JPS5891112A - Bottom blowing nozzle for converter - Google Patents

Bottom blowing nozzle for converter

Info

Publication number
JPS5891112A
JPS5891112A JP18815581A JP18815581A JPS5891112A JP S5891112 A JPS5891112 A JP S5891112A JP 18815581 A JP18815581 A JP 18815581A JP 18815581 A JP18815581 A JP 18815581A JP S5891112 A JPS5891112 A JP S5891112A
Authority
JP
Japan
Prior art keywords
nozzle
tube
inner diameter
burnout
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18815581A
Other languages
Japanese (ja)
Inventor
Ikuo Hashinuma
橋沼 育夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18815581A priority Critical patent/JPS5891112A/en
Publication of JPS5891112A publication Critical patent/JPS5891112A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To obtain a titled nozzle capable of avoiding burnout in which an inner diameter of an effective blowing part of the blowing hole is decreased continuously from a top to a lower end by suitably maintaining a ratio of dynamic pressure of an inner tube gas to a static pressure of molten steel although the nozzle is in a tendency of decreasing its size due to the burnout. CONSTITUTION:The inner diameter (d) of the nozzle inner tube 4 consisting of a metal tube of real circle in inner sectional area is continuously decreased from the top U to the lower end L. A point of the top U means the top of an inner side of a furnace bottom 2 of the tube 4 standing up newly. A point of the end U means a length of the shortest nozzle in a max. burnout state enabling a practical use, and a part between them is defined as an effective blowing part l1. The inner diameter of the tube 4 can be discontinuously decreased toward the top, i.e. can be formed in stepwise. By using the bottom blowing nozzle of these structures, the ratio of a dynamic pressure of the inner tube gas to static pressure of the molten steel 1 can be made to a value indicated in an equation and the burnout of blocks surrounding the nozzle can be prevented.

Description

【発明の詳細な説明】 本発明は転炉底吹用ノズルの構造に関するものである。[Detailed description of the invention] The present invention relates to the structure of a converter bottom blowing nozzle.

転炉i吹用ノズルとして従来から各種のものが提供され
ておp、中でも単管あるい鉱条重管形状の金鵬管構造の
ものが良(知られている。これらの管は吹込み方向に同
一内径のものが用いられる。
Various types of converter blowing nozzles have been provided in the past, and among them, those with a metal tube structure in the form of a single tube or a heavy ore tube are known. Those with the same inner diameter are used.

それらの中で例えば二重管構造の管形状、特に内管の内
径會定めるに際しては、次のことが設計上費求される。
Among them, for example, when determining the tube shape of a double tube structure, particularly the inner diameter of the inner tube, the following requirements are required in terms of design.

即ち、内管の内径は、溶鋼の差し込みの問題、或は、妊
たたきと称するノズル上端部でのガス噴出pt6が瞬−
j的に周囲の溶−を押しのけてノズル及びノズル周囲の
レンガ上面にmat−与える断続的な棉象によって激し
い溶担會起すことを回避するために、内管ガスの動圧と
、溶銅静圧との比が下記の(1)式となるように設計さ
れる。
In other words, the inner diameter of the inner tube may be affected by the problem of insertion of molten steel or the instantaneous ejection of gas pt6 at the upper end of the nozzle, which is called a "pregnancy tap".
The dynamic pressure of the inner pipe gas and the static pressure of the molten copper are used to avoid the occurrence of intense welding due to the intermittent blowing of the nozzle and the upper surface of the bricks surrounding the nozzle, displacing the surrounding molten metal. It is designed so that the ratio to the pressure is expressed by the following equation (1).

溶−静圧   ρ轡・ビ・H ρg:底吹ガス@腋(II準状励) V :内管ガ;y=f1m (8m状11)ρ烏 : 
溶鋼VB度 H:溶−浴法(−浴上面〜ノズル上端部)g  : 1
力刀ロyjlK ここにノズル上m−とは、ノズル周Hのレンガ上面と同
じ篇さOノズル位at云う。
Melt-static pressure ρ轡・BI・H ρg: Bottom blowing gas @ armpit (II quasi-state excitation) V: Inner pipe gas; y=f1m (8m shape 11) ρcrow:
Molten steel VB degree H: Molten bath method (-bath top surface to nozzle top end) g: 1
Here, the nozzle top m- means the nozzle position at which is the same as the top surface of the brick with the nozzle circumference H.

