JPS5888513A - Sprayer - Google Patents

Sprayer

Info

Publication number
JPS5888513A
JPS5888513A JP18756281A JP18756281A JPS5888513A JP S5888513 A JPS5888513 A JP S5888513A JP 18756281 A JP18756281 A JP 18756281A JP 18756281 A JP18756281 A JP 18756281A JP S5888513 A JPS5888513 A JP S5888513A
Authority
JP
Japan
Prior art keywords
liquid
nozzle
flow
blocking member
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18756281A
Other languages
Japanese (ja)
Inventor
Jiro Suzuki
次郎 鈴木
Hisanori Shimoda
下田 久則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18756281A priority Critical patent/JPS5888513A/en
Publication of JPS5888513A publication Critical patent/JPS5888513A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/44Preheating devices; Vaporising devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Evaporation-Type Combustion Burners (AREA)
  • Spray-Type Burners (AREA)

Abstract

PURPOSE:To obtain smaller particles of liquid at a blocking member, by raising the temperature of a liquid ejected from a small hole of a nozzle toward the blocking member by a heating means. CONSTITUTION:A blocking member 3 is disposed on the downstream side of a nozzle 1 having a small hole 2 in the manner that it is located at a predetermined distance from the nozzle 1, while a liquid pressurizing pump 4 and a liquid tank 5 connected by a pipe are disposed on the upstream side of the nozzle 1. Liquid ejected from the nozzle 1 by the pump 4 is formed into either of three flow patterns, smooth flow, vibration flow and divided flow, according to the shape of the small hole 2, speed of the liquid flow, etc. The jet flow of the liquid impinges onto a blocking member 3, produces various vibration waves near the impinging point, and produces finely divided particles of liquid from the top of the vibration waves. Thus, since smaller particles of liquid can be obtained by use of the blocking member 3 and they are heated on the downstream side of the pressuring pump, it is prevented that the pressurizing pump is heated to a high temperature.

Description

【発明の詳細な説明】 本発明は液体を加圧し、ノズルの細孔より直線状に噴出
した噴流を衝突体に当て粉砕して微粒化する衝突微粒化
方式の噴霧装置(τ関するもので、液温変化による噴霧
粒径の変動を少なくすることを目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an impact atomization type spraying device (τ) in which a liquid is pressurized and a jet stream ejected linearly from a pore of a nozzle is applied to an impactor to crush and atomize the liquid. The purpose is to reduce fluctuations in spray particle size due to changes in liquid temperature.

一般に衝突による微粒子は、液温か低下すれば粒径が大
となる傾向を有する為に粒径の変化が問題となる装置に
は使用できないものであった。例えば液体燃料燃焼装置
に用いた場合、燃料油の温度が低下した場合、粘度が対
数的に増加し、粘度が増加すれば衝突後液体が分裂して
微粒になりにくくなるのである。
In general, fine particles produced by collision tend to increase in particle size as the liquid temperature decreases, so they cannot be used in devices where changes in particle size are a problem. For example, when used in a liquid fuel combustion device, when the temperature of fuel oil decreases, the viscosity increases logarithmically, and as the viscosity increases, the liquid becomes less likely to split into fine particles after collision.

即ち粘度の増加に打勝つべく質量の大なる粒子が発生し
やすくなるのであるL 液体燃料燃焼装置の中でも発生した噴霧を燃焼用空気と
予混合して燃焼部へ送り燃焼させる方式のjb ビ ものに、このような衝突微粒化方式を用い一1低温時に
巨粒を発生する為に空気流に浮遊しにくい巨粒が予混合
気の中で沈降する現象を発生し、燃焼部への搬送噴霧量
が減少してしまう。
In other words, in order to overcome the increase in viscosity, particles with larger mass are more likely to be generated. Therefore, by using this collisional atomization method, large particles are generated at low temperatures, so large particles that are difficult to float in the air flow settle in the premixture, and the spray is transported to the combustion section. The amount will decrease.

本発明はこのような従来の欠点を一掃したもので以下そ
の一実施例を図面とともに説明する。
The present invention eliminates these conventional drawbacks, and one embodiment thereof will be described below with reference to the drawings.

