JPS589113A - Reinforcing member for optical fiber connecting part and reinforcing method - Google Patents

Reinforcing member for optical fiber connecting part and reinforcing method

Info

Publication number
JPS589113A
JPS589113A JP56106897A JP10689781A JPS589113A JP S589113 A JPS589113 A JP S589113A JP 56106897 A JP56106897 A JP 56106897A JP 10689781 A JP10689781 A JP 10689781A JP S589113 A JPS589113 A JP S589113A
Authority
JP
Japan
Prior art keywords
heat
optical fiber
shrinkable tube
thermosetting resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56106897A
Other languages
Japanese (ja)
Other versions
JPH0324643B2 (en
Inventor
Mitsutoshi Hoshino
星野 光利
Shinzo Yamakawa
山川 進三
Norio Murata
則夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56106897A priority Critical patent/JPS589113A/en
Publication of JPS589113A publication Critical patent/JPS589113A/en
Publication of JPH0324643B2 publication Critical patent/JPH0324643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4486Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables

Abstract

PURPOSE:To stabilize a transmission loss and to improve reliability, by covering an optical fiber connecting part with a reinforcing member in which an electric resistance heating element and a heat-shrinkable tube are unified into one body, and electrically conducting and reinforcing the connecting part. CONSTITUTION:A reinforcing member is constituted of a heat-shrinkable tube 1 which is shrunk lengthwise by heating, a thermosetting resin prepolymer tube 2 which is disposed in the inside of the tube 1 and which is made of an epoxy resin to be cured by heating and an electric resistance heating element 4 consisting of a rod-shaped carbon fiber which is coated and attached lengthwise to a epoxy resin prepolymer layer 3 which is extended and inserted almost in an axial direction in the tube 2, and a connecting part 5 of an optical fiber is inserted into a hollow part 10 in the tube 2. When voltage is applied to both ends of the heating element, the tube 2 is heated and softened, and at the same time the tube 1 is shrunk lengthwise and is unified into one body by being adhered with the connecting part.

Description

【発明の詳細な説明】 び補強方法に閑するものである。[Detailed description of the invention] This article provides information on reinforcement and reinforcement methods.

光ファイバの接続方法として接続すべき2本の光ファイ
バのプラスチック被覆をむき、2本のファイバ心線をア
ーク放電などによって熱融着する方法がある。この場合
、光ファイバの機械的強度保持O役割を有する光ファイ
バのプラスチック被覆層を除去して熱融着を行うので、
光フアイバ接続後に被覆層の除去部分を補強する必要が
ある。
As a method for connecting optical fibers, there is a method in which the plastic coatings of two optical fibers to be connected are removed and the two cored fibers are thermally fused together by arc discharge or the like. In this case, the plastic coating layer of the optical fiber, which has the role of maintaining the mechanical strength of the optical fiber, is removed and heat fusion is performed.
After optical fiber connection, it is necessary to reinforce the removed portion of the coating layer.

この接続部の補強方法として、従来から幾つ”かの方法
が提案されている。七のI−′)ヘして、熱収縮チュー
ブを用−た補強方法が、例えば特開昭SS− 1293
03号やG.に、 PaceyおよびJ.F. Bal
gleighKよる” Fusion Splicin
g of Optical Fibres”。
Several methods for reinforcing this connection have been proposed in the past.
No. 03 and G. In Pacey and J. F. Bal
By gleyghK” Fusion Splicin
of Optical Fibers”.

Electronics Letter, v’o1.
 ts ’e &t 、 p.n<tm>K提案されて
いるが、従来の熱収縮チューブによる方法では、熱収縮
チューブを加熱収縮するのに電熱器,トーチ,バーナ,
ホットガンなどの外部加熱器具が必要である。従って、
作業現場、例えはマンホール内や柱上にこのような外部
加熱器具を持込t−aければからず、安全性や・防火対
策上から問題があり、しかもいかなる外部加熱器具を用
いても加熱時間に数分を要するという欠点があった.更
Kまた、補強部材としての熱収縮チューブや熱溶゛融接
着剤のヤング率は数百〜t,oookf/■であり、光
ファイバのヤング率t,000 ki/wx よシも低
いので、禎強部に引張応力が加わると補強部材が伸びて
光ファイバに1破断応・力がかかヤ、′光ファイバが破
断するおそれがあった。更にまた、、補強部材としての
熱収縮チューブや熱溶融接着剤のIIll張率は10−
 5〜IO−’/ ’eであり、光ファイバの線膨張率
IO−7〜10” ’ / ”Cよりも大きいので、温
度変化によ)上述の補強部材のプラスチックが膨張また
は収縮して光ファイバの局部的−げによる伝送損失の変
化、さらには光ファイバの突出しによる断線が起こると
ーう欠点があった。
Electronics Letter, v'o1.
ts'e&t, p. n<tm>K has been proposed, but the conventional heat shrink tube method requires an electric heater, torch, burner, etc. to heat shrink the heat shrink tube.
An external heating device such as a hot gun is required. Therefore,
It is necessary to bring such an external heating device into the work site, for example, inside a manhole or on a pillar, and there are problems from safety and fire prevention measures, and no matter what kind of external heating device is used, it will not be possible to heat the area. The drawback was that it took several minutes. Additionally, the Young's modulus of heat-shrinkable tubes and hot-melt adhesives used as reinforcing members is several hundred to t,0ookf/■, and the Young's modulus of optical fibers is as low as t,000 ki/wx. When a tensile stress is applied to the reinforced portion, the reinforcing member stretches and a single breaking stress/force is applied to the optical fiber, which may cause the optical fiber to break. Furthermore, the elongation of the heat-shrinkable tube or hot-melt adhesive used as a reinforcing member is 10-
5~IO-'/'e, which is larger than the coefficient of linear expansion of optical fiber IO-7~10''/''C, so the plastic of the above-mentioned reinforcing member expands or contracts due to temperature changes, causing light to be emitted. There are disadvantages in that transmission loss changes due to localized fiber breakage, and furthermore, breakage occurs due to protrusion of the optical fiber.

そこで、本発明の目的は、1述の欠点を除去するために
、光7アイパと同程度にヤング率が高く、しかも光ファ
イバと同程度に熱膨張係数が小率い材料による電気抵抗
発熱体をテンションメンバとして用いると共にこの電気
抵抗発熱体に通電するようにし、以て、作業現場での光
フアイバ接続部の補強を簡便かつ短時間に行うことを可
能にし、しかも光ファイバの伝送損失の変化や破断のお
それがな一良好な補強部材を提供することKある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an electrical resistance heating element made of a material that has a Young's modulus as high as that of Optical 7 Eyepa and a coefficient of thermal expansion that is as low as that of an optical fiber. In addition to being used as a tension member, this electric resistance heating element is energized, making it possible to easily and quickly reinforce optical fiber connections at work sites, and to prevent changes in optical fiber transmission loss. It is an object of the present invention to provide a good reinforcing member that has no fear of breakage.

