JPS5889939A - Production of fused phosphate fertilizer - Google Patents

Production of fused phosphate fertilizer

Info

Publication number
JPS5889939A
JPS5889939A JP56188002A JP18800281A JPS5889939A JP S5889939 A JPS5889939 A JP S5889939A JP 56188002 A JP56188002 A JP 56188002A JP 18800281 A JP18800281 A JP 18800281A JP S5889939 A JPS5889939 A JP S5889939A
Authority
JP
Japan
Prior art keywords
furnace
combustion furnace
fuel
raw material
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56188002A
Other languages
Japanese (ja)
Other versions
JPS6319477B2 (en
Inventor
Michio Ichikawa
市川 道雄
Hiroyuki Matsubara
宏之 松原
Shun Toyosaki
豊崎 駿
Takashi Fukuzawa
福沢 隆
Kosuke Takeuchi
宏介 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nippon Chemical Industrial Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP56188002A priority Critical patent/JPS5889939A/en
Publication of JPS5889939A publication Critical patent/JPS5889939A/en
Publication of JPS6319477B2 publication Critical patent/JPS6319477B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/005Fusing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Fertilizers (AREA)

Abstract

PURPOSE:To produce fused phosphate fertilizer in large amts. with good thermal efficiency with installations of a small floor area by constructing two combustion furnaces at the top and bottom in a perpendicular cylinder, and using optionally fuels such as fuel oil and coal. CONSTITUTION:The effective volume ratio of a primary combustion furnace 1 of a perpendicular cylindrical shape and a secondary combustion furnace 9 connected to the lower part thereof by means of a throat 8, and set the effective volium ratio of the furnaces in a 1:0.7-1:7 range. In order to keep the heat radiation from the furnace 1 at <=10% the quantity of supplied heat, the product of fire furnace load and the cylindrical bore of the primary combustion furnace is set at >=1.32X10<6>. In operation, the temp. in the furnace is risen, then fuel is fed in the furnace together with primary air flow. When the temp. higher than the operation temp. is attained, raw material compsns. are mixed with secondary air flow and are fed into the furnace. The raw material compsn. and the fuel form vigorous swirling flow according to the prescribed air flow. The melt and combustion gases descend into the furnace 9 in parallel flow. After a short time of stagnation, the melt is removed, is cooled quickly and is crushed with water.

Description

【発明の詳細な説明】 本発明はサイクロン燃焼炉によシ熔成燐肥を製造する方
法に関し、j!!に云えばガス、燃料油又は石巌郷の燃
料を適宜選択して使用し、溶成燐肥を熱効率よく、大量
に、かつ設置面積の小さいコンパクトな設備で製造する
ことを目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing fused phosphorus fertilizer using a cyclone combustion furnace. ! In other words, the purpose is to use gas, fuel oil, or Ishigankyo fuel as appropriate to produce smelted phosphorous fertilizer with high thermal efficiency, in large quantities, and with compact equipment with a small installation area.

溶成燐肥は、燐酸、苦土、石灰、珪酸および黴童l!素
を含む硝子構造の肥料で、その土本中での挙動は独特で
めシャ一般土魚はもちろん、高い燐酸吸収係数をもつ火
山灰土産において4すぐれた燐酸O肥効を発揮する。出
車改良剤としての効果も大1く、我か国のみならず世界
の多くの地域で食糧の生産に貢献してきたことは周知O
通夛である。
Melted phosphorous fertilizers include phosphoric acid, magnesia, lime, silicic acid, and Kodo l! It is a fertilizer with a glass structure that contains elements, and its behavior in the soil is unique, and it exhibits excellent phosphoric acid O fertilizer effects not only on general soil fish, but also on volcanic ash souvenirs that have a high phosphoric acid absorption coefficient. It is well known that it is highly effective as a vehicle-improving agent and has contributed to food production not only in Japan but in many parts of the world.
It is common.

溶成燐肥は電気炉、平炉又は高炉で製造されていて、友
とえば電気デO場合、IIA料中の結合水、炭酸塩等の
不純物の會有量に4よゐが、概ね/ tin、900k
Wh 〜1000kWh@gc)電力を畳し、$に我が
l!ilOようにエネルギー資源の相当部分を海外から
の輸入に仰ぎ、しかもそのコストが著るしく増大し九現
在、電気炉O電力、平炉て蕾われる重油を必l!に応じ
て、石炭、天然ガスを含む種々の燃料に自由に切替えら
れ、しかも綜合的な熱効率の良好な溶融炉を開発す溶成
燐肥の製造装置としては、我が国で°使用されている電
気炉および平炉の外に数多くの装置が考案されている。
Molten phosphorus is produced in an electric furnace, open hearth, or blast furnace.For example, in the case of electric furnaces, the amount of impurities such as bound water and carbonates in the IIA material varies, but it is generally ,900k
Wh ~1000kWh@gc) I folded the electricity and got my l for $! At present, we rely on importing a considerable portion of our energy resources from overseas, and the costs have increased significantly.Nowadays, electric furnace electricity and open hearth fuel oil are indispensable! We will develop a melting furnace that can freely switch to various fuels, including coal and natural gas, and has good comprehensive thermal efficiency. Numerous devices have been devised outside of hearths and open hearths.

しかし、溶成燐肥の融液は、カーボン以外のこれ壕で市
販されたすべての耐火物に対して多少の程度の差はおっ
ても烈しい侵食性を示し1例えば特公昭参コー1stv
4号、特公昭ダ!−−??fj号、特開昭5リ一1zt
tt号には、平炉の耐火−保護のため、原料層によるセ
ルフコーティング或いは炉内の原料粉塵舞い上p防止な
どの手段で、融液と耐火物の直接々触を回避する方法が
採られている。その他の考案は様々な努力がなされたに
も拘らず、我が国では上述の平炉とカーボンライユング
の電気炉以外には実用されなかった。この大きな理由は
耐火物の難点にあったのではないかと推察される・ 溶成燐肥の製造には電気炉の外に、平炉が一般的である
。燃料に微粉炭を用いた場合、バーナー内部で微粉炭と
空気とは充分に混合されるけれとも、それは単なる気流
搬送であって、大部分の燃焼用酸素は粒子表面を榎う炭
駿ガス又は−酸化炭素の層を通しての拡散に依存するた
め、燃焼に時間がか\り、相当の滞留時間に見合う大容
量の炉が必要となるので、設備投資、a11111面積
共に大となる欠点がめる。
However, the melt of fused phosphorus fertilizer exhibits severe corrosivity to all commercially available refractories other than carbon, although there are some differences in degree.
No. 4, special public Akida! --? ? fj issue, Japanese Patent Application Publication No. 1973-11zt
In order to protect the fire resistance of the open hearth, No. tt adopts methods to avoid direct contact between the melt and refractories by self-coating with a raw material layer or preventing raw material dust from flying up inside the furnace. There is. Although various efforts were made to develop other ideas, they were not put to practical use in Japan other than the above-mentioned open hearth furnace and Carbon Lyung electric furnace. It is surmised that the main reason for this was the difficulty of refractories. In addition to electric furnaces, open hearth furnaces are commonly used to produce smelted phosphorous fertilizer. When pulverized coal is used as a fuel, although the pulverized coal and air are sufficiently mixed inside the burner, this is simply air transport, and most of the oxygen for combustion comes from the coal gas or air that evaporates from the particle surface. - Reliance on diffusion through a layer of carbon oxide takes time to burn, and requires a large-capacity furnace commensurate with the considerable residence time, which has the disadvantage of increasing both capital investment and area.