図において1は細孔2を有するノズルであり、前記ノズ
ル1の下流には所定間隔をおいて衝突体3が配設されて
いる。前記ノズル1の上流には液体用加圧ポンプ4及び
液体タンク5がパイプで連結されて設けられている。
In the figure, reference numeral 1 denotes a nozzle having a pore 2, and a collision body 3 is disposed downstream of the nozzle 1 at a predetermined interval. A liquid pressure pump 4 and a liquid tank 5 are provided upstream of the nozzle 1 and connected by a pipe.

前記加圧ポンプ4より噴出した直線上の噴流は細孔2の
形状、噴流の速度等によって平滑流あるいハ娠動流、分
裂流の3種のパターンを示し、この噴流が衝突体3に当
り、衝突点近傍に種々の振動波を誘起し、かつその振動
波の先端より分裂微粒子を発生している。
The straight jet flow ejected from the pressurizing pump 4 shows three types of patterns: smooth flow, turbulent flow, and split flow depending on the shape of the pores 2, jet speed, etc., and this jet flow hits the impactor 3. When the collision occurs, various vibration waves are induced in the vicinity of the collision point, and fragmented particles are generated from the tips of the vibration waves.

従って微粒子を衝突体3上で大量に発生させる為には、
(1)  振動波を犬きくする、(2Ji動波の波頭よ
ジ粒子を分裂しゃすぐする、という2点が考えられる。
Therefore, in order to generate a large amount of fine particles on the collision body 3,
(1) There are two possible ways to do this: to make the vibration waves stronger, and to split the particles from the wave front of the 2Ji dynamic waves.

そこで液体の粘度を低ぐすれば上述の2点に対して有効
となる。
Therefore, lowering the viscosity of the liquid will be effective against the above two points.

即ち、低粘度の液体は振動波を減衰することがなく大き
な波動を可能とするとともに、波頭の分裂に対抗して働
く分子間引力が弱く容易に波頭より粒子を分裂しつる。
That is, a low-viscosity liquid enables large wave motion without attenuating vibrational waves, and the intermolecular attraction that acts against the splitting of the wave crest is weak, so that particles can easily be split from the wave crest.

この場合の挙動を詳しく説明すると、波頭は波動の運動
量及び液体の表面張力で分裂しようとし、液体の粘性が
これに対抗しているわけである。従って低粘度の液体は
、容易に分裂微粒子を発生するばかりではなく、質量の
小さい、即ち径粒の小なる微粒子を分裂発生させるもの
である。
To explain the behavior in this case in detail, the wave front tends to split due to the momentum of the wave and the surface tension of the liquid, and the viscosity of the liquid opposes this. Therefore, a low-viscosity liquid not only easily splits into fine particles, but also splits into small particles with small mass, that is, small diameter particles.

本発明実施例は液体の粘度を低下させることによる効果
に注目し、ノズル1上流に於て予め一定の温度に液体を
加熱して粘性を低下させる加熱装置6を設けることによ
り、微粒子発生量の増加、平均径の小径化、液温変動に
よる噴霧特性変動の防止を可能としている。
The embodiment of the present invention focuses on the effect of reducing the viscosity of the liquid, and by providing a heating device 6 upstream of the nozzle 1 that heats the liquid to a certain temperature in advance to reduce the viscosity, the amount of fine particles generated can be reduced. This makes it possible to increase the average diameter, reduce the average diameter, and prevent fluctuations in spray characteristics due to fluctuations in liquid temperature.

又かかる加熱装置8によって液体をその大気圧下での沸
点以上に加熱してはならない。即ちノズル1内の液体は
加圧されている為に前記沸点以上に加熱しても液相であ
るが、ノズル1の下流に於て大気圧になれば減圧沸騰を
起し有効に直線状となって衝突体、3へ到達しえないか
らである。
Furthermore, the heating device 8 must not heat the liquid above its boiling point under atmospheric pressure. In other words, since the liquid in the nozzle 1 is pressurized, it remains in a liquid phase even if heated above the boiling point, but if it reaches atmospheric pressure downstream of the nozzle 1, it will boil under reduced pressure and become effectively linear. This is because the collision object cannot reach 3.

