JPS5891144A - Amorphous metal alloy having high crystalline temperature and high hardness - Google Patents

Amorphous metal alloy having high crystalline temperature and high hardness

Info

Publication number
JPS5891144A
JPS5891144A JP19070082A JP19070082A JPS5891144A JP S5891144 A JPS5891144 A JP S5891144A JP 19070082 A JP19070082 A JP 19070082A JP 19070082 A JP19070082 A JP 19070082A JP S5891144 A JPS5891144 A JP S5891144A
Authority
JP
Japan
Prior art keywords
atoms
range
hardness
metal
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19070082A
Other languages
Japanese (ja)
Other versions
JPS6028899B2 (en
Inventor
ランジヤン・レイ
リ−・エリオツト・タナ−
カ−ル・フランクリン・クライン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Corp
Original Assignee
Allied Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Chemical Corp filed Critical Allied Chemical Corp
Publication of JPS5891144A publication Critical patent/JPS5891144A/en
Publication of JPS6028899B2 publication Critical patent/JPS6028899B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は非晶質金属合金組成物、特に実質量の元素Ta
、Nb及びWの−又はそれ以上を含む組成物に関し、こ
れは高い結晶化温度、高い硬■値の両方を示f0 研究によれば成る種の合金組成物につい人固体非晶質金
mを得ることの可能であることが示されており、ここに
用語「非晶質」とは「固体の非晶質」を意味する。非晶
質物質は一般に非結晶質またはガラス質物質を特徴とす
る。即ちその物質は実質的に何らの長範囲の秩序を持た
ない。非晶質物質と結晶質物質との区別では一般KX線
回折測定を使うのが適当である。更に透過電子顕微鏡写
真法および電子回折を非晶質および結晶状態の区別に使
うことができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides amorphous metal alloy compositions, particularly those containing a substantial amount of the element Ta.
, Nb and W, which exhibit both high crystallization temperatures and high hardness values. The term "amorphous" herein means "solid amorphous". Amorphous materials are generally characterized as non-crystalline or glassy materials. That is, the material has virtually no long-range order. It is appropriate to use general KX-ray diffraction measurement to distinguish between amorphous substances and crystalline substances. Furthermore, transmission electron microscopy and electron diffraction can be used to distinguish between amorphous and crystalline states.

非晶質金属はX線回折像でその強さが回折角と共にゆる
やかに変る。この様な像は液体や通常の窓ガラスの回折
像に定性的に類似している。一方結晶質金属では回折像
の強さが回折角と共に急速に変る。
In X-ray diffraction images of amorphous metals, the intensity changes gradually with the diffraction angle. Such an image is qualitatively similar to the diffraction image of a liquid or an ordinary window glass. On the other hand, in crystalline metals, the intensity of the diffraction pattern changes rapidly with the diffraction angle.

これらの非晶質金属は準安定状態にある。充分高温度に
加熱するとそれは結晶化熱の発生と共に結晶化し、そし
て回折像はガラス状または非晶質特性をもつものから結
晶質特性をもつものへ変る。
These amorphous metals are in a metastable state. When heated to a sufficiently high temperature, it crystallizes with the generation of heat of crystallization, and the diffraction pattern changes from having a glassy or amorphous character to having a crystalline character.

非晶質および結晶質の二相混合物である金属を造ること
は可能であり、その相対割合は全部結晶質のものから全
部非晶質のものへ変り得る。ここで使う様な非晶質金属
とは、王として非晶質である金属をいう、即ち少(とも
504が非晶質であって然し介在するりl+スタリット
として存在する少部分の材料をもってもよい。
It is possible to create metals that are two-phase mixtures of amorphous and crystalline, the relative proportions of which can vary from fully crystalline to fully amorphous. As used herein, an amorphous metal refers to a metal that is primarily amorphous, i.e., even if at least 504 is amorphous but has a small amount of material present as intervening or starite. good.

