JPS5890439A - Control method for milling process - Google Patents

Control method for milling process

Info

Publication number
JPS5890439A
JPS5890439A JP56188952A JP18895281A JPS5890439A JP S5890439 A JPS5890439 A JP S5890439A JP 56188952 A JP56188952 A JP 56188952A JP 18895281 A JP18895281 A JP 18895281A JP S5890439 A JPS5890439 A JP S5890439A
Authority
JP
Japan
Prior art keywords
tool
machining
processing
memory
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56188952A
Other languages
Japanese (ja)
Other versions
JPH0367822B2 (en
Inventor
Hiroyuki Kanematsu
兼松 弘行
Susumu Nishiwaki
進 西脇
Hajime Ohashi
肇 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamazaki Mazak Corp
Yamazaki Tekkosho KK
Original Assignee
Yamazaki Mazak Corp
Yamazaki Tekkosho KK
Yamazaki Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamazaki Mazak Corp, Yamazaki Tekkosho KK, Yamazaki Machinery Works Ltd filed Critical Yamazaki Mazak Corp
Priority to JP56188952A priority Critical patent/JPS5890439A/en
Priority to GB08232632A priority patent/GB2110425B/en
Priority to IT68338/82A priority patent/IT1191230B/en
Priority to FR8219710A priority patent/FR2516827B1/en
Priority to DE19823243708 priority patent/DE3243708A1/en
Publication of JPS5890439A publication Critical patent/JPS5890439A/en
Publication of JPH0367822B2 publication Critical patent/JPH0367822B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • G05B19/40937Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine concerning programming of machining or material parameters, pocket machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36333Selection from standard forms, shapes, partprograms, enter value for variable
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49282Same control for double drive or slide
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49381Raster, line servo, area machining, cutting, facing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Milling Processes (AREA)

Abstract

PURPOSE:To save labor of programmers or operators for determination of tool paths by storing a processing pattern corresponding to each processing unit in the processing pattern memory and determining the tool path automatically through a calculation. CONSTITUTION:The numerical control machine tool 1 has a main control part 2, which is connected with a tool path calculation and control part 3, a tool file 5 storing such data for each tool to be used in the machine 1 as the name of tool, diameter, length number of edges etc., a program memory 6, an input control part 7, a display 9 and a key-board 10. Among them, the control part 3 is connected with a processing pattern memory 11 and the input control part 7 with a processing mode development memory 12, a processing unit development memory 13 and a processing contour development memory 15. The control part 3 searches the processing pattern memory 11 on the basis of the name of processing unit and determines through which path the tool shall be moved.

Description

【発明の詳細な説明】 本発明は、数値制御される工作機械のミーリング加工に
おける加工制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process control method for milling using a numerically controlled machine tool.

従来、この種の工作機械において、ミーリング加工を行
なう場合、プログラマは、必要な加工形状を得るために
要求される工具経路を決定し、プログラムを作成して工
作機械に入力する必要があったが、工具経路の決定には
専門的な知識を必要とし、熟練したプログラマが必要だ
った。特に、最近では、プログラマを介さずに、オペレ
ータが直接工作機械に、加工形状に基いて分類された加
工ユニットを入力し、工作機械が入力された加工ユニッ
トに基いて加ニブログラムを作成し実行する加工方法が
提案されているが、この場合、オペレータにいちいち工
具経路を決定させることは、オペレータに過度の負荷を
負わせることになることから、オペレータの負荷の少な
い加工制御方法の開発が強く望まれでいた。
Conventionally, when performing milling on this type of machine tool, a programmer had to determine the tool path required to obtain the required machining shape, create a program, and input it into the machine tool. , determining the tool path required specialized knowledge and required a skilled programmer. In particular, recently, an operator directly inputs machining units classified based on machining shape to a machine tool without going through a programmer, and the machine tool creates and executes a machining program based on the input machining units. Machining methods have been proposed, but in this case, having the operator decide the tool path one by one places an excessive burden on the operator, so it is strongly desired to develop a machining control method that reduces the burden on the operator. It was rare.