籍公紹タクー1147号には旋回溶融炉の発明が記載さ
れ、炉壁を半溶融−で覆い、耐火物を保瞼することが考
案されてφる。炉壁を耐火物の臨界侵食温度以下に保つ
ことは、耐火物保lI〇九めに最もJatLM手段であ
るが、ヒートバシ/ス、微妙な温度コントロール等につ
いての具体的な開示はない。
The invention of a rotating melting furnace is described in No. 1147 of the National Institute of Technology, and it was devised to cover the furnace wall with semi-molten material to protect the refractories. Maintaining the furnace wall below the critical corrosion temperature of the refractory is the ninth most effective JatLM means for maintaining the refractory, but there is no specific disclosure regarding heat baths, delicate temperature control, etc.

特公118Jコーククコ6号には旋回流動による熔融法
が記載され、又日本機械学会#;第第6轡サイクロン燃
焼炉による溶成燐肥の製造が記載されている。前者社低
品位巌の利用を目的とし、後者はボイラ用湿式燃焼炉の
炉内熱量の一部を溶成燐肥の製造にふル当て、炉体の冷
却および燃焼排ガスの熱量は悉くボイラの蒸発系統に導
く思想で説明されてーる。前者の場合、実施例によると
燐酸全量に対する−一くえん酸に溶解する燐酸の割合(
<涛率)はt O. 4 %、後者のく溶率は60−ま
で、と記載されている。現在日本国内で製造、販売され
ている溶成燐肥の(溶率は、その品梳に拘らずほとんど
100饅に近い値でめシ、前記二者のく溶率が低い理由
は、溶融液の炉内滞留時間が極端に短く、充分な溶融反
応時間が確保されなかった為ではないかと推定される。
Japanese Patent Publication No. 118J Kokukuko No. 6 describes a melting method using swirling flow, and also describes the production of melted phosphorus using a cyclone combustion furnace of the Japan Society of Mechanical Engineers #6. The purpose of the former is to utilize low-grade rock, while the latter uses a part of the heat in the boiler's wet combustion furnace to produce smelted phosphorus fertilizer, and the heat of the furnace body and combustion exhaust gas are all consumed by the boiler. It is explained using the idea that leads to the evaporation system. In the former case, according to the example, -the ratio of phosphoric acid dissolved in citric acid to the total amount of phosphoric acid (
<return rate) is t O. 4%, and the latter has a solubility rate of up to 60%. The dissolution rate of melted phosphorus fertilizers currently manufactured and sold in Japan is almost 100% regardless of the type of fertilization.The reason for the low dissolution rate of the two mentioned above is that It is presumed that this was because the residence time in the furnace was extremely short, and sufficient melting reaction time was not secured.

このようにサイクロン燃焼炉については早くから提案が
なされたにも拘らず、その実用化に当っては、多量の被
溶融原料と燃料を狭い燃焼室に送入する問題、生産−が
紀科としての性能を発揮するよう、良好な(溶率を得る
ための溶融条件,W!融状liの保持、およびこれらを
達成する良めの炉の構造等のいくつかの画一な問題点が
Toル,それらに関しては従来決して充分に解明かつ解
決されていなかった。
Despite the early proposals for cyclone combustion furnaces, the problems of feeding a large amount of melted raw materials and fuel into a narrow combustion chamber, and the problems associated with production, were difficult to put into practical use. In order to achieve good performance, several uniform issues such as melting conditions to obtain a good melting rate, retention of W! melting state, and a good furnace structure to achieve these are necessary. , these issues have never been fully elucidated or solved.

本発明者勢絋,tイク四ン燃焼炉による熔成燐肥の製造
方法について前記課題を解決すべく鋭意研究を行い、溶
成燐肥の製造が可能となる設備と操業方法を知見し、本
発明を完成したものである。
The present inventor, Seihiro, has conducted extensive research to solve the above-mentioned problems regarding the method for producing molten phosphorous fertilizer using a four-cylinder combustion furnace, and has discovered equipment and operating methods that make it possible to produce molten phosphorous fertilizer. This completes the present invention.

すなわち、本発明は溶成燐肥原料組成物を溶融して溶成
燐肥″を製造するに当シ、垂直円筒状1次燃焼炉とその
下部にスロートによって接続された2次燃焼炉との有効
容積比が1:0.1〜lニアの範囲にるるサイクロン燃
焼炉に原料組成物と燃料を送入して火炉負荷と円筒内径
の積をtJ2X10”以上で鋏組成物を加熱溶融し、溶
融物と燃焼ガス1f流で下部の1次燃焼炉に導くことを
特徴とする溶成燐肥の製造方法である。
That is, the present invention uses a vertical cylindrical primary combustion furnace and a secondary combustion furnace connected to the lower part thereof by a throat to melt a molten phosphorus fertilizer raw material composition to produce molten phosphorus fertilizer. The raw material composition and fuel are fed into a cyclone combustion furnace with an effective volume ratio in the range of 1:0.1 to lnia, and the scissors composition is heated and melted so that the product of the furnace load and the cylinder inner diameter is tJ2X10" or more, This is a method for producing melted phosphorus fertilizer, which is characterized in that a flow of melt and combustion gas 1f is guided to a lower primary combustion furnace.