適当な組成物に対しては適当な処理で非晶質状態の金属
を生じるだろう。一つの代表的な操゛作は溶融合金な銅
ま1こはアルミニウムの様な固体金属基質と接触させて
薄く拡がらせて溶融金属の熱を急速に基質の方に失わせ
ることである。
For appropriate compositions, appropriate processing will yield the metal in an amorphous state. One typical operation is to spread a thin layer of molten alloy copper in contact with a solid metal substrate, such as aluminum, so that the heat of the molten metal is rapidly lost to the substrate.

合金が厚さ約0.002インチに拡げられると106℃
/秒程度の冷却速度が達成されるであろう。
106°C when the alloy is expanded to a thickness of about 0.002 inches
Cooling rates on the order of 1/sec may be achieved.

fllllエバC,ルール(マチIIアルズーサイエン
ス・アントゞ・エンジニア11ング、第1巻、51.5
−619ページ、1967年)が冷却速度の溶融金属の
処理条件への依存性を論じているのを参照されたい。適
当な組成の合金に対しかつ充分高い冷却速度に対しては
この様な処理が=4k14金属を生じる。適当な高冷却
速度を与える任意の方法を使うことができる。非晶質金
属を造るのに使える操作の例示的な例にはH,S、チャ
ン及びC,E、 ミラー(レビュー・オブ・サイエンテ
ィフィク・インストルメンツ、12+7−1268ペー
ジ、1970年)が書いている様な回転二重ローラー、
R,ボンド・ジュニア及びR,マデイン(トランザクシ
ョンズ・オブ・ザ・メタルΦソサイエテイ’、AIME
fllll Eva C, Rule (Machi II Arzu Science Antozu Engineer 11ng, Volume 1, 51.5
-619, 1967) discussing the dependence of the cooling rate on the processing conditions of the molten metal. For alloys of appropriate composition and for sufficiently high cooling rates, such treatment yields =4k14 metal. Any method that provides a suitably high cooling rate can be used. Illustrative examples of operations that can be used to create amorphous metals include those written by H.S., Chan and C.E., Miller (Review of Scientific Instruments, pp. 12+7-1268, 1970). Rotating double rollers,
R. Bond Jr. and R. Madeline (Transactions of the Metal Φ Society', AIME
.

第245巻、2475−2476ページ、1969年)
が書いている様な回転円柱法がある。
Volume 245, pages 2475-2476, 1969)
There is a rotating cylinder method as described by.

実質型のFe、NLCo、V及びCr元素の1またはそ
れ以上を含む琲晶暎合金がH,S、チャンとC,E。
Crystal alloys containing one or more of the elements Fe, NLCo, V and Cr in substantial form include H, S, Chang, C, and E.

ミラーの1972年12月26日付米国特許出願第51
8.146号に記載されている。この様な合金は種々の
用途に対し全く有用である。然しこの様な合金は約42
5″〜550℃の結晶化温度および約600〜750D
PH(ダイヤモンド゛角錐硬度)の硬度により特徴づけ
られる。
Miller, U.S. Patent Application No. 51, dated December 26, 1972
8.146. Such alloys are extremely useful for a variety of applications. However, such an alloy is about 42
Crystallization temperature of 5″~550℃ and about 600~750D
It is characterized by the hardness of PH (diamond pyramid hardness).

本発明によれば、約650°〜975℃の範囲の結晶化
温度の高い熱安定性と、約800〜1400D P H
の範囲の値の高い硬度とをもつ非晶質合金が記載される
。下記の一般的組fi!を有する合金がこれらの性質ケ
有している。
According to the present invention, high thermal stability with crystallization temperatures ranging from about 650° to 975°C and about 800 to 1400 D P H
Amorphous alloys with high hardness values in the range are described. General group fi below! Alloys with these properties have these properties.