本発明は、上記事情に鑑み、加エバターンメモリに各加
工ユニットに対応した加エバターンを格納しておき、加
工ユニットが入力された際に、前記加エバターンメモリ
から当該加工ユニットに対応した加エバターンを読み出
しで、該加エバターンに基いて最終的な工具経路を演算
決定するようにして構成したミーリング加工における加
工制御方法を提供することを目的とするものである。
In view of the above-mentioned circumstances, the present invention stores a machining ever turn corresponding to each machining unit in a machining ever turn memory, and when a machining unit is input, a machining ever turn corresponding to the machining unit is stored from the machining ever turn memory. It is an object of the present invention to provide a processing control method in milling processing configured to read out the ever-turn and calculate and determine the final tool path based on the processed ever-turn.

以下、図面に示す実施例に基き、本発明を具体的に説明
する。
The present invention will be specifically described below based on embodiments shown in the drawings.

第1図は本発明が適用された数値制御工作機械の一例を
示す制御プbツク図、第2図は加工モード及び加工ユニ
ットの分類内容を示す図、第3図は加工ユニットに対応
した加エバターンを示す図、第4図は実際の加工例を示
す図である。
FIG. 1 is a control block diagram showing an example of a numerically controlled machine tool to which the present invention is applied, FIG. FIG. 4 is a diagram showing an example of actual machining.

数値制御工作機械lは、第1図に示すように、主制御部
2を有しており、主制御部2には工具経路演算制御部3
、機械1において使用する工具の名称、径、長さ、刃数
等の工具データが格納された工具ファイル5、プログラ
ムメモリ6、入力制御部7、ディスプレイ9及びキーボ
ード10が接続している。工具経路演算制御部3には加
工バタ・−ンメモリ11が接続しており、入力制御部7
には加エモ・−ド展開メモリ12、加工ユニット展開メ
モリ13及び加玉形状展開メモリ15が接続している。
As shown in FIG. 1, the numerically controlled machine tool l has a main control section 2, and the main control section 2 includes a tool path calculation control section 3.
, a tool file 5 storing tool data such as the name, diameter, length, number of teeth, etc. of tools used in the machine 1, a program memory 6, an input control unit 7, a display 9, and a keyboard 10 are connected. A machining pattern memory 11 is connected to the tool path calculation control section 3, and an input control section 7
A emo-do expansion memory 12, a machining unit expansion memory 13, and a katama shape expansion memory 15 are connected to the .

数値制御工作機械は以上のような構成を有するので、ま
ず主制御部2は入力制御部7を介して、加工モード展開
メモリ1,2から加工モードMODEを読み出し、ディ
スプレイ9−ヒに表示する。即ち、ミーリング加工は、
第2図に示すように、エンドミル等の工具を用いた線加
工モードと7エイスミル等の工具を用いた面加工モード
に分類されており、オペレータは製造図面を参照して、
これから行なうべき加工がどの加工モードに属するかを
判断し、キーボード10から入力する。加工モードMO
DEが入力されると制御部7は、加工ユニット展開メモ
リ13から、入力された加工モードMODEに属する加
工ユニットを読み出し表示する。展開メモリ13には、
各加工モードMODEに属する加工ユニットの名称が、
第2図に示すように、加工形状に対応した形で分類格納
されており(各加工ユニットによる加工内容は、第3図
に示す。)、従ってオペレータはディスプレイ9上に表
示された加工ユニットの名称と製造図面を参照して、実
行すべき加工ユニットをキーボードIOから入力する。
Since the numerically controlled machine tool has the above configuration, the main control section 2 first reads the machining mode MODE from the machining mode development memories 1 and 2 via the input control section 7, and displays it on the display 9-H. In other words, the milling process is
As shown in Figure 2, it is classified into a line machining mode using tools such as an end mill and a surface machining mode using tools such as a 7-Ace mill.
It is determined to which machining mode the machining to be performed belongs, and input is made from the keyboard 10. Machining mode MO
When DE is input, the control unit 7 reads out the machining units belonging to the input machining mode MODE from the machining unit development memory 13 and displays them. In the expanded memory 13,
The name of the machining unit belonging to each machining mode MODE is
As shown in FIG. 2, they are classified and stored in a form corresponding to the machining shape (the machining contents of each machining unit are shown in FIG. 3). Therefore, the operator can select the machining units displayed on the display 9. With reference to the name and manufacturing drawing, the processing unit to be executed is input from the keyboard IO.