溶成燐肥の原料組成物は所定の溶成燐肥成分t#足する
ように、憐鉱石および蛇練岩のはム必費に応じてかんら
ん岩、けい石およびフェロニッケルスフグ、又は黴ji
資素成分としてマンガン、はう素等の含有物質が用いら
れ、他方燃料源は、重油、00M1石炭および天然ガス
等必資に応じて適宜選択できる。
The raw material composition of the molten phosphorus fertilizer is composed of peridotite, silica, and ferronickel, depending on the amount of mineral ore and serpentine, or silica, or ferronickel, according to the requirements. mold ji
Substances containing manganese, boronic, etc. are used as elemental components, and the fuel source can be appropriately selected depending on the necessary resources, such as heavy oil, 00M1 coal, and natural gas.

クロン燃焼炉によって溶融して溶成燐肥を製造する方法
であるが、多1o融液をトラブル無しに取シ出すために
は、本発明者等の研究によれば、水平製サイクロン燃焼
炉は不適尚で、画またて型とし、1次燃焼炉から流下す
る融液を、その炉の下部にスロートによって接続された
一次燃焼炉下部の融液滞留層で短時間保持し、又この融
液滞留層は操業温度以上を常時保持するため、1次燃焼
炉の燃焼ガスを融液と並流で一次燃焼炉の下方に向けて
噴出させ加熱することが必要でるる。前記原料組成物と
燃料とは、同一旋回流に乗せるように1次燃焼炉送入口
よシ夫身空気流によって送入されるが、原料組成物およ
び石炭の粒子は遠心力で炉壁に打ちつけられ、融液層に
捕捉される。重油、石炭粉は少量の1次空気、原料組成
物は1次空気と共に夫々少くとも10℃換算、10¥−
ec以上の風速で1次燃焼炉内に吹き込むことが望まし
い。この風速を保つ@シ、適切な燃焼が維持されるばか
シでなく、送入口の閉朧は起らない。
This is a method of producing molten phosphorus by melting it in a cyclone combustion furnace, but in order to take out the multi-liter molten liquid without trouble, according to the research of the present inventors, a horizontal cyclone combustion furnace is used. The melt flowing down from the primary combustion furnace is held for a short time in the melt retention layer at the bottom of the primary combustion furnace, which is connected to the bottom of the furnace by a throat. In order to maintain the retention layer at a temperature higher than the operating temperature at all times, it is necessary to eject the combustion gas from the primary combustion furnace downward in parallel flow with the melt to heat the primary combustion furnace. The raw material composition and fuel are fed through the primary combustion furnace inlet by a twin air stream so as to be placed in the same swirling flow, but the raw material composition and coal particles are struck against the furnace wall by centrifugal force. and captured in the melt layer. Heavy oil and coal powder have a small amount of primary air, and the raw material composition has a small amount of primary air, each converted to at least 10℃, 10 yen.
It is desirable to blow into the primary combustion furnace at a wind speed of ec or higher. If this wind speed is maintained, proper combustion will be maintained and no blockage of the inlet will occur.

以下、図面と共に本発明について説明する。The present invention will be described below with reference to the drawings.

第7図はサイクロン燃焼炉の断面略図を中心とした製造
工程図を示すものでるるか、図において1次燃焼Plは
スタートアップ用ガス又は油バーナー41.側壁鉄皮/
aから内部に貫通し九鳳料送入口コおよび燃料送入口J
を備え九、九て17I!馬筒構造をなしておp、耐火物
ライニング/1)の@嫁鉄皮71には冷却水の入口j&
および出口!bのあるジャケラ)+で水冷されることV
Cなって−る。尤も空冷方式を行う場合には、ジャケッ
ト!ニ必歎ないので、この図は水冷方式の例を示してい
る。ススにおいて原料送入口λおよび燃料送入口Jは、
側壁鉄皮/IL上、同一位置の水平断面内側の円周に対
して切線方向を向くように各1個設けておるが、夫々l
又は−個以上、更11C@壁被数位置に同じく原料送入
口および燃料送入口を夫々l又は1個以上設けることも
できる。たソし原料送入口−は燃料送入口Jよ−υも位
相が旋回流方向に対してJo。
FIG. 7 shows a manufacturing process diagram centered on a schematic cross-sectional view of a cyclone combustion furnace. Side wall iron skin/
Penetrate from a to the inside to connect the fuel inlet J and the fuel inlet J.
Nine, nine and 17I! It has a horse-tube structure, and the refractory lining/1) has a cooling water inlet and
And exit! To be water-cooled with a jacket (b) + V
It's C. Especially when using the air cooling method, a jacket! This diagram shows an example of a water-cooled system. In the soot, the raw material inlet λ and the fuel inlet J are
On the side wall iron skin/IL, one each is provided so as to face the tangential direction to the inner circumference of the horizontal cross section at the same position, but each
Alternatively, one or more raw material inlets and one or more fuel inlets may be provided at the 11C@wall position. The raw material inlet is also in phase with the fuel inlet J with respect to the swirling flow direction.

以上おくれてiることが特に好ましい。このことは非常
に重要で、炉内送人後の燃料のffi焼時間と原料送入
時期との関係がamされ、原料、燃料および燃焼ガスの
効果的旋回流を形成し、燃焼は良好となp、境膜伝熱抵
抗も充分に小さい状態で熱交換され、答晶に原料を^温
に加熱できるなどの効果が得られる。
It is particularly preferable to delay the time by more than 10 minutes. This is very important, as the relationship between the ffi firing time of the fuel after being sent into the furnace and the timing of feeding the raw material is established, so that an effective swirling flow of the raw material, fuel and combustion gas is formed, and the combustion is good. Heat exchange is carried out with the film heat transfer resistance being sufficiently small, and effects such as being able to heat the raw material to temperature can be obtained.

か\る1次燃焼炉lの下部はスロー)ft−経て一次燃
焼炉デに連結されている。2次燃焼炉ツは炉壁/J′″
tSまれていて、炉壁0FP3側は一部にカーボン煉瓦
を含む耐火煉瓦で、外側は断熱煉瓦を積んである。タッ
プホール10の下部には融am貿槽/Iが形成されるよ
うな構造となっておp、炉内は補助バーナー6bおよび
3次燃焼空気送入口りが設けてToル、必菅に応じて炉
内を加熱で龜るようにしである。溶成燐肥の融液はIツ
ブホール10よりaMRられ水砕し製品とする。他方燃
焼排ガスは空気予熱機/Jにより燃焼用空気と熱交換さ
れ、原料予熱機/参、集應機74を経てガス洗浄機/7
から放出される。なお排ガスの熱回収には状況に応じて
任意の熱交換機を使用できる。
The lower part of the primary combustion furnace l is connected to the primary combustion furnace D via a slow pipe. The secondary combustion furnace is the furnace wall/J'''
The furnace wall 0FP3 side is made of refractory bricks including some carbon bricks, and the outside is laminated with insulation bricks. The structure is such that a melting tank/I is formed at the bottom of the tap hole 10, and the inside of the furnace is equipped with an auxiliary burner 6b and a tertiary combustion air inlet, depending on the amount of heat and gas required. This is done so that the inside of the furnace is heated. The melt of dissolved phosphorus fertilizer is subjected to aMR from the I tube hole 10 and pulverized to form a product. On the other hand, the combustion exhaust gas is heat exchanged with the combustion air by the air preheater/J, passes through the raw material preheater/74, and the gas scrubber/74.
released from. Note that any heat exchanger can be used to recover heat from exhaust gas depending on the situation.