すなわち金属−令属系と呼ぶことのできる、一般式Rr
N igT tまたはRrNi、で表わされる組成を有
する耐火性金属基礎のガラス質金属である。式中Rは元
素タンタル、ニオブ及びタングステンの少(も一つであ
り、Tは元素チタン及びジルコニウムの少(とも一つで
あり、そしてrは65〜65原子鴫の範囲にあり、Sは
25〜65原子唾の範囲fあり、tは15原子4以下の
範囲にある。
In other words, the general formula Rr can be called a metal-order system.
It is a refractory metal-based glassy metal with a composition represented by N igT t or RrNi. where R is one of the elements tantalum, niobium and tungsten; T is one of the elements titanium and zirconium; and r is in the range of 65 to 65 atoms; S is 25 There is a range f of ~65 atoms, and t is in a range of 15 atoms 4 or less.

式RrNisで表わされる好ましい組成はT a 35
N r 5W65−sからTa45NiSW55. C
式中Sは約65〜45原子爆)までで包囲される組成範
囲、及び組成TarNts (式中「は約55〜50原
子鴫、Sは約50〜65原子4)を含む。金属−金属組
成物の結晶化温度は約650°〜800℃の範囲にあり
硬度は約800〜1125DPHの範囲fある。
A preferred composition represented by the formula RrNis is T a 35
N r 5W65-s to Ta45NiSW55. C
and the composition TarNts (where S is about 55 to 50 atoms and S is about 50 to 65 atoms).Metal-metal compositions The crystallization temperature of the material is in the range of about 650 DEG to 800 DEG C., and the hardness is in the range of about 800 to 1125 DPH.

この様な′金属ガラスは、高温(約500°〜6o。Such 'metallic glasses are used at high temperatures (approximately 500° to 60°C).

℃)における耐熱用途に特に有用である。可能性ある用
途としてはこれらの材料の成る種の高温電解槽における
電極として及び複合建造材料における強化線維としての
使用がある。
It is particularly useful for heat-resistant applications at temperatures below 30°F (°C). Possible applications include the use of these materials as electrodes in high temperature electrolyzers and as reinforcing fibers in composite construction materials.

不発明の非晶質合金、即ち金属ガラスは水差熱解析CD
TA−)倹渣で明かにされるV&に高い熱安定性を保持
する。最高結晶化に対する温度Tcはガラス試料tゆる
やかに加熱して特殊な温度(結晶化温度)で過剰の熱が
発生するか否か或は特殊な温度範囲(ガラス転移温度)
を越えると過剰の熱が吸収されるか否かに注目すること
KよりDTAから正確に決定することができる。一般的
にいって、あまりよ(限定されないガラス転移温度は最
低の即ち第1の結晶化最高点Telより約50°以内下
にあると考えらね、そして慣用の様にそれ以上の温度で
は粘度が約1013〜1014ボイズの範囲になる温度
範囲を包括する。
Uninvented amorphous alloy, i.e. metallic glass, is analyzed by differential thermal analysis CD
TA-) Retains high thermal stability to V& as revealed by sparing. The temperature Tc for maximum crystallization is determined by heating the glass sample slowly and determining whether excessive heat is generated at a special temperature (crystallization temperature) or a special temperature range (glass transition temperature).
It can be more accurately determined from DTA by noting whether excess heat is absorbed beyond K. Generally speaking, the non-limiting glass transition temperature is considered to be within about 50° below the lowest or first crystallization peak Tel, and as is customary, at higher temperatures the viscosity encompasses a temperature range in which the temperature ranges from approximately 10<13> to 10<14> voids.

金属ガラスは溶融物を約105〜b で冷却することによって形成される。平板急冷の箔や急
冷連結I+ボタン針金等を造るためには当技術で周知の
様に種々の方法が利用できる。
Metallic glasses are formed by cooling the melt at about 10 5 -b. A variety of methods are available, as known in the art, for making plate quench foils, quench connected I+ button wires, and the like.

高い1g性質を示す金属ガラスはまた高い結晶質または
部分的結晶質試料に比べ高い延性と高い耐蝕性を示す。
Metallic glasses exhibiting high 1g properties also exhibit high ductility and high corrosion resistance compared to highly crystalline or partially crystalline samples.

その上これらの非晶質合金はかなり高い硬度値をもつ。Moreover, these amorphous alloys have fairly high hardness values.