すると、制御部7は加工形状展開メモリ15から、入力
された加工ユニットの加工に必要な、工具移動量、切込
み駿、面取り量、仕上程度等の加工条件項目KJを読み
出し、ディスプレイ9−ヒに表示し、オペレータに具体
的な加工データDATAを入力するように促す、員開メ
モリ15中には各加工ユニットにおける加工に必要な加
工条件項目KJがそれぞれ格納されており、加工ユニッ
トが指定されれば、直ちに当該加工に必要な加工条件項
目KJを読み出すことができる。オペレータはディスプ
レイ9に表示された各項目KJについで、製造図面を参
照しながらそれ等についての具体的な数値等を加工デー
タD A ”r A、−としで入力しでゆく。
Then, the control unit 7 reads machining condition items KJ such as tool movement amount, depth of cut, chamfering amount, finishing degree, etc. necessary for machining the input machining unit from the machining shape expansion memory 15, and displays them on the display 9-H. The machining condition items KJ necessary for machining in each machining unit are stored in the open memory 15, which prompts the operator to input specific machining data DATA, and the machining unit is specified. For example, the machining condition items KJ required for the machining can be immediately read out. Next to each item KJ displayed on the display 9, the operator inputs specific numerical values and the like for each item KJ using the processing data D A ``r A, -'' while referring to the manufacturing drawing.