次に本発明において使用されるサイクロン燃焼炉の構成
、上の特徴について説明すると、壕づ各燃焼炉との関係
では、垂直内筒状1次燃焼炉!とその下部にスロー)f
によって接続された一次燃焼炉!との有効容積比がi:
o、t〜/:りの範囲にるることが必資でるる。その理
由はこの範四内であれば限られ九蝋時間融液は一次燃焼
gstの融液涌貿権1iyc@留混合され、この間燃焼
ガスによシ加熱されてタップ可能でるるからでわ9、も
しl:0.り以下で嬬融液の潅貿時間が翅かく品簀のバ
ラツキが大きくな)、場合によってはく溶率の高い溶成
燐肥が得られなくなると共に燃焼の不調又は不充分が起
る。又逆にl:り以上になると一次燃tsFデの放熱量
が大きくな9、操業温度以上に加熱保持することが困難
てタップが渋くなる嬶か、排ガスからの熱回収も非能率
となるなどして効果的に溶成燐肥を製造することがで暑
なくなるからである。
Next, to explain the structure and features of the cyclone combustion furnace used in the present invention, in relation to the trenched combustion furnaces, it is a vertical internal cylindrical primary combustion furnace! and throw at the bottom) f
Primary combustion furnace connected by! The effective volume ratio of i:
o, t~/: It is necessary to be in the range of ri. The reason for this is that within this range, the melt is mixed in the primary combustion gst melt for a limited period of time, and during this time it is heated by the combustion gas and can be tapped. , if l:0. If the irrigating time of the molten liquid is less than 100%, the product will vary widely), and in some cases, it will not be possible to obtain molten phosphorus fertilizer with a high releasability, and combustion will be poor or insufficient. On the other hand, if the temperature exceeds 1, the amount of heat dissipated by the primary combustion tsF becomes large9, and it becomes difficult to maintain the temperature above the operating temperature, making the tap cold, and heat recovery from the exhaust gas becomes inefficient. This is because the heat can be reduced by effectively producing melted phosphorous fertilizer.

スロート状部分およびスロートtの各容積を含まない円
筒部容積を、2次燃焼炉ツはスロートtの出口水平線か
らタップホールIOのスラグラインまでの容積をいう。
The volume of the cylindrical part excluding the volumes of the throat-shaped part and the throat t is the volume of the secondary combustion furnace from the exit horizontal line of the throat t to the slag line of the tap hole IO.

また7次燃焼炉lは円筒内径に対する画直^筒部の長さ
の比がパ/〜/:ダの範囲内にあることが燃焼および炉
内原料の溶融および滞留を順調にするために好ましい。
In addition, in the seventh combustion furnace l, it is preferable that the ratio of the drawing diameter to the cylinder inner diameter and the length of the cylindrical part is within the range of Pa/~/:Da in order to ensure smooth combustion and melting and retention of raw materials in the furnace. .

更に垂直円筒全長に対する垂直円筒全長から最下位燃料
送入口コまでの高さとの比fH,円筒内径に対するスロ
ート開口径の比をRとすると、Rは単に溶融物又はダス
トの排出にとって重要なばかシでなく、燃料送入口Jの
位置とも関係する。開口比Rがlに近い場合、めまυ下
部に燃料を送入すると安定した燃焼と慮科の溶融を達成
できず、一方逆にRが0.3よp小さくなると閉塞の傾
向が見られいずれも安定な操業に支障をき九す。このよ
うなことがら、スロー)tldBが操業条件によって可
変できるように設定されたものであるが、この■とRo
経験式を求めたところ次式が成立することが明らかにな
った。
Further, let fH be the ratio of the height from the vertical cylinder full length to the lowest fuel inlet port to the vertical cylinder full length, and let R be the ratio of the throat opening diameter to the cylinder inner diameter. It is also related to the position of the fuel inlet J. When the aperture ratio R is close to l, stable combustion and proper melting cannot be achieved when fuel is fed into the lower part of the dimple υ, while on the other hand, when R becomes smaller than 0.3p, there is a tendency for blockage. All of these pose a hindrance to stable operations. Because of this, the slow) tldB is set to be variable depending on the operating conditions, but this
When an empirical formula was obtained, it became clear that the following formula holds true.

H≧aコク+O0事3・R (式中MとRは前記の意義および/≧R≧0.3を表わ
す。) 従って上記のような関係がS九されるような設計でサイ
クロン燃焼炉は構成されている。
H≧arich+O0thing3・R (In the formula, M and R represent the above meanings and /≧R≧0.3.) Therefore, the cyclone combustion furnace is designed so that the above relationship is S9. It is configured.

次に熱的面から見ると1次燃焼炉は溶成燐肥を流動可能
な操業温g(/JIO℃杖9に保つ丸め、烈しい融液の
侵食を受けるので空冷又は水冷によ)セルフコーティン
グ層をつく〉耐大−〇侵食を防止しなければならない。
Next, from a thermal point of view, the primary combustion furnace is a self-coating system that maintains the operating temperature at g (/JIO ℃ 9), which allows the molten phosphorus to flow, and is air-cooled or water-cooled because it is subject to severe erosion by the melt. Layering〉High resistance-〇Erosion must be prevented.