金属−金属組成物 ま1こ本発明に従えば、−貫したガラス形成挙動に加え
て高い熱安定性を与える金属には’l’a N5mNb
 −N i  の二成分系、およびW、Ti  及び/
又はZrでの三相改質系がある。ここで関心iる組成は
一般式RrN + sT @またはRrNisで記述さ
れ、RはTa、Nb及び/又はWでTはTi及び/又は
Zrである。
Metal-metal compositions According to the present invention, metals that provide high thermal stability in addition to consistent glass-forming behavior include 'l'a N5mNb.
- binary system of N i and W, Ti and/or
Alternatively, there is a three-phase reforming system with Zr. The composition of interest here is described by the general formula RrN + sT @ or RrNis, where R is Ta, Nb and/or W and T is Ti and/or Zr.

この様な組成物は650’−800℃の範囲の結晶化温
度をもつ。
Such compositions have crystallization temperatures in the range of 650'-800°C.

Ta −Ni 二成分系金属ガラスは760°−780
℃の範囲で結晶し、Nb−Ni系金属ガラスのそれより
約100℃高い。Taの代りに一部なWで置換すればT
cはほんの僅か(約15〜20℃)上るだけでW含量を
増加しても評価できる様な変化はな−゛\。
Ta-Ni binary metallic glass is 760°-780°
It crystallizes in a temperature range of about 100°C higher than that of Nb-Ni metal glass. If we replace Ta with some W, we get T
There is no appreciable change even if the W content is increased by only a slight increase in c (approximately 15 to 20°C).

一方TiまたはZrの部分的添加はTcを低下する傾向
がある。
On the other hand, partial addition of Ti or Zr tends to lower Tc.

Ta Ni  およびNbrNisの二成分系について
は   S rが約65〜65[子鳴で$が残りの範囲即ち65〜6
5原子鴫の時にガラス金属を形成する。
For the binary system of TaNi and NbrNis, Sr is about 65-65 [with consonants, $ is in the remaining range i.e. 65-6
Forms glass metal when five atoms are present.

最適の性質はTa rN i sの系でrが約65〜5
0原子鴫、Sが約50〜65原子鴫の範囲の時に得られ
る。
The optimum properties are in the Ta rN i s system, where r is approximately 65 to 5.
0 atoms are obtained when S is in the range of about 50 to 65 atoms.

Ta35NisW65−s〜Ta4.5NisW55−
8の三成分系の範囲については一貫して高いTg と高
い硬度をもつガラス形成範囲はWJ1図に示してありこ
れ&1Ta−W−Niの三元組成図である。a−b−c
−d−aで示した多角形は最適ガラス形成区域を包含す
る。この組成区域の外部は実質程度の非晶電性が得られ
ないか或は有利な性質が許容できない程度に減少するか
である。第1(2)でSは約65〜45原子唾の範囲に
ある。
Ta35NisW65-s~Ta4.5NisW55-
Regarding the range of the ternary system No. 8, the glass forming range with consistently high Tg and high hardness is shown in Figure WJ1, which is a ternary composition diagram of Ta-W-Ni &1. a-b-c
The polygon labeled -d-a encompasses the optimal glass forming area. Outside this compositional region, either no substantial degree of amorphous electrical properties is available or the beneficial properties are reduced to an unacceptable extent. In No. 1 (2), S is in the range of about 65 to 45 atoms.

TiまたはZrはTcを低下する傾向があるからこの様
な添加は高いTg及び高い硬度を保持するためには約1
5原子鴫を越ゆべきでなく、そして好ましくは10憾を
越ゆべきでない。
Since Ti or Zr tends to lower Tc, such additions are necessary to maintain high Tg and high hardness.
There should be no more than 5 atoms, and preferably no more than 10 atoms.

一般的にいって前記の系の硬度は約800〜1125D
PHの範囲にある。
Generally speaking, the hardness of the above system is about 800-1125D
In the PH range.