しかしながら、濾紙のノズルJidflが他の一般炉妊
と同じよ5F−鉄構されることは柿で、むしろノズルM
4181が先行溶銅することになる。即ち、j141−
で示すように新炉立上が9時O溶鯛】の探さHは、炉底
s2の溶損によV)−/の深さとなる。Hと14’とは
さ#1ど大きな差は生じないが、羽口部3のレベルに限
っては、炉底[2よりも先行溶損し、111、すH’の
レベルとなる。このため先に述べた内tガスの動圧と溶
−静圧との比は当初の設計とずれが生じて、その結来溶
−差し込みのためノズルの溶損速度が増加し、底吹ノズ
ルの交換を余儀なくされ転炉検束に支障tきたすことに
なる。
However, the fact that the filter paper nozzle Jidfl has a 5F-iron structure like other general furnaces is a persimmon, but rather the nozzle M
4181 will be the first melted copper. That is, j141-
As shown in , the depth H when the new furnace starts up at 9 o'clock O molten sea bream] becomes V)-/ due to the melting damage of the furnace bottom s2. There is no big difference between H and 14' as in #1, but as far as the level of the tuyere part 3 is concerned, the melting occurs earlier than the hearth bottom [2, and the level is 111 and H'. For this reason, the ratio of the dynamic pressure of the internal t-gas and the static pressure of the solution mentioned above deviates from the original design, and as a result, the rate of erosion of the nozzle increases due to the insertion of the melt, and the bottom-blowing nozzle This will cause trouble in converter inspection.

本発明はそれらの欠陥上すべて解体し、仮に多少の溶損
を生じてノズルが短小気味になっても前述の内管ガスの
動圧と溶銅静圧との比が常に好ましい亀3.5に維持出
来るノズル構造を提供するものである。
The present invention solves all of these defects, and even if some melting damage occurs and the nozzle becomes short and small, the ratio of the dynamic pressure of the inner pipe gas to the static pressure of molten copper is always at a desirable ratio of 3.5. This provides a nozzle structure that can maintain the

面して、その賛旨とするところは、ノズルの吹込み孔の
有効吹込み部分の内径が上潮部から下端部に向って%連
続t′fr:、は非連続に先細り状となるよう小さくな
る構造にある。
On the other hand, the argument for this is that the inner diameter of the effective blowing portion of the nozzle's blowing hole tapers discontinuously from the upper end to the lower end. It has a smaller structure.

以下に夾施例をもとにその詳細を説明する。The details will be explained below based on some examples.

第2図は本発明にもとづく、内部横断面が真円状の金嬌
管からなる下端側先細v状のノズル内管4の縦断面図で
ある。
FIG. 2 is a longitudinal cross-sectional view of a nozzle inner tube 4 having a tapered V-shape at the lower end and made of a metal tube with a perfectly circular internal cross section, according to the present invention.

この場合の内径dは上端sUから下端部りまで連続して
小さくなる、所謂テーノゼーがついている。
In this case, the inner diameter d continuously decreases from the upper end sU to the lower end, which is a so-called tenosé.

ここで上端ff1lUの点は第1図では[耐で示したよ
うに新規立上り時の炉底部2の炉内側上端部【意味する
Here, the point ff1lU at the upper end in FIG. 1 means the upper end of the inner side of the furnace bottom 2 at the time of new start-up, as indicated by the resistance.

また下端部りの点は実用的に使#3C11能な鯉大溶損
状−に於ける最短ノズルの量さ′に意味し、これらの中
間部分t−弔効吹込部分!1とする。
In addition, the point at the lower end means the length of the shortest nozzle in the carp large erosion state that can be used practically, and the middle part of these means t - the effective blowing part! Set to 1.

WLa図は本発明による他の構造を示すもので、第2図
の連続的先細りに対して、非連続的に先細り状態となる
。Itllち階紋状に段付となっている。
The WLa diagram shows another structure according to the present invention, which tapers in a non-continuous manner as opposed to the continuous taper in FIG. It's stepped like a strata pattern.

勿論段と段の間、もしくは0戸と段の間、或は、段とL
点の間は吹込方向に同一内径で本よ(、またテーパーが
ついても、更にはそれらの組み合せでも本質的には本発
明の技術的思想に含まれる。
Of course, between the steps, or between the 0 door and the step, or between the step and L.
Even if the inner diameter between the points is the same in the blowing direction, or is tapered, or even a combination thereof is essentially included in the technical idea of the present invention.