一方、工具経路演算制御部3は加工ユニットの名称から
、加エバターンメモリ11を検索し、当該加工ユニット
の実行に際して、工具をどのような経路で移動させるか
を決定する。ylIち、パターンメモリ11中には、第
3図に示すように、各加工ユニットに対応した加エバタ
ーンPATが格納されている。例えば、線中心加エユニ
ッ)(AI)は、工具中心CRを、オペレータが入力し
た始点SPTと終点FPTを結ぶ経路PASSと一致さ
せた形で移動させる加工バター ンFATであり、線右
加エユニッ)(A2)は、経路PASSに対して工具中
心CRを一定量右方向にオフセットさせた形で移動させ
る加エバターンPAT、線左加エユニツ)(A3)は、
経路PASSに対して中心CRを一定量左へオフセット
させた形で移動させる加エバターンFATである。また
、フェイスミル加工ユニット(BlO)は、オペレータ
が入力した被工作物の形状(座標)を基準にして、図示
するような切削パターンCPTに従って工具16を移動
させて切削を行なう加エバターンFATであり、ポケッ
トエンドミル重加エユニット(B14)は、オペレータ
が入力した被工作物の形状、即ち図中2個の四角形に挾
まれた領域について、所定の切削パターンCPTに従っ
て工具16を移動させて切削を行なう加エバターンFA
T、更にエンドミル溝加工(816)は、オペレ・−タ
が入力した被工作物の形状、即ち図中閉塞した長円形に
囲まれた領域について、所定の切削パターンCPTに従
って工具16を移動させて切削を行なう加エバターンF
ATである。なお、オペレータが加工ユニットと共に入
力する加工条件項目KJは、第3図に示す、工具移動量
H1、切込み量t1.t2、面取りtCl等であり、そ
れ等について入力された加工データDATAに基いで、
主制御部2は工具ファイルメモリ6から加工に使用する
最適な工具を選択し、工具経路演算制御部3に通知する
。制御部3は、加工データDATA及び選択された工具
の工具径、長さ等から工具16の最終的な工具経路を、
加エバターンメモリ11から読み出した加エバターンF
ATを補正する形で演算決定し、プログラムメモリ6中
に加ニブログラムPROとして格納する1゜ 実際の加工は、プログラムメモリ6中に格納された加ニ
ブログラムPROに従って行なわれる。、倒えば、第4
図に示すように、平板状の被加工物17から、中央部に
突出部17aを有するポケッ)17bを切削形成する場
合には、オペレータはキ・−ボードIOを介しで面加工
モードのポケットエンドミル山加エユニットを指示する
と共に、ボケッ)17bの形状及び突出部17aの形状
を座標値に変換した形で入力し、更に工具移動JIHt
及び切込み深さtlを入力する。すると主制御部2は工
具ファイル5がら当該加工に適した刃数、工具径及び工
具長さを有するポケットエンドミルを選択し、演算制御
部3に通知する。制御部3は、加エバターンメモリ11
から読み出した加工バタ・−ンP A ’l’を構成す
る切削パターンCPT及びオペレータの入力したボケッ
) 17b及び突出部17aの形状等から最終的な工具
経路Kを決定する。、即ち、第4図(a)における点P
1から、工具16による加工を開始し、切削パターンC
PTに従ってポケッ)17bと突出部17aの間に挾ま
れた領域17cについて、まず工具経路Kがボケッl−
17bの形状に相似な形状となるように工具16を順次
ボケッ)17b側にシフトさせつつ移動させてポケット
17b側の加工を行ない、次いで工具16を点P1へ戻
して今度は、第4図(b)に示すように、工具経路Kが
突出部17aの形状に相似な形状となるように工具16
を順次突出部17a側にシフトさせつつ移動させて、突
出部17a側の加工を行なってポケット17bを切削形
成する。なお、ポケッ)17b側の加工と突出部17a
側の加工を切換える際に、工具16によるエアカットや
削り残しの生ずることを防止するために、突出部17a
側の加工を点P1からしばらくの間は、■具経路Kを、
突出部17aと相似な形状をポケット部17bの形状に
対応させて補正、する補正動作を行なう(具体的には、
点PLを始点とするポケット部17bに相似な最内周の
工具経路Klを、突出部17aに相似な工具経路に2が
超えて外側に出ない領域についてのみ、経路に2を採用
し、経路に2が経路Klを超える場合には経路Klを採
用して工具16を移動させるρ。
On the other hand, the tool path calculation control section 3 searches the machining turn memory 11 based on the name of the machining unit, and determines what path the tool should take when executing the machining unit. In the pattern memory 11, as shown in FIG. 3, a machining pattern PAT corresponding to each machining unit is stored. For example, the line center machining unit (AI) is a machining pattern FAT that moves the tool center CR in a manner that matches the path PASS that connects the start point SPT and the end point FPT input by the operator. (A2) is a machining turn PAT that moves the tool center CR by a certain amount offset to the right with respect to the path PASS, and a line machining unit) (A3) is
This is an added-ever turn FAT in which the center CR is offset to the left by a certain amount with respect to the path PASS. Further, the face mill processing unit (BlO) is a processing ever-turn FAT that performs cutting by moving the tool 16 according to the cutting pattern CPT shown in the figure, based on the shape (coordinates) of the workpiece input by the operator. , the pocket end mill weight unit (B14) moves the tool 16 according to a predetermined cutting pattern CPT to cut the shape of the workpiece input by the operator, that is, the area sandwiched between two rectangles in the figure. Performing conversion FA
Furthermore, end mill grooving (816) is performed by moving the tool 16 according to a predetermined cutting pattern CPT regarding the shape of the workpiece input by the operator, that is, the area surrounded by a closed oval in the figure. Machining Everturn F that performs cutting
It is AT. Note that the machining condition items KJ that the operator inputs together with the machining unit include tool movement amount H1, depth of cut t1. t2, chamfering tCl, etc., and based on the input machining data DATA,
The main control section 2 selects the optimum tool to be used for machining from the tool file memory 6 and notifies the tool path calculation control section 3 of the selected tool. The control unit 3 determines the final tool path of the tool 16 from the machining data DATA and the tool diameter, length, etc. of the selected tool.
Modifier turn F read out from the modifyer turn memory 11
The AT is calculated and determined in a form that is corrected and stored in the program memory 6 as a cannibal program PRO.Actual machining is performed according to the cannibal program PRO stored in the program memory 6. , if you fall, the fourth
As shown in the figure, when cutting a pocket 17b having a protrusion 17a in the center from a flat workpiece 17, the operator uses the pocket end mill in surface machining mode via the keyboard IO. At the same time as instructing the Yamaka unit, input the shape of the blur) 17b and the shape of the protrusion 17a converted into coordinate values, and further move the tool JIHt.
and input the cutting depth tl. Then, the main control section 2 selects a pocket end mill having the number of teeth, tool diameter, and tool length suitable for the machining from the tool file 5, and notifies the arithmetic control section 3 of the selection. The control unit 3 includes a processing turn memory 11
The final tool path K is determined from the cutting pattern CPT constituting the machining pattern P A '1' read from the machine and the shape of the cut pattern 17b and the protrusion 17a input by the operator. , that is, point P in FIG. 4(a)
1, machining with the tool 16 is started, and cutting pattern C is started.
According to PT, the tool path K is first blurred in the region 17c sandwiched between the pocket 17b and the protrusion 17a.
The tool 16 is sequentially shifted to the pocket 17b side so as to have a shape similar to that of the pocket 17b, and the pocket 17b side is machined.Then, the tool 16 is returned to point P1, and this time, as shown in FIG. As shown in b), the tool 16 is moved so that the tool path K has a shape similar to the shape of the protrusion 17a.
are sequentially shifted and moved toward the protrusion 17a side, and the protrusion 17a side is processed to form the pocket 17b by cutting. In addition, the processing on the pocket 17b side and the protrusion 17a
In order to prevent air cutting by the tool 16 and the formation of uncut parts when switching the machining on the side, the protrusion 17a is
For a while, when machining the side from point P1, follow the tool path K.
A correction operation is performed in which a shape similar to the protruding portion 17a is corrected to correspond to the shape of the pocket portion 17b (specifically,
The innermost tool path Kl similar to the pocket part 17b starting from point PL is adopted as the path 2 only for areas where 2 does not go outside beyond the tool path similar to the protruding part 17a. 2 exceeds the path Kl, the tool 16 is moved using the path Kl.