本発明の他の目的は、上述の補強部材を用いて、現場で
の光ファイバの接続部の補強を、簡便かつ短時間に行う
ことができ、しかも補強後にファイバIし線が破断する
おそれがないようにして、上述した従来の欠点Q解決を
・図った光フアイバ接続部の補強方法を提案することK
Toる。
Another object of the present invention is to use the above-mentioned reinforcing member to easily and quickly reinforce the connecting portion of an optical fiber at the site, and to eliminate the risk of the fiber I wire being broken after reinforcement. To propose a method of reinforcing an optical fiber connection part that solves the above-mentioned conventional drawbacks Q by preventing
Toru.

本発明補強部材は、可熱により径方向に収縮可能な熱収
縮チューブと、該熱収縮チューブの内側・に配置された
熱硬化性樹脂あるいは熱硬化性樹脂プレポリマによる中
空部材と、前記熱収縮チューブの内側に、前記熱収縮チ
ューブおよび前記中空部、材を加熱可能に前記熱収縮チ
ューブの軸方向に蝙在して配置され、熱硬化性樹脂ある
―は熱硬化性樹脂プレポリマを被覆または含浸した電気
抵抗発熱体とを具備し、前記中空部材の内側に光ファイ
バを挿通可能にしたことを特徴とするものである。
The reinforcing member of the present invention includes a heat-shrinkable tube that can be radially contracted by heating, a hollow member made of a thermosetting resin or a thermosetting resin prepolymer disposed inside and inside the heat-shrinkable tube, and a hollow member made of a thermosetting resin or a thermosetting resin prepolymer, and the heat-shrinkable tube. The heat-shrinkable tube and the hollow portion are disposed in the axial direction of the heat-shrinkable tube so that the material can be heated, and the thermosetting resin is coated or impregnated with a thermosetting resin prepolymer. The device is characterized in that it includes an electric resistance heating element, and an optical fiber can be inserted into the inside of the hollow member.

本発明方法は、加熱により径方向に収縮可能な熱収縮チ
ューブと、該熱収縮チューブの内側に配置された熱硬化
性樹脂あるいは熱硬化性樹脂プレポリiによる中空部材
と、前記熱収縮チューブの内側に、前記熱収縮チューブ
および前記中空部材を加熱可能に前記熱収縮チューブの
軸方向に延在して配置され、熱硬化性樹脂あ・るーは熱
硬化性樹脂プレポリマを被覆また社台浸した電気抵抗発
熱体とを具備し、前記中空部材の内側に光ファイバを挿
通可能にした嬌強部材を用い、前記融着接続された光フ
アイバ接続部を前記中空部材に挿通し、次いで前記電気
抵抗発熱体に通電して、前記熱収縮チューブを加熱して
その径方向に収縮させると共に前記中空部材および前記
電気抵抗発熱体に被覆または含浸した前記熱硬化性樹脂
あるいは熱硬化性樹脂プレポリマを加熱硬化させて熱硬
化層となし、収縮し良熱収縮チューブ内に前記光フアイ
バ接続部および前記電気抵抗発熱体を含んだ状−で前記
光フアイバ接続部を前記熱硬化層と一体化させることを
特徴とするものである。
The method of the present invention includes a heat-shrinkable tube that can be contracted in the radial direction by heating, a hollow member made of a thermosetting resin or a thermosetting resin prepolyi disposed inside the heat-shrinkable tube, and an inner side of the heat-shrinkable tube. The heat-shrinkable tube and the hollow member are arranged extending in the axial direction of the heat-shrinkable tube so as to be heatable, and the thermosetting resin is coated with a thermosetting resin prepolymer and the base is soaked in electricity. The fusion-spliced optical fiber connection portion is inserted into the hollow member using a strong member that is equipped with a resistance heating element and allows the optical fiber to be inserted inside the hollow member, and then the electrical resistance heating element is inserted into the hollow member. Applying electricity to the body to heat the heat-shrinkable tube and shrink it in the radial direction, and heat and harden the thermosetting resin or thermosetting resin prepolymer coated or impregnated on the hollow member and the electric resistance heating element. The optical fiber connecting portion is integrated with the thermosetting layer in a state where the optical fiber connecting portion and the electrical resistance heating element are contained in a shrinkable heat-shrinkable tube. It is something to do.

ここで、前記中空部材は、前記熱硬化性樹脂あるいは熱
硬化性樹脂プレポリマによるチューブであシ、該チュー
ブを前記熱収縮チューブの内側にほぼ平行に配置するの
が好適である。あるいはまた、前記中空部材は、前記熱
収縮チューブの内面に塗布した前記熱硬化性樹脂ある埴
は熱硬化性樹脂プレポリマによる層とすることもできる
Here, it is preferable that the hollow member is a tube made of the thermosetting resin or thermosetting resin prepolymer, and that the tube is arranged substantially parallel to the inside of the heat-shrinkable tube. Alternatively, the hollow member may be a layer of thermosetting resin prepolymer applied to the inner surface of the heat shrinkable tube.

本発明の好適例では、熱硬化性樹脂として、光ファイバ
、プラスチック被覆材料および電気抵抗発熱体に対して
高い接着性をもつ樹脂、例えばエポキシ樹脂、フェノー
ル樹脂、不飽和ポリエステル樹脂、アルキッド樹脂、ポ
リウレタン樹脂、アミノアルキッド樹脂、シリコン樹脂
、7ツン樹脂。
In a preferred embodiment of the present invention, the thermosetting resin is a resin having high adhesiveness to optical fibers, plastic coating materials and electrical resistance heating elements, such as epoxy resin, phenolic resin, unsaturated polyester resin, alkyd resin, polyurethane resin. Resin, amino alkyd resin, silicone resin, 7tsun resin.

メラミン樹脂、ジアリルフタレート樹脂、:s−リア樹
脂等を用いることができる。
Melamine resin, diallyl phthalate resin, :s-ria resin, etc. can be used.

電気抵抗発熱体としては、ヤング率が20×10”〜$
3 X 10” kll/l3112と光7アイパと同
程度に高く、線膨張率が約/f ’ / ”(と光フア
イバ程度に小さい材料、例えば炭素繊維′、炭炭化珪素
繊維ユニクロム系合金線鉄−クロム−アルミニウム系合
金線、タングステン線、モリブデン線、白金線、または
それらをたばねて棒状、網状ある−はチェープ状にした
ものを用−ることができる。
As an electric resistance heating element, Young's modulus is 20×10”~$
3 x 10" kll/l 3112, which is as high as that of Hikari 7 Eyepa, and whose coefficient of linear expansion is about /f'/" (and materials as small as optical fiber, such as carbon fiber', silicon carbide fiber, Unichrome alloy wire iron) A chromium-aluminum alloy wire, a tungsten wire, a molybdenum wire, a platinum wire, or a rod-shaped, net-shaped or chain-shaped wire made of these wires can be used.

熱収縮チューブの素材としては、ポリエチレンまたはエ
チレン共重合体またはこれらの混合物。
The material for heat shrink tubing is polyethylene, ethylene copolymer, or a mixture thereof.

ポリ塩化ビニル、弗素系樹脂などを用−ることかできる
が、特にこれらに限定されるものでは1にい。
It is possible to use polyvinyl chloride, fluorine resin, etc., but the material is not particularly limited to these.

