flying height of 0.05 μm was about 10 times that of the current state-of-the-art magnetic disk device. On the other hand, the linear recording density of a disk using an anodized At-M1 alloy substrate was 1700b at a flying height of 0.20μ, but
With t 0.10 μm, Q, and [15 μm, recording and reproducing characteristics could not be stably measured due to contact between the medium and the head.

また、厚さ3mmの4インチ径ウェハに0.1μ常厚の
r−(”L、4 ”0,01 COa、am )l O
s薄膜を形成した上記54基板デイスクの表面を光学顕
微−と5xht(走査型電子顕微鏡)を併用して、1μ
常径以上の基板欠陥数を計測したが、皆無であった。こ
れに対して、陽極酸化Al−My合金基板の1μ慣径以
上の欠陥数は20〜400個/ctn”であった。後者
の媒体はへラドコア幅18μ倶で実用的なエラーレイト
を有することから、54基板を用いたγ−Fm、0.薄
膜テイスクでは、5μ倶のコア幅に対しても欠陥エラー
数はほとんど生じないこととなる。
In addition, a 4-inch diameter wafer with a thickness of 3 mm was coated with 0.1μ normal thickness r-("L,4"0,01 COa, am)lO
The surface of the above-mentioned 54-substrate disk on which the S thin film was formed was examined using an optical microscope and a 5xHT (scanning electron microscope).
The number of substrate defects larger than normal diameter was measured, but there were none. On the other hand, the number of defects with a diameter of 1 μm or more on the anodized Al-My alloy substrate was 20 to 400 pieces/ctn. The latter medium has a practical error rate with a helad core width of 18 μm. Therefore, in the case of γ-Fm, 0.000000000000000000 using 54 substrates, almost no defect errors occur even for a core width of 5 μm.

さて次に、ディスクに機械的強度を持たせる為に、54
基板片面上に1−Fg@0@膜を形成した上記工程以降
、At、ri等の軽金属またはそれらの軽合金からまる
補強板をS(基板の他方の面に接着材で接着した。そし
て、At、Tiをそれぞれ用いた補強板の厚さを1.2
.5鴎と変えて、約10.166常(4インチ)径のS
(基板に上述の如く接着し、希土類磁石を用いたdaコ
コアスモータを用いて最大20000rpm まで回転
させ、回転の安定性を調べた。
Next, in order to give the disk mechanical strength, 54
After the above step in which the 1-Fg@0@ film was formed on one side of the substrate, a reinforcing plate made of light metals such as At and Ri or their light alloys was bonded to the other side of the substrate with an adhesive. , the thickness of the reinforcing plate using Ti is 1.2
.. Instead of 5 seaweed, S of about 10.166 jo (4 inches) diameter
(It was adhered to a substrate as described above and rotated up to a maximum of 20,000 rpm using a da cocoa motor using a rare earth magnet to examine the stability of rotation.

尚、安定性は、S(面に対向した位置に置いた静電容量
型の変位センサーで面ぶれの加速度を測定して評価した
。その結果、補強板で裏打ちしたディスク基板では、A
t、Tiの厚さにかかわらず200QQrprniで基
板は割れず、加速度も50〜/ageの回転速度の際、
1.(IG以下と安定であった。また、51基板の厚さ
を1mmまで減少しても、1朋1のAt。
The stability was evaluated by measuring the acceleration of surface wobbling with a capacitive displacement sensor placed opposite the surface of S. As a result, the disk substrate lined with a reinforcing plate showed
t, regardless of the thickness of Ti, the substrate does not crack with 200QQrprni, and the acceleration is at a rotation speed of 50~/age,
1. (It was stable at less than IG.Also, even when the thickness of the 51 substrate was reduced to 1 mm, the At.