なお、面加工モードにおける加エバターンFATを構成
する切削パターンCPTには、前述の他にも種々のパタ
ーンCPTが考えられるが、本発明は各加工ユニットに
対応して加エバターンPATを設定する限り、それ等加
エバターンFATを構成する切削パターンCPTがどの
ようなものであっても当然適用し得るものである。
It should be noted that various patterns CPT other than those described above can be considered as the cutting pattern CPT constituting the machining ever-turn FAT in the surface machining mode, but as long as the machining ever-turn PAT is set corresponding to each machining unit, the present invention Of course, it can be applied to any cutting pattern CPT constituting the modified Everturn FAT.

以上説明したように、本発明によれば、加エバターンメ
モリll中に各加工ユニットに対応した加エバターンP
 A ’I’を格納しておき、加工ユニットが入力され
た際に、メモリ11かう当該加工ユニットに対応した加
エバターンFATを読み出して、その加エバターンFA
Tに基いて最終的な工具経路Kを演算決定するようにし
たので、オペレータは加工ユニットと必要な加工データ
L)ATA等を入力するだけで工具経路Kが自動的に演
算決定され、プログラマやオペレータがいちいち工具経
路を決定する必要のない、ミーリング加工における加工
制御方法の提供が可能となる。
As explained above, according to the present invention, the machining process turn P corresponding to each machining unit is stored in the process process turn memory ll.
A 'I' is stored, and when a machining unit is input, the machining Everturn FAT corresponding to the machining unit is read out from the memory 11, and the Machining Everturn FA is read out from the memory 11.
Since the final tool path K is calculated and determined based on T, the operator only needs to input the machining unit and necessary machining data (L) ATA, etc., and the tool path K is automatically calculated and determined. It becomes possible to provide a processing control method for milling processing that does not require the operator to determine the tool path one by one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用された数値制御工作機械の一例を
示す制御ブロック図、第2図は加工モード及び加工ユニ
ットの分類内容を示す図、第3図は加工ユニットに対応
した加エバターンを示す図、第4図は実際の加工例を示
す図である。 ■・・・・・・・・・・・・・・・数値制御工作機械1
1・・・・・・・・・・・・加エバターンメモリK・・
・・・・・・・・・・・・・工具経路PAT・・・・・
・・・・加エバターン特許出願人 株式会社 山崎鉄工
所 代理人 弁理士 相田伸二 (ばか1名) 手続補正書 特許庁長官 若杉和夫 殿 1、事件の表示 昭和56年 特許 願第188952号3、 補正をす
る者 事件との関係  特許出願人 4、代理人 6、 補正により増加する発明の数 (1)本願明細書第4頁第7行目の[ミーリング加工は
dと「第2図」の間に、「その加モ形態に基さ、」を挿
入する。 (2)同第6頁第9行目の[は、経路PASSに対して
]を「は、オペレータが入力した経路PASSに対して
」と補正するつ (3)  同第6頁下から第7行目の「また、フーイス
ミル加TJから、同第7頁第1行目の[図中2個の四角
形)までの文章を、以下のように補正する。 「また、線外加丁ユニット(A4)は、オペレータが入
力した被工作物の形状SHPを基準にしで、その外側に
沿った形でf具16を移動させて切削を行なう加エバタ
ーンFATであり、線内加1ユニツl−(A5)は、オ
ペレータが入力した被加工物の形状8HPを基準にして
、その内側に沿った形で工具16を移動させて切削を行
なう加エバターンFATである。更に、面取つ右加工ユ
ニット(A6)は、オペレータの入力した経路PA88
の左方を被加工物Wとして、当該被加工物Wの右側部分
の面取りを行なうもので、工具16を経路PA88に対
して一定址右にオフセットした形で移動させる加[パタ
ーンFATである11面取り左加工ユニット(A7)は
、オペレータの入力した経路PASSの右方を被加工物
Wとして、当該被加工物Wの左側部分の面取りを行なう
もので、工具16を経路PA88に対して一定量左にオ
フセットした形で移動させる加1パターンFATである
。 また、面取り外加丁ユニット(A8)は、オペレータの
入力した被工作物の形状8HPを基準にして、その外側
に沿って工具16を移動させ、面取り加工を行なう加エ
バターンFATであり、面取り肉加工ユニット(A9)
は、オペレータの入力した被工作物の形状8HPを基準
にしで、その内側に沿って工具16を移動させ、面取り
加工を行なう加1パターンFATである5、四に、フェ
イスミル加工ユニット(BIO)、エンドミル面加工ユ
ニット(Bll)及びポケットエンドミル加−エユニッ
ト(B l 3)は、オペレータが入力した被[作物の
形状5HP(座標)を基準にしで、図中ハツチングにで
示した部分を、図示するような切削パターンCPTに従
って工具16を移動させて切削を行なう加エバターンF
ATであり、エンドミル出願tユニット(B12)、ポ
ケットエンドミル山加エユニ7)(B141及びポケッ
トエンドミル谷加丁ユニット(B 15)は、オペレー
タが入力した被工作物の形状SHP、即ち・・ツチング
にで示す、図中2個の四角形」 (4)  同第7頁第4行目の「溝如工(B16月を、
「溝加丁ユニット(B16)Jと補正する。 (5)同第8頁第8行目の「山加エユニット」を、「山
加エユニット(B14)Jと補正する。 (6)  同第8頁下から第7行目の[ポケットエンド
ミル」ヲ、「エンドミル」と補正する。 (7)  本願図面中、「第3図」を、以下に添付した
図面のように補正する。