以下、図面を用−て実施例に′)−て本発明の詳細な説
明する。
Hereinafter, the present invention will be explained in detail by way of examples with reference to the drawings.

実施例を 第1図は本発明補強部材の一実施例の横−断面図である
。本例の補強部材は、加熱すると径方向に収縮する熱収
縮チューブlと、その内側に配置され、加熱すると硬化
するエポキシ樹11による熱硬化性樹脂プレポリマチェ
ーブ)と、このチューブλ中Kitぼ軸方向に延在して
挿入された、エポキシ樹脂プレポリマ層3で被覆されて
いる縦添えした棒状の炭素繊維からなる電気抵抗発熱体
参とよ抄構成され、チューブ2内の空所1OKは光ファ
イバの接続部を挿通可能とする。熱収縮チューブlを、
ここでは長さ4 csa 、内径コ−j 11$1 e
厚さO,コ諺のポリエチレンチューブとした。その収縮
率j17%であった。エポキシ樹脂プレポリマチューブ
λは長さt on 、外径2.2諺、厚さ0.2謹とし
た。棒状電気抵抗発熱体参としては、高強度かつ高弾性
の4000 フィラメントの炭素繊維をエポキシ樹脂プ
レポリi層3で被覆して直径/、01EIIとし之棒状
の長さ/1cIaのものを使用した。
Embodiment FIG. 1 is a cross-sectional view of an embodiment of the reinforcing member of the present invention. The reinforcing member of this example consists of a heat-shrinkable tube 1 that contracts in the radial direction when heated, a thermosetting resin prepolymer tube made of epoxy resin 11 disposed inside the tube 11 that hardens when heated, and this tube λ. The space 1 in the tube 2 is made up of an electric resistance heating element made of longitudinally attached rod-shaped carbon fibers which are inserted and extended in the axial direction and covered with an epoxy resin prepolymer layer 3. Enables insertion of the optical fiber connection part. heat shrink tube l,
Here the length is 4 csa, the inner diameter is 11$1 e
A polyethylene tube with a thickness of O was used. Its shrinkage rate was 17%. The epoxy resin prepolymer tube λ had a length t on , an outer diameter of 2.2 mm, and a thickness of 0.2 mm. As the rod-shaped electric resistance heating element, a high-strength and highly elastic 4000 filament carbon fiber coated with an epoxy resin prepoly I layer 3 and having a diameter of 01EII and a rod-like length of 1 cIa was used.

−次にこの補強部材を用−念本発男補強方法についてそ
の手順を第参図を参照して説明する。まず最初に、補、
張部材の空所10に光7アイパを予め挿通しておき、次
いでプラスチック被覆層を除去しな光ファイバ裸線を融
着接続する。次に光ファイバjを融着接続する前に予め
挿入されていた補強部材を、これが光ファイバの融着接
続部jムの両端のプラスチック被覆層7(通常は1次被
覆層。
-Next, using this reinforcing member, the procedure for reinforcing the penis will be explained with reference to the Figures. First of all, supplementary
An optical 7-eyeper is inserted into the hollow space 10 of the tension member in advance, and then the bare optical fiber is fusion-spliced without removing the plastic coating layer. Next, before fusion splicing the optical fibers j, the previously inserted reinforcing member is inserted into the plastic coating layer 7 (usually a primary coating layer) at both ends of the fusion spliced part j of the optical fiber.

緩衝層および二次被覆層の3層よシ成る)を覆うように
配置する。最後に、電気抵抗発熱体参の両端6cjvか
ら10 V程度の電圧を印加すると、熱硬化性樹脂プレ
ポリマ製のチューブコが加熱されて軟化すると共に熱収
縮チューブlがその径方向に収縮して軟化したチューブ
は光ファイー〇プ′ラスチック被覆部7および熱収縮チ
ューブlと接着し、x−9秒で光ファイバの融着接続部
!ムと一体化して硬化層2′を形成した。
(consisting of three layers: a buffer layer and a secondary coating layer). Finally, by applying a voltage of about 10 V from 6cjv to both ends of the electric resistance heating element, the tube made of thermosetting resin prepolymer was heated and softened, and the heat-shrinkable tube l contracted in its radial direction and became soft. The tube is glued to the optical fiber plastic coating 7 and the heat shrink tube 1, and the optical fiber is fused in x-9 seconds! The cured layer 2' was formed by integrating the cured layer 2' with the rubber layer.

このような本発明方法で補強′され之光ファイバ接続部
は次のような優れ念特性を有してい念。
It is assumed that the optical fiber connection section reinforced by the method of the present invention has the following excellent characteristics.

(1)  光フアイバ接続部の引張強度はダー以上で光
ファイバの破断は補強部以外で起こった。
(1) The tensile strength of the optical fiber connection was more than 100 yen, and the optical fiber broke in areas other than the reinforced area.

(2)  補強作業による伝送損失li O,0/ d
B以下/l接続点であった。
(2) Transmission loss due to reinforcement work li O,0/d
The connection point was below B/l.

(5)  と−トサイクル試験(−コO″℃〜+60℃
、6時間/lサイクル)にお−てlOOサイクル後にお
ける伝送損失の変化は0.021iB以下/l接続点で
あり之。
(5) To cycle test (-0''℃~+60℃
, 6 hours/l cycles), the change in transmission loss after 100 cycles is less than 0.021 iB/l connection point.

(4)  温度依存性は一り0℃〜+to℃においてo
、oコdB以下/l接続点であった。
(4) Temperature dependence is only o at 0°C to +to°C.
, less than 0 dB/l connection point.

(5)  +ro℃の高温放置(30日後)およびtO
℃tS%旺の高温高湿放置(30日後)において、伝送
損失の変化はいずれも0..0コ(iB以下/l接続点
であった。
(5) High temperature storage at +ro℃ (after 30 days) and tO
When left at high temperature and high humidity at ℃tS% (after 30 days), the change in transmission loss was 0. .. 0 (less than iB/l connection point).

実施例2 第2図は本発明補強部材の第2実施例の横断面図である
。本例では、熱硬化性樹脂プレポリマチューブλの内側
に、熱硬化性樹脂層3で被覆された炭素繊維フィラメン
トダとほぼ平行して融着接続した光7アイパの心線3が
収納される空所10をもつ熱硬化性樹脂プレポリマチュ
ーブtを挿設する。熱収縮チューブlは長さJIG C
11、内径コ、jltml。
Embodiment 2 FIG. 2 is a cross-sectional view of a second embodiment of the reinforcing member of the present invention. In this example, the core wire 3 of Hikari 7 Aiper, which is fused and spliced almost parallel to the carbon fiber filament da coated with the thermosetting resin layer 3, is housed inside the thermosetting resin prepolymer tube λ. A thermosetting resin prepolymer tube t having a cavity 10 is inserted. Heat shrink tube l is length JIG C
11, inner diameter, jltml.

