JPS5889811A - Foil-wound transformer - Google Patents

Foil-wound transformer

Info

Publication number
JPS5889811A
JPS5889811A JP18784481A JP18784481A JPS5889811A JP S5889811 A JPS5889811 A JP S5889811A JP 18784481 A JP18784481 A JP 18784481A JP 18784481 A JP18784481 A JP 18784481A JP S5889811 A JPS5889811 A JP S5889811A
Authority
JP
Japan
Prior art keywords
refrigerant
cooling duct
foil
ducts
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18784481A
Other languages
Japanese (ja)
Inventor
Kenichi Hashizume
健一 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP18784481A priority Critical patent/JPS5889811A/en
Publication of JPS5889811A publication Critical patent/JPS5889811A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/18Liquid cooling by evaporating liquids

Abstract

PURPOSE:To cool at a roughly constant refrigerating temperature over the entire windings while maintaining electrical insulation good under high tension by a method wherein a liquid refrigerant is caused to flow downward from the upper part of a high-tension side refrigerant duct and then to flow vaporizing upward from the lower part of a low-tension side refrigerant duct. CONSTITUTION:Liquid refrigerant is let out a pump 7 to be supercooled and goes into the upper part of a refrigerant duct 6' located in the outmost side of a high-tension coil 5. The liquid refrigerant then goes into the lower parts of refrigerant ducts 6. The refrigerant procedes in the refrigerant ducts 6, vaporizing, and combines in a manifold 15 to be led into a condenser 16. The vaporized part of the refrigerant condenses in the condenser 16 and is supercooled under the condensed liquid surface 17. The degree of supercooling is so set that the refrigerant does not vaporize in the refrigerant ducts 6' wherein it flows downward and that it immediately starts vaporizing upon entering the refrigerant ducts 6 wherein it flows upward.

Description

【発明の詳細な説明】 発明の属する技術分野 この発明は箔状導体と絶縁シートを重ねて巻回したコイ
ル内に冷却ダクトを内蔵した箔巻変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a foil-wound transformer in which a cooling duct is built into a coil formed by overlappingly wound a foil-like conductor and an insulating sheet.

従来技術とその問題点 箔巻変圧器は、巻装導体の占゛積率がよいので、線状の
導体を用いた変圧器と比較し小形・軽量化を実現できる
特長があるが、よシ高電圧・大容量の変圧器に適用する
には、コイルに対する冷却能力を向上させ高い絶縁能力
をコイルにもたせる必要があシ、この九めコイル内に冷
媒の流通する冷却ダクトを内蔵させ、コイルの導体から
発生する熱を直接的に冷却するよう構成されている。
Conventional technology and its problems Foil-wound transformers have the advantage of being smaller and lighter than transformers using linear conductors because the area factor of the wrapped conductor is good. In order to apply it to high-voltage, large-capacity transformers, it is necessary to improve the cooling ability of the coil and provide the coil with high insulation ability. It is designed to directly cool the heat generated from the conductor.

この種従来の箔巻変圧器゛は、第1図に示すように、鉄
心lの外側に箔状導体2と絶縁シート3を重ねて巻回し
てコイル体を構成し、このコイル体は低圧コイル4と高
圧コイル5とからなり、これらの各コイル内には環状の
冷却ダクト6が内蔵されている。この゛冷却ダクト内に
は狭い隙間があシR−113やPC−75などの冷媒1
4が満たされており、ポンプ7によシ流されることによ
って箔巻巻線内で発生したジュール熱を奪う。熱を吸収
することによって一度上昇した冷媒14は外部の冷却器
8で冷却水9によって冷却され、再びダクト内に送り込
まれる。集液管10はステンレスなどの金属で作られて
いるが、それ、と冷却ダクトを接続するために絶縁パイ
プ11が用いられているので、集液管10はタンク12
な″どのアース電位をとる。
As shown in Fig. 1, this type of conventional foil-wound transformer consists of a coil body formed by overlapping and winding a foil conductor 2 and an insulating sheet 3 on the outside of an iron core l, and this coil body is a low-voltage coil. 4 and a high-voltage coil 5, each of which has a built-in annular cooling duct 6. There is a narrow gap inside this cooling duct.
4 is filled, and the Joule heat generated within the foil-wound winding is taken away by the pump 7. The refrigerant 14, which has risen once by absorbing heat, is cooled by cooling water 9 in an external cooler 8, and is sent into the duct again. The liquid collection pipe 10 is made of metal such as stainless steel, and an insulated pipe 11 is used to connect it to the cooling duct, so the liquid collection pipe 10 is connected to the tank 12.
The ground potential is taken as follows.