実施例 金属−金属組成物 高温度反応性合金の溶融および液体急冷用の空気電弧−
平板装置を使った。この装置は従来の電弧溶融ボタジ式
炉を不活性雰囲気下での合金の「ハンマーと金敷」型平
板急冷ができるように改造したものであるが、これは4
インチの拡散ポンプ系に連結した不銹鋼量を包含する。
Examples Metals - Air arc for melting and liquid quenching of metal compositions high temperature reactive alloys -
A flat plate device was used. This equipment is a conventional electric arc melting furnace modified to enable "hammer and anvil" flat plate quenching of alloys in an inert atmosphere.
Includes a quantity of stainless steel connected to an inch diffusion pump system.

急冷は、その室の床上に平面状の水冷された鋼輿炉床と
溶融合令上に構えた空気駆動の銅塊製ノ1ンマーとを備
えることにより遂行される。慣用の様に電弧溶融は室の
頂部を貫通して挿入されたタングステンの先端を備えた
銅製軸を負Jf バイアスしかつ呈の底を正にバイアス
することにより完遂される。Pを含有する合金は粉成分
を焼結し次いで電弧溶融して均一化することにより造ら
れた。すべての他の合金は成分元素の反復1弧溶融によ
り直接造られた。唯一個の合金ボタン(約200111
9)が再溶融されそれから溶融池の直上に置かれタノ)
ンマーで厚さ約0.004インチの箔に「衝撃−急冷−
Iされた。この方法で得られた冷却速度は約り0〜10
℃/秒であった。箔はX線廻折とDTAで非晶質層が試
験された。
Quenching is accomplished by equipping the chamber with a planar water-cooled steel hearth on the floor and an air-driven copper ingot nozzle positioned above the melting stage. Conventionally, arc melting is accomplished by negatively biasing a tungsten-tipped copper shaft inserted through the top of the chamber and positively biasing the bottom of the chamber. The P-containing alloy was made by sintering the powder components and then homogenizing them by electric arc melting. All other alloys were made directly by repeated single-arc melting of the constituent elements. Only one alloy button (approximately 200111
9) is remelted and then placed directly above the molten pool.
Shock - quench - onto a foil approximately 0.004 inch thick using
It was done. The cooling rate obtained with this method is approximately 0-10
°C/second. The foil was tested for amorphous layers by X-ray diffraction and DTA.

ハンマーの直下の衝撃急冷された箔は固化後回塑性変形
を受けているかも知れない。然しハンマーからはみ出し
た溶融物から形成された一部の箔は変形されてなく従っ
て硬度その他関連試験のために適した。硬度は対向面間
K 156@の角度を含む底面正方形の角錐形のダイヤ
モンドよりなるビッカース形王子を使ってダイヤモンド
角錐法によって測定した。種々の金属−金属組成物につ
いての結晶化温度および硬度値を第1表に示す。
The shock-quenched foil directly under the hammer may have undergone gyroplastic deformation after solidification. However, some of the foil formed from the melt extruding from the hammer was not deformed and was therefore suitable for hardness and other related tests. The hardness was measured by the diamond pyramid method using a Vickers-shaped Oji made of pyramidal diamond with a square bottom including an angle of K 156@ between opposing surfaces. Crystallization temperatures and hardness values for various metal-metal compositions are shown in Table 1.

′第 1 表 金属−金属系についての結晶化温度 例 組成      硬さ 原子%      Tcl、’CDPHI  Ta55
Nit5      780    11112  T
a5ONi50      767   941.11
156Ta45Ni45W1o797・818.969
4  Ta、6Ni、。W2B     796   
 −−−−5  Ta45Ni35W2o800   
 −−−−6  Ta、5Ni、5W2o791   
   −+7  Ta35Ni35W30     s
oo     −一−−8Ta55Nj36Zr16 
  685      −−9 T”55N’35”’
10   709      −10 Ta56Nj 
4gT116   717    −一一一11Nb6
5Ni356629g0 12 Nb、、Ni4o680     92515 
Nb、oNtso      653    8651
4Nb6oNi28Ti12662−−m−
'Table 1 Examples of crystallization temperatures for metal-metal systems Composition Hardness atomic % Tcl, 'CDPHI Ta55
Nit5 780 11112 T
a5ONi50 767 941.11
156Ta45Ni45W1o797・818.969
4 Ta, 6 Ni,. W2B 796
-----5 Ta45Ni35W2o800
---6 Ta, 5Ni, 5W2o791
-+7 Ta35Ni35W30s
oo -1--8Ta55Nj36Zr16
685 --9 T"55N'35"'
10 709 -10 Ta56Nj
4gT116 717 -11111Nb6
5Ni356629g0 12 Nb,, Ni4o680 92515
Nb, oNtso 653 8651
4Nb6oNi28Ti12662--m-