厚さC6−簡のポリエチレンチュニプとした。その収縮
率s0%であった。熱硬化性樹脂チューブコと1および
樹脂層3は不飽和ポリエステルからなり、チューブ20
寸法は長さ4 elm 、外径コ、JI1ml厚さ0.
2鶴とし、チューブtの寸法は長さ11外径/、ttm
e厚さO,コ關とした。電気抵抗発熱体参としては炭素
繊維ヤーン(長さ/(l cta ) 、ペスファイ)
 ilM−6000(東邦レーヨン、商品名)を使用し
た。
A polyethylene tube with a thickness of C6-thickness was used. Its shrinkage rate was s0%. The thermosetting resin tube 1 and the resin layer 3 are made of unsaturated polyester, and the tube 20
Dimensions are length 4 elm, outer diameter 1, JI 1 ml, thickness 0.
2 cranes, the dimensions of the tube t are length 11 outer diameter/, ttm
e Thickness O, the connection. Carbon fiber yarn (length/(l cta), pesphi) is used as an electric resistance heating element.
ilM-6000 (Toho Rayon, trade name) was used.

この補強部材を用≠、第ダ図示のように、融着接続した
光ファイバ心yss<長さ30 ta )の接続部Sム
の両端のプラスチック被覆層7をそれぞれ/j簡ずつ覆
うように補強部材を設置した後、電気抵抗発熱体参の両
端に7Vの直流−圧を印加すると、熱硬化性樹脂プレボ
リマチェーブ2およびtが軟化するとともに、熱収縮チ
ューブlが収縮し、これらチューブ2および乙の軟化し
た部分2′は約餐秒で光ファイバの融着接続部shと一
体化して補強部を形成した。
This reinforcing member is used to reinforce the plastic coating layer 7 at both ends of the spliced portion S of the fusion spliced optical fiber core yss<length 30 ta) so as to cover each of the plastic coating layers 7, respectively, as shown in the figure. After installing the members, when a direct current pressure of 7V is applied to both ends of the electric resistance heating element 3, the thermosetting resin prevolume tubes 2 and t soften, and the heat shrinkable tube 1 contracts. The softened portion 2' of B was integrated with the fusion spliced portion sh of the optical fiber in about a second to form a reinforcing portion.

第2図の補強部材により補強された光7アイパ接続部は
次のような優れた特性を有していた。
The Hikari 7 Eyeper connection portion reinforced with the reinforcing member shown in FIG. 2 had the following excellent characteristics.

(1)  光フアイバ接続部の引張強度はJkf以上で
あった。なお、光ファイバの破断は補強部以外で起こっ
た。
(1) The tensile strength of the optical fiber connection was Jkf or higher. Note that the breakage of the optical fiber occurred in areas other than the reinforced portion.

(2)  補強作業による伝送損失は0.01 dB以
下/l接続点であつな。
(2) Transmission loss due to reinforcement work shall be less than 0.01 dB/l at the connection point.

(3)  ヒートサイクル試験(−コO℃〜+40℃、
6時間/lサイクル)において100サイクル後に伝送
損失の変化は0.O2dB以下/l接続点であった。
(3) Heat cycle test (-0°C to +40°C,
6 hours/l cycle), the change in transmission loss after 100 cycles is 0. The connection point was O2dB or less/l.

(4)−高温放置試験(10℃、 SO日日後において
伝送損失の変化はo、o2dB / /接続点であった
(4) - High temperature storage test (10°C, SO day after day, the change in transmission loss was o, o2dB / / connection point.

(5)  高温、高湿試験<tz℃、is%旺、30日
後)にお−て伝送損失の変化は0.02(iB以下/l
接続点であった。
(5) The change in transmission loss was 0.02 (less than iB/l) in a high temperature, high humidity test (at tz°C, is% high, after 30 days).
It was a connection point.

(6)  温度依存性は一り0℃〜+ω’Cにおいて0
.02dB以下/l接続点であった。
(6) Temperature dependence is 0 from 0℃ to +ω'C.
.. 02dB/l or less at the connection point.

こやように本発明補強部材を用いることにより、短時間
で信頼性が高いすぐれた補強を容易に行うことができた
By using the reinforcing member of the present invention in this way, it was possible to easily perform excellent reinforcement with high reliability in a short period of time.

実施例五 第3図は本発明補強部材の第3実施例の横断面図であ、
る。長さ4oaの架橋ポリエチレン製の熱収縮チューブ
lの内側に、アルキッド樹脂層Jを彼曹したカーボンフ
ァイバ・ヤーン(ベスファイトHM−6000、東邦レ
ーヨン(株)、商品名)(長径/IEIIφ)とアルキ
ッド樹脂プレポリマチ一−ブ(長さ6C雪、内径/、J
 III p厚さO,コ絽)6とを軸方向に地在して挿
入し、このチューブ乙の空所10に光フアイバ接続部を
挿通可能とする。融着接続した光フアイバ心線3をプレ
ポリマチューブ乙に通し九後、カーボンファイバ・ヤー
ン弘に約tVの電圧を印加することによ抄、熱収縮チュ
ーブlは収縮し、第ダ図示のように、軟化した部分λ′
は光フアイバ心線5と約fS秒で一体化して硬化し、以
て補強を完了した。
Embodiment 5 FIG. 3 is a cross-sectional view of a third embodiment of the reinforcing member of the present invention.
Ru. Carbon fiber yarn (Besphite HM-6000, Toho Rayon Co., Ltd., trade name) (major diameter/IEIIφ) coated with an alkyd resin layer J was placed inside a heat-shrinkable tube l made of cross-linked polyethylene with a length of 4 oa. Alkyd resin prepolymer 1-piece (length 6C snow, inner diameter/, J
III p (thickness 0, thickness 0) 6 is inserted in the axial direction so that the optical fiber connecting portion can be inserted into the cavity 10 of this tube B. After passing the fusion-spliced optical fiber core wire 3 through the prepolymer tube B, a voltage of about tV is applied to the carbon fiber yarn to shrink the heat-shrinkable tube L, as shown in Figure D. , the softened part λ′
was integrated with the optical fiber core wire 5 and cured in about fS seconds, thereby completing the reinforcement.

このような本発明方法で補強された接続部は次のような
優れた特性を有してい□た。
The joints reinforced by the method of the present invention had the following excellent properties.

(1)  光フアイバ接続部の引張強度は3.3時以上
であった。光ファイバの破断は補強部以外で起こった。
(1) The tensile strength of the optical fiber connection was 3.3 hours or more. The breakage of the optical fiber occurred in areas other than the reinforced part.

(2)  補強作業による伝送損失は0.0/ dB以
下/l接続点であった。
(2) Transmission loss due to reinforcement work was less than 0.0/dB/l connection point.

(3)  ヒートサイクル試験(−z”c〜+40℃、
4w#□間/lサイクル)に)−てプサイクル後におけ
る伝送損失の変化はo、oxa’v以下/l接続点であ
つ九。
(3) Heat cycle test (-z”c to +40°C,
The change in transmission loss after 4w#□/l cycles) is less than o, oxa'v/l at the connection point.9.

(4)  高温放置試験(10℃、 10日後)におい
て伝送損失の変化は0.0λdB / /接続点であり
之。
(4) In the high temperature storage test (10°C, after 10 days), the change in transmission loss was 0.0λdB / / connection point.