一方、冷却ダクトとコイルは冷却ダクトがコイル内に巻
き込まれている関係上、はぼ同電位であり、それらと外
部との絶縁はタンク内に封入された絶縁用の8F・ガス
13によって表される。
On the other hand, the cooling duct and the coil are at almost the same potential because the cooling duct is wrapped inside the coil, and the insulation between them and the outside is represented by the insulating 8F gas 13 sealed in the tank. Ru.

なお、第1図において本発明と直装関係のない巻線のリ
ード線や、それをタンクの外に引き出すプ4シングなど
は省略しである。
In FIG. 1, the lead wires of the windings that are not directly connected to the present invention and the pushing wires that lead them out of the tank are omitted.

以上説明した箔巻変圧器は冷却のための冷媒が流れる循
環回路と絶縁のための絶縁体13とが完全に分離(セパ
レート)されていることからセパレート式箔巻変圧器と
呼ばれておシ、大幅な小型・軽量化が可能、絶縁信頼性
が高いな“どの利点を有している。
The foil-wound transformer described above is called a separate foil-wound transformer because the circulation circuit through which the refrigerant for cooling flows and the insulator 13 for insulation are completely separated. It has the advantages of being significantly smaller and lighter, and has high insulation reliability.

しかしながら、第1図、第2図に示し九従来のセパレー
ト式箔巻変圧器には次の問題点があった。
However, the nine conventional separate foil-wound transformers shown in FIGS. 1 and 2 have the following problems.

つまり、従来の変圧器にあっては冷却ダクト内の冷媒の
流れ方向が第3図に示すように一定方向(下から上)で
あったため、冷媒の流れ方向に沿って生じる温度上昇に
ともない、コイルの温度もそれに沿って高くなる。これ
によってコイル内にはその軸方向に大きな温度勾配が生
じ、その温度は冷却ダクトの出口近傍で最も高いものと
なる。
In other words, in conventional transformers, the flow direction of the refrigerant in the cooling duct was constant (from bottom to top) as shown in Figure 3, so as the temperature increases along the flow direction of the refrigerant, The temperature of the coil also increases accordingly. This creates a large temperature gradient within the coil in its axial direction, with the temperature being highest near the outlet of the cooling duct.

このコイル内における軸方向の温度勾配の発生は使用材
料′の耐熱性り面でコイルの最高温度をある値以下に抑
えなければなら々いこと、また、製作上、冷却ダクFの
設置数をできるだけ少なくしなければならないことなど
を考えるならば、非常に大きな欠点であった。
In order to generate this axial temperature gradient within the coil, the maximum temperature of the coil must be kept below a certain value due to the heat resistance of the material used, and the number of cooling ducts F must be controlled during manufacturing. This was a very big drawback considering that it had to be minimized as much as possible.

冷却ダクト内での流れ方向に沿う冷媒の温度上昇を避け
るためには冷却ダクト内で冷媒を蒸発させながら流すこ
とが考えられる。しかし高い電気絶縁性を要求される高
電圧の変圧器においては、アース電位をとる集液管部と
冷却ダクト(6)を接続する絶縁パイプ(11)の中が
完全に液で満たされていなければ高い電気絶縁性を保つ
ことができなかった。
In order to avoid a rise in the temperature of the refrigerant along the flow direction within the cooling duct, it is conceivable to flow the refrigerant while evaporating it within the cooling duct. However, in high-voltage transformers that require high electrical insulation, the inside of the insulated pipe (11) connecting the cooling duct (6) to the liquid collecting pipe section, which has an earth potential, must be completely filled with liquid. Otherwise, high electrical insulation could not be maintained.