Fig. 1 is a control block diagram showing an example of a numerically controlled machine tool to which the present invention is applied, Fig. 2 is a diagram showing machining modes and classification contents of machining units, and Fig. 3 is a diagram showing machining efficiency turns corresponding to machining units. The figure shown in FIG. 4 is a diagram showing an actual processing example. ■・・・・・・・・・・・・・・・Numerical control machine tool 1
1・・・・・・・・・・・・Additional turn memory K・・・・
・・・・・・・・・・・・Tool path PAT・・・・・・
...Procedural amendment applicant Yamazaki Iron Works Co., Ltd. Agent Patent attorney Shinji Aida (1 idiot) Procedural amendment Commissioner of the Japan Patent Office Kazuo Wakasugi 1, Indication of case 1982 Patent Application No. 188952 3, Amendment Patent applicant 4, attorney 6, number of inventions increased by amendment (1) [Milling processing is between d and "Figure 2" on page 4, line 7 of the specification] , insert ``based on the added form''. (2) Correct [is for the route PASS] on the 9th line of the 6th page of the same page to ``is for the route PASS inputted by the operator.'' (3) 7th line from the bottom of the 6th page In the line ``In addition, the text from Huismilka TJ to [two rectangles in the figure] in the first line of page 7 is corrected as follows. is a machining ever-turn FAT that performs cutting by moving the f tool 16 along the outside of the workpiece shape SHP input by the operator as a reference; is a machining ever-turn FAT that performs cutting by moving the tool 16 along the inside of the workpiece shape 8HP input by the operator as a reference.Furthermore, the chamfering right machining unit (A6) is the route PA88 input by the operator.
The left side of the workpiece W is the workpiece W, and the right side of the workpiece W is chamfered. The chamfering left processing unit (A7) chamfers the left side of the workpiece W, with the right side of the path PASS input by the operator as the workpiece W, and the tool 16 is moved by a certain amount to the path PA88. This is an additional pattern FAT in which the image is moved offset to the left. In addition, the chamfering external cutting unit (A8) is a processing evaturn FAT that performs chamfering by moving the tool 16 along the outside of the workpiece shape 8HP inputted by the operator. Unit (A9)
5. 4 is a face mill processing unit (BIO) which uses the workpiece shape 8HP input by the operator as a reference and moves the tool 16 along the inside of the workpiece to perform chamfering. , the end mill surface machining unit (Bll) and the pocket end mill machining unit (B13) are based on the crop shape 5HP (coordinates) input by the operator, and process the parts indicated by hatching in the figure. Machining Ever Turn F in which cutting is performed by moving the tool 16 according to the cutting pattern CPT as shown in the figure.
AT, the end mill application t unit (B12), pocket end mill Yamaka Euni 7) (B141 and pocket end mill valley cutting unit (B 15) (4) On page 7, line 4 of the same page, there are two rectangles shown in the figure.
Correct it as "Groove cutting unit (B16) J." (5) Correct "Yamaka unit" on the 8th line of page 8 as "Yamaka unit (B14) J." (6) Correct the same. [Pocket end mill] in the 7th line from the bottom of page 8 is corrected to "end mill". (7) In the drawings of the present application, "Figure 3" is amended as shown in the drawing attached below.