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属−金属系Ta−WNiの原子鴫で表わした
三元組成2図である。 出願  人  丁ライト1・コーポレーション葬、l凹 l 第1頁の続き 0発 明 者 カール・フランクリン・クライン アメリカ合衆国ニューシャーシ ー州07945メンダム・マウンテ インサイド・ロード(番地無)
FIG. 1 is a two-dimensional diagram of the ternary composition represented by atoms of the metal-metal system Ta-WNi. Applicant: Wright 1 Corporation, Inc. Page 1 continued 0 Inventor: Carl Franklin Klein Mendham Mountainside Road, New Chassis, 07945, United States (no street address)

Claims (1)

【特許請求の範囲】 (II式RrNII (ただし、Rはタンタル、ニオブおよびタングステンか
らなる群より選ばれる少なくとも1つの元素であり、r
は65〜65原子唾であり、Sは65〜65原子優であ
り、rとSとの合計は100である。)で表わされる組
成を有し、かつ、650℃〜800℃の範囲内の結晶化
温度と800〜1125DPHの範囲内の硬度を有する
ことを特徴とする、少な(とも50釜が非晶質であり、
高い結晶化温度および高い硬度を有fる非晶質金属合金
。 ;21式RrNtsTl (ただし、 R&エタンタル、ニオブおよびタングステ
ンからなる群より選ばれる少なくとも1つの元素であり
、Tはチタンおよびジルコニウムからなる群より選ばれ
る少な(とも1つの元素であり、rは65〜65原子鴫
であり、Sは25〜65原子憾であり、tは15原子嶋
以下でありsrs@およびtの合計は100である。)
で表わされる組fIt′tl−有し、かつ650℃〜8
00℃の範囲内の結晶、化温度と800〜1125DP
Hの範囲内の硬度を有することを特徴とする、少な(と
も50傷が非晶質であり高い結晶化温度および高い硬度
を有する非晶質金属合金。
[Claims] (Formula II RrNII (wherein R is at least one element selected from the group consisting of tantalum, niobium and tungsten, and r
has 65 to 65 atoms, S has 65 to 65 atoms, and the sum of r and S is 100. ), and is characterized by having a crystallization temperature within the range of 650°C to 800°C and a hardness within the range of 800 to 1125 DPH. can be,
Amorphous metal alloys with high crystallization temperatures and high hardness. ;21 Formula RrNtsTl (However, R is at least one element selected from the group consisting of etantalum, niobium, and tungsten, T is at least one element selected from the group consisting of titanium and zirconium, and r is 65 to 65 atoms, S is 25 to 65 atoms, t is 15 atoms or less, and the sum of srs@ and t is 100.)
It has the set fIt'tl- represented by, and 650°C ~ 8
Crystallization temperature within the range of 00℃ and 800~1125DP
An amorphous metal alloy having a high crystallization temperature and high hardness, characterized in that it has a hardness in the range of H.
JP19070082A 1974-08-07 1982-10-29 Amorphous metal alloy with high crystallization temperature and high hardness Expired JPS6028899B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49545874A 1974-08-07 1974-08-07
US495458 1990-03-16

Publications (2)

Publication Number Publication Date
JPS5891144A true JPS5891144A (en) 1983-05-31
JPS6028899B2 JPS6028899B2 (en) 1985-07-08

Family

ID=23968714

Family Applications (2)

