JPS58182010A - Burner for liquid fuel - Google Patents

Burner for liquid fuel

Info

Publication number
JPS58182010A
JPS58182010A JP6586282A JP6586282A JPS58182010A JP S58182010 A JPS58182010 A JP S58182010A JP 6586282 A JP6586282 A JP 6586282A JP 6586282 A JP6586282 A JP 6586282A JP S58182010 A JPS58182010 A JP S58182010A
Authority
JP
Japan
Prior art keywords
liquid fuel
colliding
collision
liquid
colliding body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6586282A
Other languages
Japanese (ja)
Inventor
Hisashi Kodama
久 児玉
Jiro Suzuki
次郎 鈴木
Hisanori Shimoda
下田 久則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6586282A priority Critical patent/JPS58182010A/en
Priority to GB08310391A priority patent/GB2120958B/en
Priority to CA000426144A priority patent/CA1218395A/en
Publication of JPS58182010A publication Critical patent/JPS58182010A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/005Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space with combinations of different spraying or vaporising means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/26Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
    • B05B1/262Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors
    • B05B1/265Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets with fixed deflectors the liquid or other fluent material being symmetrically deflected about the axis of the nozzle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Evaporation-Type Combustion Burners (AREA)

Abstract

PURPOSE:To provide the titled device which has a very high atomizing efficiency and an excellent atomizing property and is adapted to perform an efficient and perfect combustion of a liquid fuel, by improving the shape of a colliding body. CONSTITUTION:The apex part of an colliding body 9 is formed in an inverted cone, and a colliding surface 8 makes an acute angle with an adjacent colliding body surface 8a around the impinging surface 8. Thus, when the liquid fuel spread to make a liquid film by the colliding surface 8 is flown into a space, it only makes contact with a sharp edge part 10 which is different from the case of a conventional cylindrical colliding body, and thereby, the reduction in a speed in a radial direction is made very low. Further, because of the shape described above, the surface tension of the liquid fuel exceeds an affinity between the liquid fuel and the colliding body side 8a, and the liquid fuel is prevented from wetting the colliding body side 8a. Thus, the speed in the radial direction within the liquid film is approximately maintained, the formed liquid film is thinned, very fine atomized particles are formed, and simultaneously, nearly all of the fuel jetted through a nozzle may be atomized.

Description

【発明の詳細な説明】 本発明は衝突霧化現象を用いて液体燃料を微粒化して燃
焼させる液体燃料燃焼装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid fuel combustion device that atomizes and burns liquid fuel using the collision atomization phenomenon.

衝突霧化は従来から広く研究されており、細孔を有する
ノズルから液体を噴出させ、これを衝突体に衝突させて
微粒化を行うものである。
Collision atomization has been widely studied in the past, and involves ejecting liquid from a nozzle having fine holes and colliding it with an impactor to atomize the liquid.

ノズルから噴出する液体は、最初は平滑な円柱状をして
いるか次第に振動しはじめ、ついには分断して滴状流に
なる。衝突霧化には、噴流を平滑流領域で衝突させる方
式と、滴状流領域で衝突させる方式かあるか、本発明は
前者の平滑流領域て衝2へ二 突させる方式に関するものである。この方式は、滴状流
領域で衝突させる方式に比べて、霧化効率か格段に良(
、ノズルから衝突体重での距離を小さくできる等の長所
がある。すなわち、滴状流領域で衝突させる方式では、
ノズルから噴出させた液体の半分程度しか微粒化できず
、装置も大きくなるきらいがある。
The liquid ejected from the nozzle initially has a smooth cylindrical shape, but gradually begins to vibrate, and eventually breaks up into droplets. For collision atomization, there are two methods: one in which the jets collide in a smooth flow region, and the other in a droplet flow region. The present invention relates to the former method in which the jets collide into collision 2 in the smooth flow region. This method has much better atomization efficiency than the method of colliding in the droplet flow region (
, it has advantages such as being able to reduce the distance from the nozzle to the collision weight. In other words, in the method of colliding in the droplet flow region,
Only about half of the liquid ejected from the nozzle can be atomized, and the device tends to be large.

しかし、平滑流領域で衝突させる方式でも霧化効率は1
00係ではなく、いくらかに、衝突体に付着してしまう
。1だ、生成される噴霧粒子径は比較的大きく、完全燃
焼させるためには種々の工夫が必要であった。
However, even with the method of colliding in a smooth flow region, the atomization efficiency is 1
Some of them, not just 00, will stick to the collision object. 1. The diameter of the spray particles produced was relatively large, and various measures were required to achieve complete combustion.

本発明は、この様な平滑流領域で衝突させる衝突霧化の
欠点を改善するためになされたものであって、霧化効率
の向−1−と微粒化特性の改善を目的とし、液体燃料を
効率よく完全燃焼させることができる液体燃料燃焼装置
を提供するものである。
The present invention was made in order to improve the drawbacks of collision atomization in which collisions occur in such a smooth flow region, and aims to improve the atomization efficiency and atomization characteristics. To provide a liquid fuel combustion device that can efficiently and completely burn liquid fuel.

以−ドに、本発明の一実施例を図面とともに説明する。An embodiment of the present invention will be described below with reference to the drawings.