(5)、高温高湿試験(rz℃、 rs%RH、!OE
l後)にお≠て伝送損失の変化は0.0コ(IB以下/
l接続点であった。
(5) High temperature and high humidity test (rz℃, rs%RH, !OE
After l), the change in transmission loss is 0.0 co(less than IB/
It was a connection point.

(6)  温度依存性は、−30,”C〜+to”cに
おいて0.02dB以下//接続点であった。
(6) Temperature dependence was 0.02 dB or less at -30,"C~+to"c//connection point.

実施例4 第3図は本発明補強部材の第ダ実施例を示し、ここでは
、補強部材は、長さ4cxの架橋ポリエチレン製の熱収
縮チューブlと、その内側に、を本の炭素繊維ヤーン(
ベスファイトHM−6000、東邦レーヨン(株)、商
品名)lダを円周上に分散配置して縦添えしたフェノー
ル樹脂系の熱硬化性樹脂プレポリマチューブ(長さ4c
Im、内径/、JI111.厚さ0.2wg)λ、と、
その内11に配置され、融着接続した光ファイバ3を挿
通可能なフェノール樹脂系の熱硬化性樹脂プレポリマチ
ェープロとから構成される。
Embodiment 4 FIG. 3 shows a second embodiment of the reinforcing member of the present invention, in which the reinforcing member is a heat-shrinkable tube l made of cross-linked polyethylene with a length of 4 cx, and inside thereof a carbon fiber yarn. (
Besphite HM-6000, Toho Rayon Co., Ltd., trade name) phenolic resin thermosetting resin prepolymer tube (length 4 cm
Im, inner diameter/, JI111. Thickness 0.2wg)λ, and
Among them, the optical fiber 3 is disposed at 11 and is composed of a phenol resin-based thermosetting resin prepolymer chain through which the fusion-spliced optical fiber 3 can be inserted.

この補強部材を用いて本発gA芳法により補強部管形成
した光フアイバ接続部は次のような優れた特性を有して
いた。
The optical fiber connection section, which was formed into a reinforcing tube using this reinforcing member by the gAho method of the present invention, had the following excellent properties.

(1)光フアイバ接続部の引張強度は#時で、光ファイ
バの破断は補強部以外で起こった。
(1) The tensile strength of the optical fiber connection portion was # hours, and the optical fiber broke at a portion other than the reinforced portion.

(2)  補強作業による伝送損失は0.0/ (iB
以下/l接続点であった。
(2) Transmission loss due to reinforcement work is 0.0/ (iB
Below was the /l connection point.

(5)  ヒートサイクル試験(−J”C〜+60℃、
を時間/lサイクル)において、プサイクル後における
伝送損失の変化は0.01 dB以下/l接続点であっ
た。
(5) Heat cycle test (-J"C to +60℃,
time/l cycle), the change in transmission loss after the cycle was less than 0.01 dB/l connection point.

(4)  高温試験< 10℃、 30日後)において
伝送損失の変化は0.02+iB以下/l接続点であっ
た。
(4) In the high temperature test <10°C, after 30 days), the change in transmission loss was less than 0.02+iB/l connection point.

(5)高温高湿試験(ts”c 、 tz%飢、 30
日後)において伝送損失の変化はo、osdBR下/l
接下点l接続点。
(5) High temperature and high humidity test (ts”c, tz% starvation, 30
(days later), the change in transmission loss is o, osdBR below/l
Connection point l Connection point.

(6)  温度依存性社−30℃、〜+40℃において
o、oコ11B以下/l接続点であった。
(6) Temperature dependence The connection point was less than 11B/l at -30°C to +40°C.

実施例翫 第411は本発°明補強部材O餉S実施例を示し、この
補強部材は、熱収縮チューブlと、その内側に配置され
た熱硬化性樹脂ブレポリ了チューブ6と、これらチーニ
ブlと6とO関に縦添えされた、カーボンファイバ・ヤ
ーンをジアリルフタレート樹脂で固めた参事O律状の電
気抵抗発熱体3とか、ら構成される。
Embodiment No. 411 shows an embodiment of the reinforcing member of the present invention. It consists of an electrical resistance heating element 3 in the shape of a councilor O, which is made of carbon fiber yarn hardened with diallyl phthalate resin, attached vertically to the 6 and 0 sections.

この補強部材を用−て本発明方−により補強部を形成し
た光ファイバの接続部は#−以上の引張強度で6L補強
部材内での光ファイバの破断は起ζらなかった。−20
℃〜+40℃間のヒート、す4クル試験(1時間/lサ
イクル)をlOOサイクル行表っても伝送損失の変化は
0.02dB以下//接続、点であった。rz ”c 
、 tr%の高温高湿試験試験にお−て、X6後の伝送
損失の変化は0.02dB以下//*統点であり、引張
強度の低下は全く紹められなかった。
The connecting portion of the optical fiber in which the reinforcing portion was formed by the method of the present invention using this reinforcing member had a tensile strength of #- or more, and no breakage of the optical fiber occurred within the 6L reinforcing member. -20
Even after performing a heat test (1 hour/l cycle) between 100°C and +40°C for 100 cycles, the change in transmission loss was less than 0.02 dB. rz”c
In the high temperature and high humidity test of .

実施例4゜ 第7図は本発明補強部材の第を実施例を示し、この補強
部材は、熱収縮チューブlと、このチューブlの内側に
配置した熱硬化性樹脂プレポリマチューブ6と、チュー
ブlと乙との間に縦添えされた、カーボンファイバ・ヤ
ーン(ペスファイトHM−4000、東邦レーヨン(株
)、商品名)に熱硬化性樹脂プレポリマを含浸してなる
チューブ評とから構成される。ここで、熱収縮チューブ
lは長さ/; cx 、内径コ−jail、厚さ0.2
 wzのポリエチレンチューブとなし、その収縮率y%
であった。熱硬化性樹脂プレポリマチェーブtはアルキ
ッド樹脂で形成し、その長さ4 CI+ 、内径へ2箇
、厚さ0.2諺とした。この補強部材を用いて本発明方
法により補強した光フアイバ接続部は次のようなすぐれ
念特性を有していた。
Embodiment 4 FIG. 7 shows a fourth embodiment of the reinforcing member of the present invention, which consists of a heat-shrinkable tube 1, a thermosetting resin prepolymer tube 6 disposed inside the tube 1, and a tube. It consists of a tube made of carbon fiber yarn (Pesphyte HM-4000, Toho Rayon Co., Ltd., trade name) impregnated with a thermosetting resin prepolymer, which is longitudinally attached between L and B. Here, the heat shrink tube l has length/cx, inner diameter co-jail, thickness 0.2
wz polyethylene tube and its shrinkage rate y%
Met. The thermosetting resin prepolymer chain t was made of alkyd resin, had a length of 4 CI+, two holes on the inner diameter, and a thickness of 0.2 cm. The optical fiber connection section reinforced by the method of the present invention using this reinforcing member had the following excellent optical characteristics.