T(板を接着すれば、同様な結果が得られた。At合金
、 rt金合金使用した場合も結果は同じであった。こ
れに対して、補強板を接着しない厚さ5鵠O81基板そ
のものでは、ディスク回転中に時々割れて飛散するトラ
ブルが生じた。
Similar results were obtained by bonding the T (plate). The results were also the same when At alloy and RT gold alloy were used. On the other hand, when the reinforcing plate was not bonded, the same result was obtained. However, there was a problem where the disc would sometimes crack and scatter while rotating.

以上説明したように、本発明は、S(単結晶ウェハをデ
ィスク基板としてr−#lol連続薄膜媒体を作製する
ことによシ、陽極酸化At−M1合金基板に由来する制
約を大幅に取り除くことが可能となり、r−FfO,薄
膜の性能を限界まで引き出すことができ、現在の最先端
の磁気ディスクでの面記録密度の約100倍が達成可能
となる。即ち、約10.1(5cm(4インチ)直径の
基板を用いても片面で約’1GEyt#の磁気ディスク
が作成できるので、磁気ディスク記憶装置の大幅な小型
化、大幅な経済化が達成できる。また、使用量の多い4
00−600MEyt−容量のヘッド−ディスクアッセ
ンブリ(uni )を例えば100mx 12am x
 5cmの体積で実現できよう。さらに大型ファイルシ
ステムのみならず、各種端末の100fJ1yta以下
のファイル容量に対してもウェハの小型化や面記録密度
の低下で対処できるので、そのインパクトは計り知れな
いものがある。
As explained above, the present invention significantly removes the constraints derived from anodized At-M1 alloy substrates by fabricating r-#lol continuous thin film media using S (single crystal wafers as disk substrates). This makes it possible to bring out the performance of r-FfO and thin films to their limits, making it possible to achieve an areal recording density of approximately 100 times the current state-of-the-art magnetic disk. That is, approximately 10.1 (5 cm) Even if a substrate with a diameter of 4 inches is used, a magnetic disk of about 1 GEyt# can be created on one side, making it possible to significantly reduce the size and economy of magnetic disk storage devices.
00-600MEyt-capacity head-disk assembly (uni), for example 100m x 12am x
This can be achieved with a volume of 5 cm. Furthermore, not only large file systems but also file capacities of 100 fJ1yta or less in various terminals can be addressed by downsizing wafers and reducing areal recording density, so the impact will be immeasurable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水平磁化記憶の原理説明図、第2図は磁気ディ
スク記憶装置の記録再生系の寸法(媒体性能指数)の年
次推移を表す線図、第5図及び第4図は本発明実施例デ
ィスク記憶媒体の断面図及び外観斜視図、第5図は基板
の表面粗さの処理温度依存性を示す線図、第6図は54
基板採用γ−PaBOB薄膜媒体の記録再生特性の一測
定例を示す線図である。 30はS4ウエハ、31はγ−Fe@ 03薄膜、32
は補強板、33は接着材である。 特許出願人日本電信電話公社 代理人弁理士 玉 蟲 久 五 部 (外3名)第1図 第3 図 第4図 第2図 1’?65       1970        1
975        191JO年度 第 5 図 熱処理温度(・C) 第6図 0.1   0.2 0.30.40.5   7  
  2  3 4 5te 録1度(bpm)
Fig. 1 is an explanatory diagram of the principle of horizontal magnetization storage, Fig. 2 is a diagram showing annual changes in the dimensions (medium performance index) of the recording/reproducing system of a magnetic disk storage device, and Figs. 5 and 4 are the invention of the present invention. A cross-sectional view and an external perspective view of an example disk storage medium, FIG. 5 is a diagram showing the processing temperature dependence of the surface roughness of the substrate, and FIG.
FIG. 2 is a diagram showing an example of measurement of recording and reproducing characteristics of a γ-PaBOB thin film medium using a substrate. 30 is S4 wafer, 31 is γ-Fe@03 thin film, 32
3 is a reinforcing plate, and 33 is an adhesive. Patent applicant Nippon Telegraph and Telephone Public Corporation Patent attorney Hisa Gobe Tamamushi (3 others) Figure 1 Figure 3 Figure 4 Figure 2 Figure 1'? 65 1970 1
975 191 JO Year Figure 5 Heat treatment temperature (・C) Figure 6 0.1 0.2 0.30.40.5 7
2 3 4 5te record 1 degree (bpm)