Application Number Title Priority Date Filing Date
JP7714675A Expired JPS5811500B2 (en) 1974-08-07 1975-06-24 Amorphous metal alloy with high crystallization temperature and high hardness value
JP19070082A Expired JPS6028899B2 (en) 1974-08-07 1982-10-29 Amorphous metal alloy with high crystallization temperature and high hardness

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP7714675A Expired JPS5811500B2 (en) 1974-08-07 1975-06-24 Amorphous metal alloy with high crystallization temperature and high hardness value

Country Status (6)

Country Link
JP (2) JPS5811500B2 (en)
CA (1) CA1048815A (en)
DE (1) DE2534379C2 (en)
FR (1) FR2281434A1 (en)
GB (1) GB1476589A (en)
IT (1) IT1046075B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210143A (en) * 1985-03-14 1986-09-18 Mitsui Eng & Shipbuild Co Ltd Amorphous alloy having high corrosion resistance
JPS6233735A (en) * 1985-08-06 1987-02-13 Mitsui Eng & Shipbuild Co Ltd Amorphous alloy having high corrosion resistance
JPS62214148A (en) * 1986-03-17 1987-09-19 Nec Corp Amorphous alloy
JPS62235448A (en) * 1986-04-03 1987-10-15 Nec Corp Amorphous alloy
JPS63259043A (en) * 1987-04-16 1988-10-26 Agency Of Ind Science & Technol Nickel based alloy for diffusion bonding and its production
JPH01132730A (en) * 1987-11-19 1989-05-25 Agency Of Ind Science & Technol Insert material of nickel-base super alloy for solid-state welding and solid-state welding method
JP2016053207A (en) * 2014-09-04 2016-04-14 キヤノン株式会社 Amorphous alloy, molding die and method for producing optical element

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856513A (en) * 1972-12-26 1974-12-24 Allied Chem Novel amorphous metals and amorphous metal articles
DE2719988C2 (en) * 1977-05-04 1983-01-05 Siemens AG, 1000 Berlin und 8000 München Amorphous metal layer containing tantalum, temperature-stable at least up to 300 degrees C, and process for its production
CH622380A5 (en) * 1977-12-21 1981-03-31 Bbc Brown Boveri & Cie
EP0002923B1 (en) * 1978-01-03 1981-11-11 Allied Corporation Iron group transition metal-refractory metal-boron glassy alloys
JPS6030734B2 (en) * 1979-04-11 1985-07-18 健 増本 Amorphous alloy containing iron group elements and zirconium with low brittleness and excellent thermal stability
US4544473A (en) * 1980-05-12 1985-10-01 Energy Conversion Devices, Inc. Catalytic electrolytic electrode
US4743513A (en) * 1983-06-10 1988-05-10 Dresser Industries, Inc. Wear-resistant amorphous materials and articles, and process for preparation thereof
DE3616008C2 (en) * 1985-08-06 1994-07-28 Mitsui Shipbuilding Eng Highly corrosion-resistant, glass-like alloy
JPS63312965A (en) * 1987-06-16 1988-12-21 Meidensha Electric Mfg Co Ltd Highly corrosion resistant coated material
JPH03267355A (en) * 1990-03-15 1991-11-28 Sumitomo Electric Ind Ltd Aluminum-chromium alloy and its production
KR100289088B1 (en) * 1998-12-02 2001-05-02 박인복 Method for manufacturing alloy material for electrode tip of plasma generator
DE102018113340B4 (en) 2018-06-05 2020-10-01 Otto-Von-Guericke-Universität Magdeburg Density-optimized molybdenum alloy
DE102018115815A1 (en) * 2018-06-29 2020-01-02 Universität des Saarlandes Device and method for producing a cast part formed from an amorphous or partially amorphous metal, and cast part
CN114959397B (en) * 2022-04-28 2023-04-07 长沙惠科光电有限公司 Alloy target material, preparation method and application thereof, and array substrate
WO2024046742A1 (en) 2022-08-29 2024-03-07 Universität des Saarlandes Alloy for producing bulk metallic glasses and shaped bodies therefrom