発明の目的 本発明は以上説明したような事情を考慮してなされたも
ので、高電圧に対する電気絶縁性を保ちながら冷却ダク
ト内の冷′媒を蒸発させ、コイル内に温度勾配の生じな
いような箔巻変圧器を提供することを目的としている。
Purpose of the Invention The present invention has been made in consideration of the circumstances described above, and is a method of evaporating the refrigerant in the cooling duct while maintaining electrical insulation against high voltage, so as to prevent a temperature gradient from occurring within the coil. The purpose is to provide a foil-wound transformer.

発明の概要 すなわち、液相の冷媒を高電圧側の冷却ダクシの上部か
ら下部に向って流し、該冷却ダクトから流出する冷媒を
低電圧側の冷却ダクトの下部から上部に向って蒸発させ
ながら流すことによって上記目的を達しようとするもの
である。
Summary of the invention: A liquid phase refrigerant flows from the top to the bottom of the cooling duct on the high voltage side, and the refrigerant flowing out from the cooling duct flows from the bottom to the top of the low voltage side cooling duct while being evaporated. This aims to achieve the above objectives.

発明の効果 本発明によれば高電圧に対する電気絶縁性を保ち食から
巻線全体を#1ぼ一定の温度に冷却し得る箔巻変圧器を
実現できる。
Effects of the Invention According to the present invention, it is possible to realize a foil-wound transformer that maintains electrical insulation against high voltages and can cool the entire winding to approximately a constant temperature from corrosion.

発明の実施例 以下本発明の実施例を第4図を引用しながら説明する。Examples of the invention Examples of the present invention will be described below with reference to FIG.

なお第4図において従来と同じ構成1素には第1図〜第
3図と同一番号を符してその説明を省略する。
In FIG. 4, elements that are the same as those of the prior art are designated by the same numbers as in FIGS. 1 to 3, and their explanations will be omitted.

ポンプ(7)から吐出される過冷却されている液相の冷
媒は高圧コイル(5)側の最外側にある冷却ダク) t
e)の上部から流入し、ここからの液相の冷媒が次に他
の冷却ダクト(6)の下部に流入する。冷却ダクト(6
)の中で冷媒は蒸発しながら流れ、マンホールドttS
で合流して凝縮器αeに導かれる。凝縮器αeの中で冷
媒の蒸気は凝縮し、さらに凝縮液面の下で過冷却される
The supercooled liquid phase refrigerant discharged from the pump (7) is sent to the outermost cooling duct on the high pressure coil (5) side.
e), from which the liquid phase refrigerant then flows into the lower part of the other cooling duct (6). Cooling duct (6
), the refrigerant flows while evaporating, and the refrigerant flows through the manhold ttS.
and is led to the condenser αe. The refrigerant vapor condenses in the condenser αe and is further subcooled below the condensed liquid level.

冷媒の過冷却の産金は、冷媒が下向きに流れる冷却タリ
ト晶の中では蒸発せず、冷媒が上向きに流れる冷却ダク
) ’ (6)に流入してすぐに蒸発が開始するように
股淀される。
The product of supercooling of the refrigerant does not evaporate in the cooling talitic crystal where the refrigerant flows downward, but it flows into the cooling duct (6) where the refrigerant flows upward and starts evaporating immediately. be done.