従って操業中において炉壁にはスラグ凝固層とその内側
の半溶融層及び融液層が形成され、このスラグ層は温度
の自己側鎖性を持ち、炉内部の温度が下がるとスラグ凝
園層の厚さが増して内[11度が上昇し、逆に炉内負性
が上昇し過ぎるとai!固層は侵食されて薄くなp、炉
壁から外部への伝熱量が増加して薄くなる。従って例え
ば溶成燐肥製造工場が蒸気を使用する他の生産設備と共
存している場合KitFiiの冷却を水で行い、同時に
燃焼炉排lスを廃熱ボイラに入れて蒸気と溶成燐肥を有
利に併産することが出来る。又もし蒸気を必要としない
溶成燐肥専用工場の場合には、炉壁を空気で冷却し、熱
風として回収して原料、製品の乾燥、燃焼用空気の予熱
等に利用することが有利である。この時には炉壁の耐火
物は熱伝導の良好なものを使用する必要があ)、特に3
00℃から1900℃までの平均熱伝導直参kcal/
m−h・℃以上の耐火物、たとえば、カーボン又は炭化
珪素質のものが望ましい。この場合、1次燃焼炉の空気
比を60未満で操業すれば、燃焼溶融炉にも拘らずカー
ボン質耐火物の焼損を回避し、セルフコーティング層を
形成させることが出来る。他方、操業時1次燃焼炉の熱
負荷は単に溶成燐肥原料を溶融させるための必要熱量、
温度の供給はかシでなく、ヒートバランス上1次燃焼炉
か−らの熱放散を少くする上でも重要である。内径0.
ヂ#mの試験炉の例では、空冷7次燃焼炉からの放熱を
供給熱量の約10饅以下とするためには、 JX10’
 kcal/が・h以上の火炉負荷が必資でTo)、熱
負荷が下ると相対的に7次燃焼炉からの放熱率が増加す
る。これは熱負荷の増大によ襲原料給送量が増し、炉壁
を流下する単位時間inの融液量も増加し、これに併い
融液層の厚みが増して炉壁へ向う伝熱量を低下させるこ
とが大きな理由01つとなっている。1次燃焼炉の直径
が増加すれば相対的に容積轟9の表面積が減少し、火炉
負荷の限度も変る。一般に火炉負荷と[vkとの関係は
限られ九範囲内で次式の関係がある。
Therefore, during operation, a slag solidified layer and a semi-molten layer and a molten liquid layer are formed on the furnace wall, and this slag layer has a self-side chain property of temperature, and when the temperature inside the furnace decreases, a slag solidified layer forms. As the thickness increases, the internal temperature rises by 11 degrees, and conversely, if the internal negative temperature rises too much, ai! The solid layer is eroded and becomes thinner, and the amount of heat transferred from the furnace wall to the outside increases and becomes thinner. Therefore, for example, if a sludge phosphorus fertilizer manufacturing plant coexists with other production equipment that uses steam, the KitFii can be cooled with water, and at the same time the combustion furnace waste can be put into a waste heat boiler to produce steam and sludge phosphorus. can be advantageously co-produced. In addition, in the case of a dedicated smelting phosphorus fertilizer factory that does not require steam, it is advantageous to cool the furnace walls with air and recover it as hot air for use in drying raw materials and products, preheating combustion air, etc. be. At this time, it is necessary to use a refractory for the furnace wall that has good heat conduction), especially 3.
Average heat conduction direct kcal/from 00℃ to 1900℃
A refractory having a temperature of m-h·°C or higher, for example, a material made of carbon or silicon carbide is desirable. In this case, if the primary combustion furnace is operated at an air ratio of less than 60, burnout of the carbonaceous refractory can be avoided and a self-coating layer can be formed despite the fact that it is a combustion melting furnace. On the other hand, the heat load on the primary combustion furnace during operation is simply the amount of heat required to melt the melted phosphorus fertilizer raw material,
The supply of temperature is not only important, but also important in terms of heat balance and reducing heat dissipation from the primary combustion furnace. Inner diameter 0.
In the example of the test furnace of も#m, in order to reduce the heat radiation from the air-cooled seventh combustion furnace to about 10 or less of the supplied heat amount, JX10'
A furnace load of kcal/h or more is essential (To), and as the heat load decreases, the heat radiation rate from the seventh combustion furnace increases relatively. This is due to an increase in the heat load, which increases the feed rate of raw materials, increases the amount of melt flowing down the furnace wall per unit time, and the thickness of the melt layer increases, resulting in the amount of heat transferred toward the furnace wall. One of the major reasons is to reduce the If the diameter of the primary combustion furnace increases, the surface area of the volumetric furnace 9 will relatively decrease, and the furnace load limit will also change. In general, the relationship between the furnace load and [vk is limited, and within nine ranges, the relationship is expressed by the following equation.

qD 諺に と\で q 火炉負荷(kaaj/鳳1・h) D/次燃焼炉の直径(勾 K 常数 直径0.#参鳳の例で上記の限界値JX10”kcaj
/11’・hを基準とすればqD■八3へX10・とな
る。この藍を用いて各直径の限界のqO値を求すなわち
、火炉負荷と1次燃焼炉円筒内径の積をルJコX / 
0”以上とすれば、1次燃焼炉炉壁からの放熱を約10
%以下に抑えることが出来る。
qD In the proverb, q Furnace load (kaaj/Otori 1・h) D/Diameter of the secondary combustion furnace (K) Constant diameter 0.
If /11'·h is used as a reference, qD■83 becomes X10·. Using this indigo, find the limit qO value for each diameter, that is, the product of the furnace load and the inner diameter of the primary combustion furnace cylinder.
If the value is 0" or more, the heat radiation from the primary combustion furnace wall will be approximately 10".
% or less.

以上は第1図に従って本発明にか\る溶成燐肥の製造方
法について説明したが、ga図は第1図における水冷方
式のサイクロン燃焼炉とは異なり、別M橡のサイクロン
燃焼炉の断面図であシ、第JvAはその水平方向の断面
図を表わしたものである。このサイクロン燃焼炉は1次
燃焼炉内のガスと粒子の流れを調整する丸め、スロート
tは上方に折れ−クた部分l&を持ち、燃焼ガスおよび
融液は夫々スロー)fおよびそのバイパス口lbよルコ
次燃焼炉に流下するようにしてめシ、原料送入口コは第
3図で見るように燃料送入口Jに対して位相が90°お
くれた構造よりなっているものである。史にl541L
図は前記のサイクロン燃焼炉においてデO0の位相差を
もった原料送入口コ1、コbと燃料送入口J&、3bの
側壁複数位置にそれぞれ一個の送入口をW&ゆている例
て、JIIJ図と同様の断面図を示したものである。
The method for producing melted phosphorous fertilizer according to the present invention has been explained above according to Fig. 1. However, unlike the water-cooled cyclone combustion furnace shown in Fig. 1, Fig. In the figure, No. JvA represents a horizontal cross-sectional view thereof. This cyclone combustion furnace has a rounded throat t that adjusts the flow of gas and particles in the primary combustion furnace, and an upwardly bent part l&, which allows the combustion gas and melt to flow respectively through the throat f and its bypass port lb. As shown in FIG. 3, the fuel inlet J is 90 degrees out of phase with respect to the fuel inlet J so that the fuel can flow down into the secondary combustion furnace. Historically l541L
The figure shows an example in which in the above-mentioned cyclone combustion furnace, one inlet is provided at multiple positions on the side walls of raw material inlets Co1, Cob and fuel inlets J&, 3b with a phase difference of 000, JIIJ It shows a cross-sectional view similar to the figure.