Claims (1)

【特許請求の範囲】[Claims] ミーリング加工を行なう数値制御され°る工作機械にお
いで、ミーリング加工を加工形状に基いて複数の加工ユ
ニットに分類すると共に加エバターンメモ!Jヲ設置’
J、該加エバターンメモリに各加工ユニットに対応した
加エバターンを格納しておき、加工ユニットが入力され
た際に、前記加エバターンメモリから当該加工ユニット
に対応した加エバターンを読み出しで、該加エバターン
に基いて最終的な工具経路を演算決定するようにしで構
成したミーリン・グ加工における加工制御方法□。
In a numerically controlled machine tool that performs milling processing, the milling processing is classified into multiple processing units based on the processing shape, and the processing evaluation turn memo is recorded! Jwo installation'
J. Store the processed data turn corresponding to each processing unit in the processed data turn memory, and when a processing unit is input, read the processed data turn corresponding to the processing unit from the processed data turn memory, and A machining control method in milling that calculates and determines the final tool path based on the machining average turn.
JP56188952A 1981-11-25 1981-11-25 Control method for milling process Granted JPS5890439A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56188952A JPS5890439A (en) 1981-11-25 1981-11-25 Control method for milling process
GB08232632A GB2110425B (en) 1981-11-25 1982-11-16 Machining control method for milling
IT68338/82A IT1191230B (en) 1981-11-25 1982-11-17 METHOD OF CONTROL OF MILLING PROCESSING
FR8219710A FR2516827B1 (en) 1981-11-25 1982-11-24 MILLING MACHINING CONTROL METHOD
DE19823243708 DE3243708A1 (en) 1981-11-25 1982-11-25 MACHINING CONTROL METHOD FOR MILLING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188952A JPS5890439A (en) 1981-11-25 1981-11-25 Control method for milling process

Publications (2)

Publication Number Publication Date
JPS5890439A true JPS5890439A (en) 1983-05-30
JPH0367822B2 JPH0367822B2 (en) 1991-10-24

Family

ID=16232786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188952A Granted JPS5890439A (en) 1981-11-25 1981-11-25 Control method for milling process

Country Status (5)

Country Link
JP (1) JPS5890439A (en)
DE (1) DE3243708A1 (en)
FR (1) FR2516827B1 (en)
GB (1) GB2110425B (en)
IT (1) IT1191230B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985001683A1 (en) * 1983-10-22 1985-04-25 Fanuc Ltd Area machining method
WO1985002572A1 (en) * 1983-12-14 1985-06-20 Fanuc Ltd Area machining method
WO1985002573A1 (en) * 1983-12-14 1985-06-20 Fanuc Ltd Area machining method
US5172327A (en) * 1988-01-11 1992-12-15 Fanuc Ltd. Automatic programming method
JPH04372330A (en) * 1991-04-11 1992-12-25 Mitsubishi Electric Corp Electric discharge machining method and device therefor
JP2010005715A (en) * 2008-06-25 2010-01-14 Mimaki Engineering Co Ltd Cutting plotter and cleaning method of cut chips using it
CN103586513A (en) * 2013-11-12 2014-02-19 中国南方航空工业(集团)有限公司 Method for processing precision holes in mounting edges of airplane turbine casing
CN104772648A (en) * 2015-04-09 2015-07-15 西安工业大学 Milling processing method for thin-wall workpiece of airplane
CN104999121A (en) * 2015-08-07 2015-10-28 上海中船三井造船柴油机有限公司 Method and tool for machining rack guide plate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155409A (en) * 1982-03-10 1983-09-16 Mitsubishi Electric Corp Numerical control working system
JPS60126710A (en) * 1983-12-14 1985-07-06 Fanuc Ltd Method for determining working process in automatic programming
JPS61103213A (en) * 1984-10-26 1986-05-21 Fanuc Ltd Production of numerical control data
JPH02218539A (en) * 1989-02-14 1990-08-31 Fanuc Ltd Profile method
JPH03256654A (en) * 1990-03-02 1991-11-15 Fanuc Ltd Setting method for copying region
DE19614131A1 (en) * 1996-04-10 1997-10-23 Agie Ag Ind Elektronik Control of NC- or CNC-machine tool such as spark erosion machine
GB9922248D0 (en) * 1999-09-21 1999-11-17 Rolls Royce Plc Improvements in or relating to methods and apparatus for machining workpieces
AU2009290149B2 (en) * 2008-09-08 2013-05-09 Meat And Livestock Australia Limited An apparatus for use in breaking down an animal carcass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2054199B (en) * 1979-06-14 1983-10-05 Daihatsu Motor Co Ltd Numerically controlled machine tool
JPS57189206A (en) * 1981-05-18 1982-11-20 Fanuc Ltd Numerical control system
JPS5877424A (en) * 1981-10-28 1983-05-10 Yamazaki Mazak Corp Tool selective control method for machining center