、(1)  光フアイバ接続部の4張強度はjk#以上
であり、光ファイバの破断は補強部以外で起こった。
, (1) The tensile strength of the optical fiber connection portion was greater than jk#, and the optical fiber fracture occurred at a portion other than the reinforced portion.

(2)  ヒートサイクル試験(−20℃〜+60℃、
4時間/lサイクル)においてlOOサイクル後の伝送
損失の変化は0.0/ dB以下/l接続点であり光。
(2) Heat cycle test (-20℃~+60℃,
At 4 hours/l cycle), the change in transmission loss after 100 cycles is less than 0.0/dB/l connection point and light.

(3)  温度依存性14−30℃〜+to”crtc
bvhテo、ca(iB以下/l接続点であつ逐。
(3) Temperature dependence 14-30℃~+to”crtc
bvhteo, ca (iB or less/l at the connection point.

(4)  + I! ”C、11%囲の高温高lI放置
試験にお≠てX8後の伝送損失の変化d 0.02 d
B以下//@読点であった。
(4) + I! "C, Change in transmission loss after X8 in 11% high temperature high lI storage test d 0.02 d
B and below // @ comma.

実施例1 第゛を図は本発明補強部材の第7実施例の横断面図、第
一図は第1図示の補強部材を用いて、本発明方法を実施
して得られた補強部材の縦断面図である。
Example 1 Figure 2 is a cross-sectional view of a seventh embodiment of the reinforcing member of the present invention, and Figure 1 is a longitudinal cross-sectional view of a reinforcing member obtained by carrying out the method of the present invention using the reinforcing member shown in Figure 1. It is a front view.

ここで、補強部材は、加熱すると径方向に収縮するポリ
エチレンによる熱収縮チューブlと、その内面に塗布さ
れ、加熱すると硬化するエポキシ樹脂による熱硬化性樹
脂プレポリマ層12と、こOエポキシ樹脂プレポリマ層
12の形成する空所10内に挿入され、エポキシ樹脂プ
レポリマ層13で被覆−さkた棒状の電気抵抗発熱体ダ
とよシ構成される。
Here, the reinforcing member includes a heat shrink tube made of polyethylene that contracts in the radial direction when heated, a thermosetting resin prepolymer layer 12 made of epoxy resin coated on the inner surface of the tube and cured when heated, and an epoxy resin prepolymer layer 12. A rod-shaped electric resistance heating element is inserted into the cavity 10 formed by the heating element 12 and covered with an epoxy resin prepolymer layer 13.

電気抵抗発熱体亭は熱収縮チューブlの軸方向に延在し
て配置され、熱収縮チューブlおよびエポキシ樹脂プレ
ポリマ層12および13を加熱可能とする。空所IO内
には光フテイバ心IIjの接続部Sムを挿通可能と“す
る。
The electrical resistance heating element is arranged to extend in the axial direction of the heat shrink tube 1, and is capable of heating the heat shrink tube 1 and the epoxy resin prepolymer layers 12 and 13. It is assumed that the connecting portion S of the optical fiber core IIj can be inserted into the space IO.

次に、この補強部材を用いた本発明補強方法について順
を追って説明する。)ず、光フアイバ心線Sの融着接続
を行う前に、この光フアイバ心線!を補強部材の空所1
0内に予め挿入しておき、この補強部材を光ファイバの
融着接続部S五の両端のプラスチック被覆層7を覆うよ
うに配置しておく。その後に電気抵抗発熱体参に通電す
ると、熱収縮チ戸−ブlは加熱収縮すると共゛に熱硬化
性樹脂プレポリマ層12および13は軟化することKよ
り、第9図示のように、光フアイバ接続部5ムおよび電
気抵抗発熱体ダを熱収縮したチューブlの内部に含んだ
状態で、軟化したエポキシ樹脂プレポリマ層/2’は、
光ファイバの融着接続部Sムと一体化jる。
Next, the reinforcing method of the present invention using this reinforcing member will be explained step by step. ) First, before performing the fusion splicing of the optical fiber core S, this optical fiber core! Hollow space 1 of the reinforcing member
0, and this reinforcing member is placed so as to cover the plastic coating layer 7 at both ends of the fusion spliced portion S5 of the optical fiber. When the electric resistance heating element is then energized, the heat-shrinkable cable is heated and shrunk, and the thermosetting resin prepolymer layers 12 and 13 are softened. The softened epoxy resin prepolymer layer/2' is formed with the connecting portion 5 and the electrical resistance heating element contained inside the heat-shrinked tube L.
It is integrated with the optical fiber fusion splice S.

この本発明方法によれば、上述した実施例10場合と同
様の効果が得られた。
According to this method of the present invention, the same effects as in Example 10 described above were obtained.

実施例a 第10図は本発明補強部材の第1実施例の横断面図であ
る。本例の補強部材は、架橋ポリエチレン製熱収縮チュ
ーブlと、その−[lK塗布されたフェノール樹脂系の
熱硬化性樹脂プレメリマ層12と、そのフェノール樹脂
プレlリマ層12中にチューブ軸方向に延在し、かつ円
周状に配置された複数本(を本)の線状の炭素繊維ヤー
ンによる電気抵抗発熱体件と、チェー″ブ2の内側に配
置された、フェノール樹脂系の熱硬化性樹脂プレポリマ
チューブl≦とから構成される。ここで、電気抵抗発熱
体揮は熱収縮チューブlおよび熱硬化性樹脂プレポリマ
層12を加熱可能とする。また、空所IOに祉光ファイ
バ心線Sの接続部を挿通可能とする。
Embodiment a FIG. 10 is a cross-sectional view of a first embodiment of the reinforcing member of the present invention. The reinforcing member of this example consists of a cross-linked polyethylene heat-shrink tube 1, a phenolic resin-based thermosetting resin premer layer 12 coated with - An electric resistance heating element made of a plurality of linear carbon fiber yarns extending and arranged in a circumferential manner, and a thermosetting phenol resin-based heating element placed inside the chain 2. Here, the electric resistance heating element can heat the heat-shrinkable tube l and the thermosetting resin prepolymer layer 12.In addition, a fiber optic fiber core is installed in the space IO. The connecting part of the wire S can be inserted.

本発明方法を実施するにあたっては、樹脂プレl97層
12の内面に形成された空所lOに、第r図お′よび第
9図の場合と同様に光フアイバ心線jの接続部を挿入し
、次−で!気抵抗発熱体停に通電して、熱収縮チューブ
lを加熱収縮すると共に工ポキシ樹脂プレポリマ層I2
を加熱軟化して光ファイバ心ajo接続部と一体化して
補強を行うことは上述した実施例8の場合と同様である
。本例によれば、上述した実施例4の場合と同様の効果
が得られた。
In carrying out the method of the present invention, the connecting portion of the optical fiber j is inserted into the cavity 10 formed on the inner surface of the resin pre-197 layer 12, as in the case of FIGS. r' and 9. ,Next! Electricity is applied to the air resistance heating element to heat and shrink the heat shrink tube I, and at the same time shrink the poxy resin prepolymer layer I2.
This is the same as in the case of the eighth embodiment described above, in which the fiber core is heated and softened to be integrated with the optical fiber core ajo connection portion for reinforcement. According to this example, the same effects as in Example 4 described above were obtained.