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3427154A (en) * 1964-09-11 1969-02-11 Ibm Amorphous alloys and process therefor
US3856513A (en) * 1972-12-26 1974-12-24 Allied Chem Novel amorphous metals and amorphous metal articles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210143A (en) * 1985-03-14 1986-09-18 Mitsui Eng & Shipbuild Co Ltd Amorphous alloy having high corrosion resistance
JPS6233735A (en) * 1985-08-06 1987-02-13 Mitsui Eng & Shipbuild Co Ltd Amorphous alloy having high corrosion resistance
JPH0535212B2 (en) * 1985-08-06 1993-05-26 Mitsui Zosen Kk
JPS62214148A (en) * 1986-03-17 1987-09-19 Nec Corp Amorphous alloy
JPS62235448A (en) * 1986-04-03 1987-10-15 Nec Corp Amorphous alloy
JPS63259043A (en) * 1987-04-16 1988-10-26 Agency Of Ind Science & Technol Nickel based alloy for diffusion bonding and its production
JPH0356289B2 (en) * 1987-04-16 1991-08-27
JPH01132730A (en) * 1987-11-19 1989-05-25 Agency Of Ind Science & Technol Insert material of nickel-base super alloy for solid-state welding and solid-state welding method
JP2016053207A (en) * 2014-09-04 2016-04-14 キヤノン株式会社 Amorphous alloy, molding die and method for producing optical element

Also Published As

Publication number Publication date
CA1048815A (en) 1979-02-20
IT1046075B (en) 1980-06-30
DE2534379C2 (en) 1984-09-13
JPS6028899B2 (en) 1985-07-08
JPS5120011A (en) 1976-02-17
FR2281434A1 (en) 1976-03-05
FR2281434B1 (en) 1978-10-13
DE2534379A1 (en) 1976-02-19
GB1476589A (en) 1977-06-16
JPS5811500B2 (en) 1983-03-03

Similar Documents

Publication Publication Date Title
JPS5891144A (en) Amorphous metal alloy having high crystalline temperature and high hardness
US3989517A (en) Titanium-beryllium base amorphous alloys
Rösner et al. The influence of coherent TiCu plate-like precipitates on the thermoelastic martensitic transformation in melt-spun Ti50Ni25Cu25 shape memory alloys
US4059441A (en) Metallic glasses with high crystallization temperatures and high hardness values
JPS5842256B2 (en) amorphous alloy
Lee Precipitation-hardening characteristics of ternary cobalt-aluminum-X alloys
JP2002173732A (en) High entropy multicomponent alloy
WO2006054822A1 (en) Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
US11313732B2 (en) Ti—Ni-based alloy; wire, electrically conductive actuator, and temperature sensor, each using this alloy; and method of producing a Ti—Ni-based alloy
JPH1171661A (en) High strength amorphous alloy and its production
JPS5832223B2 (en) Uranium-based alloys for nuclear applications
Sandrock The metallurgy and production of rechargeable hydrides
JPH05171331A (en) High strength magnesium-base alloy
Hong et al. Nanocrystallization behaviour of Al–Y–Ni with Cu additions
US4160854A (en) Ductile brazing foil for cast superalloys
Samanta et al. Experimental investigation on the phase equilibria in the system Sn–Zr (0–100 at.% Zr) by using “spot-technique” and DTA
Zhang et al. Optimizing mechanical properties of Fe26. 7Co26. 7Ni26. 7Si8. 9B11 high entropy alloy by inducing hypoeutectic to quasi-duplex microstructural transition
JP2005048231A (en) Sputtering target material
Zavalij et al. Crystal structure of Au1− xNixSn4 intermetallic alloys
Bondi et al. Effects of microalloying with 3d transition metals on glass formation in AlYFe alloys
JPS6130645A (en) Tantalum-niobium-molybdenum-tangsten alloy
JPH03503745A (en) Nickel-palladium brazing alloy
Kaieda Fabrication of composition-controlled TiNi shape memory wire using combustion synthesis process and the influence of Ni content on phase transformation behavior
Savitskii et al. Neodymium and its alloys with aluminum
Bichkov et al. Some properties of zirconium-niobium alloys