これらのノズル内径を設計するに際しては第4図に示す
ような例のごとく組立てるとよい0w、4図Fi縦軸が
ノズル上端部からの絶層、横軸がノズル内径dであり%
曲縁はノズル1本当9の内管ガス流瀘に工6じたノズル
上端からの距離に対するノズル内管径di表わす。
When designing the inner diameter of these nozzles, it is recommended to assemble them as shown in Figure 4.
The curved edge represents the nozzle inner pipe diameter di relative to the distance from the upper end of the nozzle, which is designed for the inner pipe gas flow filter of one nozzle 9.

これから明らかなように、ノズル内管4の径dはノズル
1本当りの内管IHk流量Qg  に合わせてノズルの
上端部Uから下端部りまでの距離^の範囲で内径dt一
連続または非連続に小さくするとよい。
As is clear from this, the diameter d of the nozzle inner pipe 4 is continuous or discontinuous within the range of the distance ^ from the upper end U to the lower end of the nozzle, depending on the inner pipe IHk flow rate Qg per nozzle. It is better to make it smaller.

本発明省らの経験によれば、実用的なノズル寸法は以下
の如くなる。
According to our experience, practical nozzle dimensions are as follows.

即ち、ノズル内管径dは10〜34腸、望ましくは14
〜28−の範囲で、ノズル上端部U カbT鋼sLまで
の距* Atは0.5〜1.0m、望ましくは06〜0
.8mの範囲とする。ま−fc第3図に示した非連続に
内径音質える場合の構造で、この場合の一定内径部分の
量さi雪は0,4m以J1輩ましくは0.2m以下とす
る。
That is, the nozzle inner diameter d is 10 to 34 mm, preferably 14 mm.
In the range of ~28-, the distance from the nozzle upper end U to the KabT steel sL* At is 0.5 to 1.0 m, preferably 06 to 0.
.. The range shall be 8m. The structure shown in Fig. 3 is for discontinuous inner diameter sound quality, and in this case, the amount of snow in the constant inner diameter portion is 0.4 m or more or 0.2 m or less.

なおこれらの例は二重管構造に限ることなく、率11嬌
造のノズルについても適用できるものである。
Note that these examples are not limited to the double-tube structure, and can also be applied to a nozzle with an 11-tube structure.

次に*施?llを示す。Next *Shishi? ll is shown.

新炉立上がり時の溶鋼浴&H:1.85m炉底部溶損後
の溶鋼温源  H’:1.85〜1.90m溶損後の羽
口部の溶−浴深 H”:2.4m内管ガス流”    
    Qg: 40 ONm”/H/ノズル ノズル上端部から下端tM5までの距−石: α8mノ
ズル内管内径      d:15.8〜145一本ノ
ズルを使用した例を第5図に示す。第5図は横軸が使用
同数、縦軸が底吹ノズルの溶損絶層であり、従来ノズル
よりも良好な結果が得られた。
Molten steel bath at startup of new furnace & H: 1.85 m Molten steel temperature source after furnace bottom melting H': 1.85 to 1.90 m Molten steel bath depth at tuyere after melting H'': within 2.4 m pipe gas flow”
Qg: 40 ONm"/H/Nozzle Taper from the upper end of the nozzle to the lower end tM5: α8m Nozzle inner tube inner diameter d: 15.8 to 145 An example using one nozzle is shown in Fig. 5. Fig. 5 The horizontal axis shows the same number of nozzles used, and the vertical axis shows the melted insulation layer of the bottom-blown nozzle, and better results were obtained than with the conventional nozzle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は転炉炉底部分の縦断面図。 第2図は本発明による連続的にノズル内径の小さくなる
ノズル断面図、 第3因は本発明による非連続にノズル内径の小さくなる
ノズル断面図、 第4図はノズル上端部からの距−に対するノズル内径の
関係を示す図表、 第5図は本発明ノズルと従来ノズルとの実使用回数の比
収を示す図表である。 1は溶−% 2は炉底部、3は羽口部、4はノズル内管
、Hは前炉立上がり時の溶鋤浴深、H′は炉底部2の溶
損後の溶銅浴深、Hlは溶損後の羽口部3の溶−浴深%
 dFiノズル内径内径内径、!1はノズル上端部Uか
ら下端部りまでの距離、^は非連続的に内径音度える場
合のノズル内管の一定内径部分の距離、Qg はノズル
1本当りの内管aP本流量、Uはノズル上端部、Lはノ
ズル下端部。 代理人弁理士 秋沢政光 他  2名
Figure 1 is a longitudinal sectional view of the bottom of the converter furnace. Fig. 2 is a sectional view of a nozzle in which the inner diameter of the nozzle is continuously reduced according to the present invention. The third factor is a sectional view of a nozzle in which the inner diameter of the nozzle is discontinuously reduced in accordance with the present invention. FIG. 5 is a chart showing the relationship between nozzle inner diameters. FIG. 5 is a chart showing the specific yield of the number of actual uses of the nozzle of the present invention and the conventional nozzle. 1 is the melt percentage, 2 is the furnace bottom, 3 is the tuyere, 4 is the nozzle inner tube, H is the depth of the molten copper bath at the time of startup of the forefurnace, H' is the depth of the molten copper bath after melting of the furnace bottom 2, Hl is the melt bath depth% of the tuyere part 3 after melt loss
dFi nozzle inner diameter inner diameter,! 1 is the distance from the upper end U to the lower end of the nozzle, ^ is the distance of the constant inner diameter part of the nozzle inner pipe when the inner diameter changes discontinuously, Qg is the main flow rate aP of the inner pipe per nozzle, U is the upper end of the nozzle, and L is the lower end of the nozzle. Representative patent attorney Masamitsu Akizawa and 2 others