以上説明したように、本発明によれば、熱収縮チューブ
の内面に熱硬化性樹脂または熱硬化性樹脂プレポリマを
塗布し、あるいは熱収縮チューブの内側に熱硬化性樹t
#または熱硬化性樹脂プレポリマによるチューブを配置
し、このような中空部材の内側の空所に光フアイバ接続
部を挿通可能となし、更に熱収縮チューブの内側に縦添
えした電気抵抗発熱体に通電することによって、熱収縮
チューブの内側から加熱して補強部材を光フアイバ接続
部゛と一体化するとへができるので、従来の熱収縮チュ
ーブ補強方法で用≠る外部加熱器の必要がなく、容易か
つ短時間に光フアイバ接続部を安定に補強できる。また
、本発明では、熱硬化性樹titたは熱硬化性樹脂プレ
ーリマによシ光ファイバを一体に被覆するので、゛長期
間にわたって伝送損失の安定化が図れ、更に光ファイバ
が被覆層から突き出すこともなく、長期間にわたり機械
的強度が強く、強度低下のおそれもない。更に加えて、
本発明では、引張ヤング率が高く、熱膨張率が光ファイ
バと同程度に小さい電気抵抗発熱体を使用して−るので
、温度変化による光フアイバ心線の破断や光フアイバ接
続部の、伝送損失の変化のない信頼性の高い補強部を形
成できる利点がある。
As explained above, according to the present invention, a thermosetting resin or a thermosetting resin prepolymer is applied to the inner surface of a heat shrinkable tube, or a thermosetting resin is applied to the inner surface of the heat shrinkable tube.
A tube made of # or thermosetting resin prepolymer is arranged, and the optical fiber connection part can be inserted into the space inside such a hollow member, and the electric resistance heating element attached vertically inside the heat shrinkable tube is energized. By doing this, it is possible to heat the reinforcing member from the inside of the heat-shrinkable tube and integrate it with the optical fiber connection part, so there is no need for an external heater used in the conventional heat-shrinkable tube reinforcing method, and the process is easy. Moreover, the optical fiber connection portion can be stably reinforced in a short time. In addition, in the present invention, since the optical fiber is integrally coated with the thermosetting resin titanium or thermosetting resin prelimer, it is possible to stabilize transmission loss over a long period of time, and furthermore, the optical fiber protrudes from the coating layer. Therefore, the mechanical strength is strong over a long period of time, and there is no fear of strength deterioration. In addition,
The present invention uses an electrical resistance heating element with a high tensile Young's modulus and a coefficient of thermal expansion as low as that of an optical fiber. This has the advantage that a highly reliable reinforcing portion with no change in loss can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第°コ図、第3図、第j図、第を図。 第7図、第を図および第10図は本発明補強部材の各種
実施例を示す横断面図、第参図は第1図〜第3図示の補
強部材を用−て本発明方法によ染形成され主補強部を示
、す縦断面図、第9図は第1図示′の補強部材を用−て
本発明方法により形成された補強部を示す縦断面図であ
る。 l・・・熱収縮チューブ、 コ、j7−熱硬化性樹脂(プレポリマ)チューブ、2’
 、 /2’ −・硬化層、 3.12・・・熱硬化性樹gl(−プレポリマ)層、4
’ 、 /# 、 7 、 jF 、 #・・・電気抵
抗発熱体、!・・・光ファイバ、   jム・・・光フ
アイバ接続部、7・・・プラスチック、被覆層1 10−・・空所。 特許出願人 日本電信電話公社
Figure 1, Figure 3, Figure J, Figure 3. Fig. 7, Fig. 10, and Fig. 10 are cross-sectional views showing various embodiments of the reinforcing member of the present invention. FIG. 9 is a vertical cross-sectional view showing the main reinforcing portion formed by the method of the present invention using the reinforcing member shown in FIG. l...Heat shrink tube, j7-thermosetting resin (prepolymer) tube, 2'
, /2'--hardened layer, 3.12... thermosetting resin GL (-prepolymer) layer, 4
', /#, 7, jF, #...electric resistance heating element,! ...Optical fiber, jmu...Optical fiber connection part, 7...Plastic, coating layer 1 10-...Vacancy. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 1) 加熱により径方向に収縮可能外熱収縮チューブと
、該熱収縮チューブの内側に配置された熱硬化性樹脂あ
るいは熱硬化性樹脂プレポリマによる中空部材と、前記
熱収縮チューブの内側に、前記熱収縮チューブおよび前
記中空部材を加熱可能に前記熱収縮チューブの軸方向に
延在して配置され、熱硬゛化性樹脂ある−は熱硬化性樹
脂プレポリマを被覆または含浸した電気抵抗発熱体とを
具備し、前記中空部材の内側に一光ファイバを挿通可能
にしたこと゛を特徴とする光フアイバ接続部の補強部材
。 2)  %許−求の範囲第1項記載の補強部材において
、前記中空部材は、前記熱硬化性°樹脂あるいは熱硬化
性樹脂プレポリマによるチューブでちゃ、該チューブを
前記熱収縮チュ、−ブの両側にほぼ平行に配置したこと
を特徴とする光フアイバ接続部の補強部材。 リ 特許請求の範囲第1項記載の補強部材において、前
記中空部材は、前記熱収縮チューブの内面に塗布した前
記熱硬化性樹脂あるいは熱硬化性樹脂プレポリマに上る
層であることを特徴とする光フアイバ接続部の補強部材
。 4)特許請求の範囲第1項ないしfs5項の−ずれかの
項に記載の補強部材において、前記電気抵抗発熱体は、
炭素繊維、門化珪素繊維。 ニクロム系合金線、鉄−クセムーアルξニウム系合金線
、タングステン線、モリブデン線。 白金線およびそれらを主体とした材料、またはそれらを
束ねて棒状、網状またはチ、ニーブー−+ 状にしたものであることを特徴とする光フアイバ接続部
の補強部材。 5)特許請求の範S第1猟ないし第4項Orずれかの項
に記載の補強部材において、前記熱硬化性樹脂として、
エポキシ樹脂、フェノール樹g1.不飽和ポリエーテル
樹脂、アルキッド樹脂、ポリウレタン樹脂、アミノアル
キツド樹脂、シリコン樹脂、フラン樹脂、メラミン樹脂
、ジアリルフタレート樹脂、エリア樹脂から成る樹脂群
より選択された樹脂であることを特徴とする光フアイバ
接続部の補強部材。 6)加熱により径方向に収縮可能な熱収縮チューブと、
該熱収縮チューブの内側に配置された熱硬化性樹脂ある
いは熱硬化性樹脂プレポリマによる中空部材と、前記熱
収縮チューブの内側°に、前記熱収縮チューブおよび前
記中空部材を加熱可能に前記熱収縮チューブの軸方向に
延在して配置され、熱硬化性樹脂あるいは熱硬化性樹脂
プレポリマを被覆または含浸した電気抵抗発熱体とを具
備し、前記中空部材の内側に光ファイバを挿通可能にし
た補強部材を用い、前記融着接続された光フアイバ接続
部を前記中空部材に挿通し、次−で前記電気抵抗発熱体
に通電して、前記熱収縮チューブを加熱してその径方向
に収縮させると共に前記中空部材および前記電気抵抗発
熱体に被覆または含浸した前記熱硬化性樹rI!1ある
いは熱硬化性樹脂プレポリマを加熱硬化させて熱硬化層
となし、収縮した熱収縮チューブ内に前記光フアイバ接
続部および前記電気抵抗発熱体を含んだ状態で前記光フ
アイバ接続“部を前記熱硬化層と一体化させることを特
徴とする光フアイバ接続部の補強方法。、
[Scope of Claims] 1) An external heat-shrinkable tube that can be contracted in the radial direction by heating, a hollow member made of a thermosetting resin or a thermosetting resin prepolymer disposed inside the heat-shrinkable tube, and the heat-shrinkable tube. The heat-shrinkable tube and the hollow member are arranged so as to extend in the axial direction of the heat-shrinkable tube so that the heat-shrinkable tube and the hollow member can be heated, and are coated with or impregnated with a thermosetting resin prepolymer. 1. A reinforcing member for an optical fiber connection portion, comprising: an electrical resistance heating element, and an optical fiber can be inserted into the inside of the hollow member. 2) Permissible % Range In the reinforcing member described in item 1, the hollow member is a tube made of the thermosetting resin or thermosetting resin prepolymer, and the tube is made of the heat-shrinkable tube. A reinforcing member for an optical fiber connection portion, characterized in that the reinforcing member is arranged substantially parallel to each other on both sides. 2. The reinforcing member according to claim 1, wherein the hollow member is a layer that extends over the thermosetting resin or thermosetting resin prepolymer coated on the inner surface of the heat shrinkable tube. Reinforcing member for fiber connection. 4) In the reinforcing member according to any one of claims 1 to 5, the electrical resistance heating element is
Carbon fiber, fused silicon fiber. Nichrome alloy wire, iron-xemal ξ alloy wire, tungsten wire, molybdenum wire. A reinforcing member for an optical fiber connection part, characterized in that it is made of a platinum wire, a material mainly composed of platinum wires, or a material made by bundling them into a rod shape, a net shape, a chi, or a knee shape. 5) In the reinforcing member according to any one of claims S 1 to 4 Or, as the thermosetting resin,
Epoxy resin, phenolic resin g1. An optical fiber connection part characterized in that the resin is selected from the resin group consisting of unsaturated polyether resin, alkyd resin, polyurethane resin, amino alkyd resin, silicone resin, furan resin, melamine resin, diallyl phthalate resin, and area resin. reinforcing member. 6) a heat-shrinkable tube that can be radially contracted by heating;
a hollow member made of a thermosetting resin or a thermosetting resin prepolymer disposed inside the heat-shrinkable tube; and a heat-shrinkable tube arranged inside the heat-shrinkable tube such that the heat-shrinkable tube and the hollow member can be heated. a reinforcing member, comprising an electrical resistance heating element extending in the axial direction of the hollow member and coated with or impregnated with a thermosetting resin or a thermosetting resin prepolymer, and allowing an optical fiber to be inserted into the inside of the hollow member. is used to insert the fusion spliced optical fiber connecting portion into the hollow member, and then energizes the electrical resistance heating element to heat the heat shrinkable tube and shrink it in the radial direction. The thermosetting resin rI coated or impregnated on the hollow member and the electric resistance heating element! 1 or a thermosetting resin prepolymer is heat-cured to form a thermosetting layer, and the optical fiber connection part is heated to form a thermosetting layer with the optical fiber connection part and the electrical resistance heating element contained in the shrunk heat-shrinkable tube. A method for reinforcing an optical fiber joint, characterized by integrating it with a hardened layer.
JP56106897A 1981-07-10 1981-07-10 Reinforcing member for optical fiber connecting part and reinforcing method Granted JPS589113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56106897A JPS589113A (en) 1981-07-10 1981-07-10 Reinforcing member for optical fiber connecting part and reinforcing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56106897A JPS589113A (en) 1981-07-10 1981-07-10 Reinforcing member for optical fiber connecting part and reinforcing method