又発明者の実験によれば、噴流は極めて高速であるので
衝突体3に至るまで温度低下がほとんどないもので、ノ
ズル1の上流に加熱装置6を備えても下流の衝突体3で
の微粒化に有効であることが判明した。また前記加熱装
置6に正抵抗特性を有するヒータとし、前記加熱装置6
を通過する液体を一定に保つようにしている。
Also, according to the inventor's experiments, since the jet flow is extremely high-speed, there is almost no temperature drop up to the impactor 3, and even if the heating device 6 is provided upstream of the nozzle 1, the fine particles at the downstream impactor 3 will not decrease. It turned out to be effective for Further, the heating device 6 is a heater having positive resistance characteristics, and the heating device 6 is a heater having positive resistance characteristics.
The liquid passing through is kept constant.

以上のように本発明はノズルの細孔から衝突体に向けて
噴出される液体の温度を加熱装置で高めるので、衝突体
においてより小さな粒子とすることができ、また加圧ポ
ンプ下流で加熱するので、加圧ポンプが高温化す・るこ
ともない。
As described above, the present invention uses a heating device to increase the temperature of the liquid ejected from the pores of the nozzle toward the colliding body, so it is possible to form smaller particles in the colliding body, and the liquid is heated downstream of the pressure pump. Therefore, the pressure pump does not heat up.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す構成図である。 1 、、、、、、ノズル、2 、、、、、、細孔、3 
、、、、、、衝突体1.4 、、、、、、加圧ポンプ、
5 、、、、、、液体タンク、6・・・・・・加熱装置
The figure is a configuration diagram showing an embodiment of the present invention. 1. Nozzle, 2. Pore, 3.
, , , , Colliding body 1.4 , , , , Pressure pump,
5 , , , , liquid tank, 6 ... heating device 0

Claims (2)

【特許請求の範囲】[Claims] (1)細孔より噴流させた液体を衝突体に弧突させるノ
ズルと、液体の加圧ポンプとの経路間に液体? 加熱装置を設けた噴霧装置。
(1) Is there liquid between the path between the nozzle that makes the liquid jetted from the pore impinge on the colliding body and the liquid pressurizing pump? Spray device equipped with a heating device.
(2)  液体加熱装置は正抵抗特性を有するヒ〜りで
構成した特許請求の範囲第1項te&q噴雪装置。
(2) The snow blowing device according to claim 1, wherein the liquid heating device is constituted by a heater having positive resistance characteristics.
JP18756281A 1981-11-20 1981-11-20 Sprayer Pending JPS5888513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18756281A JPS5888513A (en) 1981-11-20 1981-11-20 Sprayer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18756281A JPS5888513A (en) 1981-11-20 1981-11-20 Sprayer

Publications (1)

Publication Number Publication Date
JPS5888513A true JPS5888513A (en) 1983-05-26

Family

ID=16208251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18756281A Pending JPS5888513A (en) 1981-11-20 1981-11-20 Sprayer

Country Status (1)

Country Link
JP (1) JPS5888513A (en)

Similar Documents

Publication Publication Date Title
US7721811B2 (en) High velocity low pressure emitter
JP2000508988A (en) Car washing equipment
KR960037129A (en) Fluid injection nozzle
CA2254969A1 (en) Liquid atomization process
JP2011504220A (en) Split flow pre-formed fuel nozzle
Eroglu et al. Initial drop size and velocity distributions for airblast coaxial atomizers
JPS5888513A (en) Sprayer
Tseng et al. Control of mixing with micro injectors for combustion application
JPH06226149A (en) Liquid fine pulvelizing device
JP2822609B2 (en) Liquid fuel combustion device
Dombrowski et al. On the stability of liquid sheets in hot atmospheres
Mizutani et al. An investigation on ultrasonic atomization
JPS5952556A (en) Atomizing apparatus
Chandrasekhar Liquid jet injection into a supersonic crossflow: Influence of jet orifice shape on penetration and atomization
JPH05337405A (en) Liquid atomizing device
JPS5888051A (en) Spray apparatus
JPS58182010A (en) Burner for liquid fuel
Mohan et al. Experimental spray characterisation of air-assisted impinging jets
Tsai et al. Ultrasound-modulated twin-fluid jet atomization
BE477221A (en)
Klenk et al. Disintegration of monodisperse droplet streams by shock waves
Dafsari et al. An experimental study on flow and spray characteristics of pressure swirl nozzle with variation of swirl chamber length
JPS63218274A (en) Liquid atomizer
JPS597811A (en) Atomizer
CH243292A (en) Device for spraying liquids in aerosol form.