Claims (1)

【特許請求の範囲】[Claims] 単結晶S4クエハと、該単結晶S1ウエノ・の一方の面
に形成された7−FazOmを主成分とする連続薄膜と
、前記単結晶S4ウエハの他方の面に接着材によp貼着
された軽金属または軽合金からなる補強板とを具備した
ことを特徴とする磁気ディスク記憶媒体。
A continuous thin film mainly composed of 7-FazOm formed on one side of the single-crystal S4 wafer, and a continuous thin film mainly composed of 7-FazOm attached to the other side of the single-crystal S4 wafer with an adhesive. 1. A magnetic disk storage medium characterized by comprising a reinforcing plate made of a light metal or a light alloy.
JP18863981A 1981-11-25 1981-11-25 Magnetic disk storage medium Pending JPS5891532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18863981A JPS5891532A (en) 1981-11-25 1981-11-25 Magnetic disk storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18863981A JPS5891532A (en) 1981-11-25 1981-11-25 Magnetic disk storage medium

Publications (1)

Publication Number Publication Date
JPS5891532A true JPS5891532A (en) 1983-05-31

Family

ID=16227223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18863981A Pending JPS5891532A (en) 1981-11-25 1981-11-25 Magnetic disk storage medium

Country Status (1)

Country Link
JP (1) JPS5891532A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0136631A2 (en) * 1983-09-30 1985-04-10 International Business Machines Corporation A process for forming a magnetic record member and a magnetic record member
USRE32193E (en) * 1980-12-19 1986-06-24 International Business Machines Corporation Composite magnetic recording disk
JPS6276025A (en) * 1985-09-30 1987-04-08 Hoya Corp Magnetic information recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE32193E (en) * 1980-12-19 1986-06-24 International Business Machines Corporation Composite magnetic recording disk
EP0136631A2 (en) * 1983-09-30 1985-04-10 International Business Machines Corporation A process for forming a magnetic record member and a magnetic record member
JPS6276025A (en) * 1985-09-30 1987-04-08 Hoya Corp Magnetic information recording medium
JPH0330207B2 (en) * 1985-09-30 1991-04-26

Similar Documents

Publication Publication Date Title
US7130154B2 (en) Magnetic head slider having protrusions provided on the medium-facing surface and manufacturing method therefor
JP2002342908A (en) Magnetic recording medium and method of manufacturing the same
JP2001210037A (en) Magnetic head slider
JPH0566647B2 (en)
JPS5891532A (en) Magnetic disk storage medium
US6509111B1 (en) Magnetic recording media and magnetic disk apparatus
JPS61199224A (en) Magnetic recording medium
US6852432B2 (en) Magnetic recording media and magnetic disk apparatus
US20080020239A1 (en) Substrate For Magnetic Recording Medium, Magnetic Recording Medium, And Magnetic Recording And Reproducing Device
JPH06243451A (en) Magnetic recording medium and magnetic recorder
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP2906480B2 (en) Magnetic recording medium
JPS61199233A (en) Magnetic recording medium
JPH11250438A (en) Magnetic recording medium, production of magnetic recording medium and magnetic recorder
JP2873702B2 (en) Magnetic recording medium and magnetic recording / reproducing method
JPS61199236A (en) Magnetic recording medium
JP2534014B2 (en) Floating magnetic head
JP3371530B2 (en) Magnetic recording medium and magnetic storage device
JPH08138228A (en) Magnetic recording medium, its production and magnetic recorder
JP2814630B2 (en) Magnetic recording media
JPS61199231A (en) Magnetic recording medium
JP2000048358A (en) Production of magnetic record medium
JPH04353619A (en) Magnetic recording medium
JPS6052918A (en) Magnetic memory medium
JPS61188732A (en) Magnetic recording medium