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985001683A1 (en) * 1983-10-22 1985-04-25 Fanuc Ltd Area machining method
WO1985002572A1 (en) * 1983-12-14 1985-06-20 Fanuc Ltd Area machining method
WO1985002573A1 (en) * 1983-12-14 1985-06-20 Fanuc Ltd Area machining method
JPS60127952A (en) * 1983-12-14 1985-07-08 Fanuc Ltd Regional work
JPH0246346B2 (en) * 1983-12-14 1990-10-15 Fanuc Ltd
US5172327A (en) * 1988-01-11 1992-12-15 Fanuc Ltd. Automatic programming method
JPH04372330A (en) * 1991-04-11 1992-12-25 Mitsubishi Electric Corp Electric discharge machining method and device therefor
JP2010005715A (en) * 2008-06-25 2010-01-14 Mimaki Engineering Co Ltd Cutting plotter and cleaning method of cut chips using it
CN103586513A (en) * 2013-11-12 2014-02-19 中国南方航空工业(集团)有限公司 Method for processing precision holes in mounting edges of airplane turbine casing
CN104772648A (en) * 2015-04-09 2015-07-15 西安工业大学 Milling processing method for thin-wall workpiece of airplane
CN104999121A (en) * 2015-08-07 2015-10-28 上海中船三井造船柴油机有限公司 Method and tool for machining rack guide plate

Also Published As

Publication number Publication date
IT1191230B (en) 1988-02-24
GB2110425A (en) 1983-06-15
FR2516827A1 (en) 1983-05-27
FR2516827B1 (en) 1988-06-10
DE3243708A1 (en) 1983-06-01
GB2110425B (en) 1985-08-21
JPH0367822B2 (en) 1991-10-24
IT8268338A0 (en) 1982-11-17

Similar Documents

Publication Publication Date Title
JPS5890439A (en) Control method for milling process
JPS58155150A (en) Decision control of simultaneous machining for four-axis numerical controlled lathe
JPS6257852A (en) Automatic programming device
JP6506222B2 (en) CAD / CAM-CNC integrated system
JP2004306202A (en) Automatic programming device
US5099432A (en) Method for determining machining process in numerical control information generating function
JPH02109657A (en) Automatic selection of tool
JPS6267607A (en) Automatic programming device
JPH03161245A (en) Machining range automatic deciding method for lathe machining and automatic programing system thereof
JPS61103213A (en) Production of numerical control data
JPS5882646A (en) Cutting requirement determining/controlling method in numerically controlled machine tool
JPS62127907A (en) Working information preparing device in automatic working machine
JPH03294146A (en) Working step determination device in numerical control information forming function
JPH03185503A (en) Numerical controller
JPH03174604A (en) Producing device for numerical control information
JPS6057406A (en) Checking device for nc working program
JP3123340B2 (en) NC data automatic creation device
JPH0685130B2 (en) Processing area division processing device in automatic processing machine
JPH0588736A (en) Generation of groove machining path
JP3160441B2 (en) How to determine machining order
JPH03184740A (en) How-to-determine recessing method in numerical control information making function
JPS60228009A (en) Processing control method of drill cycle of numerical control machine tool
GB2111249A (en) Method of control of NC machine tools
JPS6268251A (en) Tool selecting method
JP2677889B2 (en) Numerical control unit