次に本発明による効果を説明する。まず、高圧コイル(
5)の中でも最も高電圧になってい−る部分には液相の
冷媒が満たされているので、高電圧に対して高い電気絶
縁性が保たれる。内部で冷媒が蒸発する冷却ダクト(6
)の中の冷媒の温度は一定であるので冷却ダクトの上下
に温度勾配が生じな、い。
Next, the effects of the present invention will be explained. First, the high voltage coil (
5) Since the part with the highest voltage is filled with liquid phase refrigerant, high electrical insulation is maintained against high voltage. Cooling duct (6) where refrigerant evaporates inside
) The temperature of the refrigerant in the cooling duct is constant, so there is no temperature gradient between the top and bottom of the cooling duct.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の箔巻変圧器の概略構成を、示す断面図、
第2図は第1図の一部拡大図、第3図は第1図の箔巻変
圧器を構成する冷却ダクト内の冷媒の流れ方向を示す図
、第4図は本発明による箔巻変圧器の構成の一実施例を
示す図である。 4・・・低圧コイル   5・・・高圧コイル代理人 
弁理士 則 近 憲 佑 (ほか1名)第1図 (1) /4 第2図 第3図 第4図
Figure 1 is a sectional view showing the schematic configuration of a conventional foil-wound transformer.
Fig. 2 is a partially enlarged view of Fig. 1, Fig. 3 is a diagram showing the flow direction of the refrigerant in the cooling duct constituting the foil-wound transformer of Fig. 1, and Fig. 4 is the foil-wound transformer according to the present invention. It is a figure showing one example of the composition of a container. 4...Low voltage coil 5...High voltage coil agent
Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 (1) /4 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 垂直な鉄心の外側に箔状導体と絶縁シートを重ねて巻き
つけ、それら巻線間に内部を冷媒が流れる冷却ダクトを
内蔵させた箔巻変圧器において、凝縮器からの冷媒を高
電圧側の冷却ダクトの上部から下部に向って流し、該冷
却ダクトから流出する冷媒を低電圧側の冷却ダクトの下
部から上部に向って蒸発させながら流すよう構成したこ
とを特徴とする箔巻変圧器。
In a foil-wound transformer, a foil conductor and an insulating sheet are layered and wound around the outside of a vertical core, and a cooling duct is built in between the windings, through which refrigerant flows. A foil-wound transformer characterized in that the refrigerant flows from the upper part of the cooling duct toward the lower part, and the refrigerant flowing out from the cooling duct flows from the lower part to the upper part of the cooling duct on the low voltage side while being evaporated.
JP18784481A 1981-11-25 1981-11-25 Foil-wound transformer Pending JPS5889811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18784481A JPS5889811A (en) 1981-11-25 1981-11-25 Foil-wound transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18784481A JPS5889811A (en) 1981-11-25 1981-11-25 Foil-wound transformer

Publications (1)

Publication Number Publication Date
JPS5889811A true JPS5889811A (en) 1983-05-28

Family

ID=16213209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18784481A Pending JPS5889811A (en) 1981-11-25 1981-11-25 Foil-wound transformer

Country Status (1)

Country Link
JP (1) JPS5889811A (en)

Similar Documents

Publication Publication Date Title
JPS5889811A (en) Foil-wound transformer
JPS59159514A (en) Foil-wound transformer
JPS5933810A (en) Foil-wound transformer
JPS5889813A (en) Foil-wound transformer
JPS5940511A (en) Transformer
JPS59159511A (en) Foil-wound transformer
JPS6095907A (en) Foil wound transformer
JPS5978511A (en) Foil-wound transformer
JPS61187311A (en) Foil-wound transformer
JPS5984509A (en) Stationary induction electric apparatus
JPS6218017Y2 (en)
JPS5889815A (en) Foil-wound transformer
JPS5863110A (en) Transformer
JPS5893312A (en) Transformer
JPS5893206A (en) Transformer
JPS61179511A (en) Foil-wound transformer
JPS6174310A (en) Foil wound transformer
JPH02123712A (en) Foil-wound transformer
JPS5879710A (en) Foil wound transformer
JPS6057604A (en) Foil-wound transformer
JPS58219717A (en) Evaporative cooling type transformer
JPS59121810A (en) Foil-wound transformer
JPS61272909A (en) Vapor-cooling type gas-insulated electric machine
JPS5889814A (en) Foil-wound transformer
JPS59191310A (en) Foil-wound transformer