このように本発明は前記の条件が満たされる@9、種々
の瀝式構造をもったものが適宜選択されることが理解で
きよう。九ソ、前記第−図又#i第41Eの如きサイク
ロン燃焼炉にて操業する場合、バイパス口zbの閉塵が
生じ易い小容量規模の炉では追歯でな−かも知れない。
As described above, it will be understood that in the present invention, those having various dead-type structures that satisfy the above conditions can be appropriately selected. When operating a cyclone combustion furnace such as the one shown in Fig. 9 and #i No. 41E above, additional teeth may not be necessary in a small-capacity furnace where the bypass port zb is likely to be clogged with dust.

かくして本発明においては、操業するに尚シ、最初スタ
ートアップ用ガス又は油バーナーおよび必嶽に応じて補
助バーナーを燃焼して炉内温[を上昇させ、次いで1次
空気流と共に燃料を送入し操業温度以上になったところ
で原料組成物を1次空気流と混合して炉内に吹き込む。
Thus, in the present invention, when operating, the start-up gas or oil burner and optionally the auxiliary burner are fired to raise the temperature inside the furnace, and then the fuel is introduced together with the primary air flow. Once above the operating temperature, the feed composition is mixed with the primary air stream and blown into the furnace.

定常状態においては、原料組成物および燃料は所定の空
気比の空気流に従って激しい旋回流【形成し、融液およ
び燃焼ガスは並流で一次燃焼炉へ降下する。融液は2次
燃焼炉に限られfc組待時間滞留後タップホールよυ取
シ出され、約Skg/cys”の水圧で急冷水砕される
。これを常法により乾燥および必要に応じて粉砕メロ分
級して製品とする。他方燃焼排ガスは前記の説明のよう
に最終的には洗浄したのちに放出する。ボイラ用サイク
すン燃焼炉の場合と違ってNoXもこの過程で規制基準
以下に低減可能である。又排ガスからの熱回収は、従来
の掘々の技術を組合せて適用することが可能でib、高
い熱効率が期待される。
In steady state, the raw material composition and fuel form a violent swirling flow according to the air flow with a predetermined air ratio, and the melt and combustion gases descend in parallel flow into the primary combustion furnace. The melt is confined to the secondary combustion furnace, where it remains for an fc assembly period, and then taken out through a tap hole, where it is quenched and pulverized at a water pressure of approximately Skg/cys. This is dried by a conventional method and then pulverized as necessary. The products are made by crushing and classifying the melodies.On the other hand, the combustion exhaust gas is finally released after being cleaned as explained above.Unlike in the case of siphon combustion furnaces for boilers, Nox is also kept below regulatory standards in this process. In addition, heat recovery from exhaust gas can be applied in combination with conventional mining techniques, and high thermal efficiency is expected.

実施例1 第1図に示す装置においてH−0,14、RmOJO。Example 1 In the apparatus shown in FIG. 1, H-0,14, RmOJO.

1次燃焼炉と1次燃焼炉の有効容積比/:コ、6とし、
1次燃焼炉のジャケット参に冷却水を通し、予熱用ガス
バーナー6aに点火して徐々に炉内の温度を上げ約3時
間後に1次燃焼炉内の温度は放射高温針で測定して71
00℃となっ丸この時点で徐々に燃料供給口Jから1次
空気流に乗せて粉疑(4JOIka*1 kg )の給
送を開始し、空気比が八〇4となるようKJI料供給口
コからコ次空気のみを送シはじめる。7状態−炉内が1
4110℃となつ友とζろで、ガスバーナーを停止し、
原料供給口からコ次空気tltWc乗せて少しづり蛇絨
岩と燐鉱石の粉末混合物を送入する。送入蓋を増して最
終的に粉炭IIi湿量でクコ1111b  、フロリダ
燐鉱石粉末コクzkg7h、蛇−一岩粉末14参に47
h(この両原料は、あらかじめ粉砕、混合してから予熱
装置七鮭て供給した。)の割合で送り続けた。7次燃焼
炉内側の面には、耐火物ライニングと溶成燐肥がSp合
ったような#固層が形成され、融液は一状態tsFの底
に滞留し、その下部は凝固し友。タップホール10よ如
融液を流出させ、常法によj) j kg/adの水圧
のノズルからの水流によシ急冷、水砕し九。製品の溶成
燐肥の生成割合は、ヂOX峠/hでめった。得られ九熔
成燐肥の組成は次の通)である。
The effective volume ratio of the primary combustion furnace and the primary combustion furnace is 6,
Cooling water was passed through the jacket of the primary combustion furnace, the preheating gas burner 6a was ignited, and the temperature inside the furnace was gradually raised. After about 3 hours, the temperature inside the primary combustion furnace was measured with a radiant high temperature needle and reached 71
At this point when the temperature reaches 00℃, gradually start feeding powder (4JOIka*1 kg) from the fuel supply port J on the primary air flow, and open the KJI fuel supply port so that the air ratio becomes 804. Start sending only air from C to C. 7 state - 1 inside the furnace
At 4110℃ and Natsutomo, stop the gas burner,
A powder mixture of serpentine rock and phosphate rock is gradually introduced from the raw material supply port using secondary air tltWc. The feeding lid was increased and finally powdered coal IIi wet weight was 1111b, Florida phosphate rock powder Koku 7h, and Ja-Ilwa powder 14 san to 47
(These two raw materials were crushed and mixed in advance and then supplied to the preheating device.) On the inner surface of the seventh combustion furnace, a solid layer is formed in which the refractory lining and melted phosphorous fertilize are combined, and the melt remains in one state at the bottom of the tsF, and the lower part solidifies. Let the molten liquid flow out through the tap hole 10, and quench it by a water stream from a nozzle with a water pressure of 1 kg/ad in the usual manner, and crush it with water. The production rate of dissolved phosphorus fertilizer in the product was reached at DiOX Pass/h. The composition of the nine molten phosphorous fertilizers obtained is as follows.