Publications (2)

Publication Number Publication Date
JPS589113A true JPS589113A (en) 1983-01-19
JPH0324643B2 JPH0324643B2 (en) 1991-04-03

Family

ID=14445252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56106897A Granted JPS589113A (en) 1981-07-10 1981-07-10 Reinforcing member for optical fiber connecting part and reinforcing method

Country Status (1)

Country Link
JP (1) JPS589113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129803A (en) * 1985-11-20 1987-06-12 レイケム・コ−ポレイシヨン Contact for optical fiber termination and usage thereof
CN104198083A (en) * 2014-08-20 2014-12-10 中国石油集团渤海钻探工程有限公司 Fiber grating temperature sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129803A (en) * 1985-11-20 1987-06-12 レイケム・コ−ポレイシヨン Contact for optical fiber termination and usage thereof
CN104198083A (en) * 2014-08-20 2014-12-10 中国石油集团渤海钻探工程有限公司 Fiber grating temperature sensor

Also Published As

Publication number Publication date
JPH0324643B2 (en) 1991-04-03

Similar Documents

Publication Publication Date Title
JPS59200207A (en) Theath for protecting light waveguide
US8550728B2 (en) Method connecting optical fiber of optical connector with optical transmission element, connector-attached optical transmission element, optical connector, and assembling method of optical connector
JPH04271307A (en) Reinforcing member for optical coupler and method for reinforcing optical coupler
GB2111238A (en) Joining and protecting optic fibre joins
JP4968123B2 (en) Optical connector
US20080193089A1 (en) Optical connector connecting method and structure
US20070160332A1 (en) Apparatus and method for splicing optical fibers and reconstructing fiber-optic cables
JP2014013410A (en) Optical fiber cable with connector and method for assembling optical fiber cable with connector
US11163117B2 (en) Optical fiber cable and method for manufacturing the same
EP0978739B1 (en) Optical fiber splice protector and method for applying same
JPS589113A (en) Reinforcing member for optical fiber connecting part and reinforcing method
GB2148537A (en) Optical fibre splicing
JP2004038019A (en) Reinforcing member for optical fiber fusion splice part and method of manufacturing the same
JPH07209542A (en) Reinforcing structure of heat resistant optical fiber juncture
US20120201500A1 (en) Spliced opitcal cable assembly
JPH08327849A (en) Method for reinforcing optical fiber
JPS589111A (en) Reinforcing member for optical fiber connecting part and reinforcing method
JPS582813A (en) Reinforcing method for sealed connection part of optical fiber core
JPS6322282B2 (en)
JPS589112A (en) Reinforcing member for optical fiber connecting part and reinforcing method
JPS5814106A (en) Reinforcing member for juncture of optical fibers and reinforcing method
KR850000360B1 (en) Reinforcement method for light fiber joining
JP2004117443A (en) Optical fiber coupler
KR830000716B1 (en) Reinforcement method of optical fiber connection
JP2003167155A (en) Optical fiber coupler and its manufacturing method