Claims (1)

【特許請求の範囲】[Claims] (1)吹込み孔の有効吹込み部分の内径が上ymsから
下端部に向って連続、または非連続に小さくなる構造を
有することt特徴とする転炉底吹用ノズル。
(1) A converter bottom blowing nozzle characterized by having a structure in which the inner diameter of the effective blowing portion of the blowing hole decreases continuously or discontinuously from the upper yms toward the lower end.
JP18815581A 1981-11-24 1981-11-24 Bottom blowing nozzle for converter Pending JPS5891112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18815581A JPS5891112A (en) 1981-11-24 1981-11-24 Bottom blowing nozzle for converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18815581A JPS5891112A (en) 1981-11-24 1981-11-24 Bottom blowing nozzle for converter

Publications (1)

Publication Number Publication Date
JPS5891112A true JPS5891112A (en) 1983-05-31

Family

ID=16218710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18815581A Pending JPS5891112A (en) 1981-11-24 1981-11-24 Bottom blowing nozzle for converter

Country Status (1)

Country Link
JP (1) JPS5891112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300608A (en) * 1992-11-19 1995-11-14 Kct Technol Gmbh Blowing mathod for oxidizing gas into molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300608A (en) * 1992-11-19 1995-11-14 Kct Technol Gmbh Blowing mathod for oxidizing gas into molten metal

Similar Documents

Publication Publication Date Title
US4828609A (en) Method to protect the surface of metal in vertical melting furnaces
JPS5891112A (en) Bottom blowing nozzle for converter
JP4351607B2 (en) Slag closing jig and method of using the same
JPS59150657A (en) Vessel for molten metal
DE3380358D1 (en) Tuyere and method for blowing gas into molten metal
JPS565336A (en) Glass melting electrode
JPH0422538A (en) Method for continuously casting beam blank
JPS5837110A (en) Refining method of converter
JP3303019B2 (en) Immersion tube for vacuum degassing equipment
JPS6313232Y2 (en)
JPS5757816A (en) Steel making method by composite top and bottom blown converter
JPS58167707A (en) Method of smelting high-carbon steel by top and bottom-blown converter
JPS5937322Y2 (en) Socket structure for gas introduction used in pouring nozzle
JPS6136053B2 (en)
JPH10110213A (en) Immersion tube for simple ladle refining apparatus
JP2005068446A (en) Method for repairing taphole in converter, and repairing refractory to be used therefor
KR200258802Y1 (en) A sleeve refractory brick of outlet of converter
JPS6149758A (en) Molten steel sealing method in tandish
SU1560565A1 (en) Tuyre for introduction of noncorosive gas in liquid metal
JPH0449169Y2 (en)
JPH0931509A (en) Iron tapping runner of blast furnace
JPS6028660Y2 (en) Structure of blast furnace taphole
JPH051316A (en) Furnace hearth structure for fitting bottom gas nozzle in electric furnace
RU2087247C1 (en) Conical casing for continuous vertical metal casting crystallizer
SU1247355A2 (en) Glassmaking furnace