燐酸全量(PmOs  として) −〇、16饅〈溶性
燐酸(’tOsとして)−〇、tO*く溶率     
      tt、り/Sなお以上の操作で、原料の予
熱温度は200°0.2次空気の予熱温度、4Ioo’
0.i状態焼炉の火炉負荷j X / 0” kcal
/ml −h火炉負荷と!状態焼炉円筒内#k(θ、#
ダrn)の積は^λ×701.1次燃焼炉か゛ら出る溶
成燐肥融液の温度/J!0”Olを状態焼炉からの放熱
は供給熱蓋の3%であった。
Total amount of phosphoric acid (as PmOs) -〇, 16㎅〈Soluble phosphoric acid (as 'tOs) -〇, tO* solubility rate
tt, ri/S With the above operations, the preheating temperature of the raw material is 200°0. The preheating temperature of the secondary air is 4Ioo'
0. Furnace load of i-state kiln j X / 0” kcal
/ml -h furnace load and! State #k(θ, #
The product of (darn) is ^λ x 701. Temperature of molten phosphorus molten liquid coming out of the primary combustion furnace/J! Heat dissipation from the 0"Ol state furnace was 3% of the heat supply.

排ガスの酸素濃度から、空気比は八〇4となるように調
節した。綜合的な熱効率は81%でめった。
The air ratio was adjusted to 804 based on the oxygen concentration of the exhaust gas. The overall thermal efficiency was 81%.

実施例コ 実施例1と同じ装置を用いて、スロートt。Example Using the same equipment as in Example 1, the throat t.

部分の7ランジを取外し、水冷、耐火物2イニングのし
はシを挿入してスμ−゛トの開口比tm々変化させた以
外は実施例1と同じ操作条件で運転し、状況を観察した
。その結果は次の通)である。
The operation was carried out under the same operating conditions as in Example 1, except that the 7th flange of the section was removed, a water-cooled, refractory 2-inning insulator was inserted, and the opening ratio tm of the speed was varied, and the situation was observed. did. The result is as follows.

実施例J 実施例1と全く同一の装置のスロートの部分のフラ′ン
ジを取外し、水冷のしは9t−挿入してスロートの開口
比Rt″本発明の範囲内で槍々に変え、同時に、燃料送
入口の高さII f:0. 参からO,ttで喬直巴筒
部を交換し九以外は実施例1と同じ操業条件で運転した
。その結果は次の通ルである。
Example J The flange of the throat part of the same device as in Example 1 was removed, a 9-ton water cooling plate was inserted, and the throat opening ratio Rt was varied within the range of the present invention, and at the same time, Height of fuel inlet II f: 0. The Qiao Zhiba cylinder part was replaced at points 9 to 0 and tt, and the operation was carried out under the same operating conditions as in Example 1 except for point 9. The results are as follows.

(注) 次式にRを代入して求めたHの下方限界値  
HO,コク十〇、ダJR
(Note) Lower limit value of H obtained by substituting R into the following formula
HO, Koku 10, Da JR

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を示すす1クロン燃焼炉の断
面略図を中心とした製造工程図、縞λ図シよび第参図は
サイクロン燃焼炉の例を示す断面図、第3図はそれらの
水平方向断面図を表わす。また、第5図は1次燃焼炉か
らの放熱をl016以下に保つための7次燃焼炉火炉負
荷の下限と同内径の関係を示すグラブである。 l・・1次燃焼炉、/&・・@壁鉄皮、/b・・耐火物
2イニング、 Ja%コ、コb ・・原料送入口、 J
IL、 J、Jb  ・・燃料送入口、ダ・・ジャケッ
ト、ja・・冷却水入口、rb・・冷却水出口、6&・
・スタートIツブ用ガス又は油バーナ−,4b・・補助
バーナー、り・・3次空気送入口、ta・・スロートの
折れ曲った部分、111・スロート、jtl・・スロー
トのバイハス口、デ・・コ次燃焼炉、1o−−タップホ
ール、ll・・融液滞留層、lj・・コ次燃焼炉炉壁、
is・・空気予熱機、llI・・原料予熱績、lj・・
原料ホッパー、14・・集塵機、lり・・排ガス洗浄機
、ll・・燃料貯槽。 231− す3団 せ II  圀 X 10’   りf図 Q(嘗1) 手続補正書(方式) %式% 1事件の表示 昭和l4III−轡許願第1ttooJ号2、発明の名
称 溶成燐肥の製造方法 3、補正をする者 事件との関係  特許出願人 氏 名  (llり工業技術院長石板誠−4、代理人(
日本化学工業株式会社の)b、復代履人(工業技術院長
の) 7、補正の対象 (1)願   書 (11)ill細書 (8)委任状 8、補正の内容 (1)願書の浄書を別紙のとおり提出する。(内容に変
更なし)(11)明細書の浄書を別紙のとおり提出する
。(内容に変更なし)(8)姿任状−通を別紙のとおり
提出する。
Fig. 1 is a manufacturing process diagram centered on a schematic cross-sectional view of a cyclone combustion furnace showing an embodiment of the present invention, the striped lambda diagram and the reference figure are cross-sectional views showing an example of a cyclone combustion furnace, and Fig. 3 is Figure 3 represents their horizontal cross-section. Moreover, FIG. 5 is a graph showing the relationship between the lower limit of the furnace load of the seventh combustion furnace and the same inner diameter in order to keep the heat radiation from the primary combustion furnace below 1016. l...Primary combustion furnace, /&...@Wall shell, /b...Refractory 2 innings, Ja%Co, Cob...Raw material inlet, J
IL, J, Jb...fuel inlet, da...jacket, ja...cooling water inlet, rb...cooling water outlet, 6&...
・Gas or oil burner for start I knob, 4b... Auxiliary burner, ri... Tertiary air inlet, ta... Bent part of throat, 111. Throat, jtl... Bypass port of throat, de...・Co-order combustion furnace, 1o--tap hole, ll... melt retention layer, lj... co-order combustion furnace furnace wall,
is...air preheater, llI...raw material preheating record, lj...
Raw material hopper, 14... dust collector, l... exhaust gas cleaning machine, l... fuel storage tank. 231- 3 groups II 圀Manufacturing method 3, relationship with the case of the person making the amendment Name of patent applicant (Ishiita Makoto-4, Director of the Agency of Industrial Science and Technology, Agent)
(of Nippon Chemical Industry Co., Ltd.) b, Renewed representative (of the Director of the Agency of Industrial Science and Technology) 7. Subject of amendment (1) Application (11) Ill details (8) Power of attorney 8. Contents of amendment (1) Engraving of application Submit as attached. (No change in content) (11) Submit an engraving of the specification as attached. (No change in content) (8) Submit the letter of appointment as attached.

Claims (1)

【特許請求の範囲】[Claims] (1) サイクロン燃焼炉によル熔成燐肥原料組成物を
加熱法−して溶成燐肥を製造するに癲択画直巴箇状1次
燃焼炉とその下部にスーートによって接続堪れ九−次燃
焼炉との有効内容積比が1 : 0.γ〜l:りの範1
lIlにめるサイクロン燃焼炉KOJI科組成−と燃料
とを送入して火炉負荷と円筒内径の積がルJコX10・
以上で鉄組成物を加熱S鵬し、溶融物と燃焼ガスを並流
で下部の1次燃焼炉に導くことを特徴とする溶成燐肥の
製造方法。 (jal  /次燃焼炉は一直円筒金最に対する垂直円
筒下端から最下位燃料送入口までの高さの比翼と円筒内
径に対するスロート開口径の比翼とが、次式 %式% ) の関係にめることを特徴とする特詐−求の範囲第1項記
載の溶成燐肥の製造方法。 (3+  /次燃焼炉は、その側壁に同−又は複数位置
の水平断面内側の円周に対して切線方向を向いた夫々1
個又は豪数個の燃料および溶成燐肥原料組成物の送入口
を設け、かつ水平断面上の旋回流方向に対して原料送入
口が燃料送入口よシも約−00以上位相がおくれている
ことをIf!i微とする特許請求の範囲第1項又はコ項
記載の溶成燐肥の製造方法。 ζ41  /次燃焼炉翻壁構成材料のJOO℃〜/44
00℃の平均熱伝導度を参kcal/m−h・℃以上と
し、同炉を空気比/、0未満で操業することを特徴とす
る*t!l:t*求の範囲第1〜3項いずれか記載の溶
成燐肥の製造方法。
(1) A cyclone combustion furnace is used to heat the molten phosphorus fertilizer raw material composition to produce molten phosphorus fertilizer.The cyclone combustion furnace is connected to the primary combustion furnace and its lower part by a soot. The effective internal volume ratio with the ninth combustion furnace is 1:0. γ~l: Rinohan 1
By feeding the cyclone combustion furnace KOJI family composition and fuel into lIl, the product of the furnace load and the cylinder inner diameter is
A method for producing smelted phosphorus fertilizer, which comprises heating the iron composition as described above, and guiding the molten material and combustion gas in parallel flow to the primary combustion furnace at the lower part. (jal / For the secondary combustion furnace, the height ratio from the bottom of the vertical cylinder to the lowest fuel inlet with respect to the straight cylindrical metal height and the ratio ratio of the throat opening diameter to the cylinder inner diameter are expressed by the following formula % formula %) A method for producing melted phosphorous fertilizer according to item 1 of the claims. (3+ / The secondary combustion furnace has 1 - or multiple positions on its side wall, each facing in the tangential direction to the inner circumference of the horizontal section.
or several inlets for the fuel and melted phosphorus fertilizer raw material composition, and the raw material inlet and the fuel inlet are delayed in phase by about -00 degrees or more with respect to the swirling flow direction on the horizontal cross section. If you are there! A method for producing a melted phosphorous fertilizer according to claim 1 or 7, wherein the amount of i. ζ41 / JOO℃ of secondary combustion furnace turning wall constituent material ~ /44
It is characterized in that the average thermal conductivity at 00°C is greater than or equal to kcal/m-h·°C, and the furnace is operated at an air ratio of less than 0. The method for producing melted phosphorous fertilizer according to any one of items 1 to 3, where l:t* is the desired range.
JP56188002A 1981-11-24 1981-11-24 Production of fused phosphate fertilizer Granted JPS5889939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56188002A JPS5889939A (en) 1981-11-24 1981-11-24 Production of fused phosphate fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188002A JPS5889939A (en) 1981-11-24 1981-11-24 Production of fused phosphate fertilizer

Publications (2)

Publication Number Publication Date
JPS5889939A true JPS5889939A (en) 1983-05-28
JPS6319477B2 JPS6319477B2 (en) 1988-04-22

Family

ID=16215916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188002A Granted JPS5889939A (en) 1981-11-24 1981-11-24 Production of fused phosphate fertilizer

Country Status (1)

Country Link
JP (1) JPS5889939A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS478567A (en) * 1970-10-19 1972-05-06
JPS547704A (en) * 1977-07-26 1979-01-20 Takechi Komusho Kk Method of executing sheet pile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS478567A (en) * 1970-10-19 1972-05-06
JPS547704A (en) * 1977-07-26 1979-01-20 Takechi Komusho Kk Method of executing sheet pile

Also Published As

Publication number Publication date
JPS6319477B2 (en) 1988-04-22

Similar Documents

Publication Publication Date Title
CN105396379A (en) Method and kiln for producing combustible gas
CN105441687B (en) Dust of Iron And Steel Works recycles technique and system
CN100552007C (en) Boiler chromium-base slag-removing ash-cleaning energy saving composition and preparation technology thereof
CN101875985A (en) Energy-saving emission-reducing intensive blast furnace technology
CN208535989U (en) It is a kind of efficiently to utilize biological resource system
CN105314894A (en) Rotary kiln device and method for indirectly producing lime and recycling carbon dioxide
CN207276500U (en) A kind of cooled-preheated circulator of light calcined magnesia shaft furnace
CN206378010U (en) A kind of aluminium melting furnace afterheat utilizing system
CN104817084B (en) calcium carbide smelting furnace
CN204676041U (en) A kind of moving-bed gasification stove
WO2015131438A1 (en) Device for online modification of thermal-state smelting slag
CN204185249U (en) A kind for the treatment of unit of abraum salt
CN116146988A (en) System and method for disposing and separating metal oxide from oil residue gasification filter cake
CN206580845U (en) A kind of utilization high-temperature slag handles the device of incineration of refuse flyash
CN207247873U (en) Electrical heating shaft furnace material forced heat-exchanging device
JPS5889939A (en) Production of fused phosphate fertilizer
CN113277513B (en) Calcium carbide co-production system
CN204848782U (en) Slag granulation coal gasifier
CN204625479U (en) A kind of indirect calcination is produced lime, is reclaimed the rotary kiln device of carbonic acid gas
CN207987119U (en) Full water cooling formula fixed bed slag tap gasification installation
JP3734177B2 (en) Waste melting method
CN205990420U (en) A kind of reduction reaction system of fume afterheat furnace interior recycling type lateritic nickel ore dry bulb group
CN110173697A (en) A kind of solid waste gasification and melting incineration system and method based on double molten baths
JPS56133412A (en) Production of casting using reduced iron as raw material
JPH0346723B2 (en)