丼す、第1図、第2図により従来の液体燃料燃焼装置を
説明する。液体燃料はポンプ1により加圧されて、ノズ
ル2の細孔より噴出する。衝突体3は、円形の衝突面4
が噴流の平滑流領域で噴流に対して直角に位置する様に
ノズル2に取付けられている。捷だ、衝突面4は摩擦に
よって燃料の持つ運動量を減少させない様に鏡面に研摩
されている。ノズル2から噴出した燃料噴流は、衝突面
4に衝突して液膜を形成し、液膜周辺部から分裂して微
粒子となる。生成された微粒子は送風ファン6によって
供給され、整流格子6で整流された空気流によって搬送
され、炎口部7で燃焼する。
A conventional liquid fuel combustion device will be explained with reference to FIGS. 1 and 2. The liquid fuel is pressurized by the pump 1 and is ejected from the pores of the nozzle 2. The collision body 3 has a circular collision surface 4
is attached to the nozzle 2 so that it is located perpendicular to the jet in the smooth flow region of the jet. The collision surface 4 is polished to a mirror surface so as not to reduce the momentum of the fuel due to friction. The fuel jet ejected from the nozzle 2 collides with the collision surface 4 to form a liquid film, which is split from the periphery of the liquid film to become fine particles. The generated fine particles are supplied by a blower fan 6, transported by an air flow rectified by a rectifying grid 6, and burned at a flame port 7.

完全燃焼させるためには生成する微粒子径は小さいほど
良く、そのためには衝突面4で形成される液膜の厚さを
小さくしなければならない。液膜厚さは液体燃料の液膜
内での半径方向の速度によって決丑るので、衝突面4で
燃料噴流の持つ運動量をできるだけ保存する必要がある
。そのため衝突面4表面での摩擦を減少させるため、衝
突面を鏡面にしている。しかし、衝突面4」二で広がっ
た液膜−1衝突面4周辺から空間に飛び出す時に衝突体
側面4aと液体燃料との親和力によって、その半径方向
の速度を減じられるとともに、衝突体側面4aを濡らす
ことになる。このために、形成される液膜厚さが大きく
なり、生成される噴霧の粒子径を十分小さくすることが
できない。また、ノズル2から噴出する液体燃料をすべ
て霧化することができず、一部分は衝突体側面4aに付
着してタレを生じるなどの欠点がある。
In order to achieve complete combustion, the smaller the particle size is, the better, and for this purpose, the thickness of the liquid film formed on the collision surface 4 must be reduced. Since the liquid film thickness is determined by the radial velocity of the liquid fuel within the liquid film, it is necessary to preserve the momentum of the fuel jet at the collision surface 4 as much as possible. Therefore, in order to reduce the friction on the collision surface 4, the collision surface is made into a mirror surface. However, when the liquid film that spreads on the collision surface 4''2 jumps out from around the collision surface 4 into space, its radial velocity is reduced due to the affinity between the collision body side surface 4a and the liquid fuel, and the collision body side surface 4a is It will get wet. For this reason, the thickness of the liquid film formed becomes large, and the particle size of the generated spray cannot be made sufficiently small. Further, there is a drawback that all of the liquid fuel ejected from the nozzle 2 cannot be atomized, and a portion of it adheres to the side surface 4a of the collision body, causing dripping.

本発明はこれらの欠点を改善するためになされたもので
あり、衝突体の形状を改良することにより微粒化特性と
霧化効率の向上を実現したものである。本発明の一実施
例を第3図、第4図に示し、第1図と同じ部品にd、同
一番号を付している。
The present invention has been made to improve these drawbacks, and by improving the shape of the collision body, it has realized improvements in atomization characteristics and atomization efficiency. An embodiment of the present invention is shown in FIGS. 3 and 4, in which the same parts as in FIG. 1 are denoted by the same numbers as d.

衝突面8は円形で鏡面に研摩しているのは従来と同様で
あるか、衝突体9の先端部を逆円錐状にしており、衝突
面8周辺では衝突面8とこれに隣接する衝突体側面8a
が鋭角をなしている。このため、衝突面8で液膜に広げ
られた液体燃料は空間に飛ひ出す際に、鋭いエツジ部1
oに接触するだけなので、従来の様な円柱状の衝突体の
場合と異5ペーブ なり半径方向の速度の減少が極めて小さくなる。
The collision surface 8 is circular and polished to a mirror surface, as in the past, or the tip of the collision body 9 is shaped like an inverted cone, so that around the collision surface 8, the collision surface 8 and adjacent collision bodies Side 8a
forms an acute angle. For this reason, when the liquid fuel spread into a liquid film on the collision surface 8 is ejected into space, it has sharp edges 1.
Since the collision body only makes contact with the cylindrical collision body, the decrease in velocity in the radial direction is extremely small, unlike in the case of a conventional cylindrical collision body.

また、この様な形状とすることで、液体燃料と衝突体側
面8aとの親和力に液体燃料の表面張力が打ち勝ち、液
体燃料が衝突体側面8aを濡らすことかな(なる。従っ
て、液膜内での半径方向速度はほぼ保存されて、形成さ
れる液膜の厚さが薄くなり、非常に小さな噴霧粒子が生
成されるとともに、ノズルから噴射した燃料のほぼ全量
を霧化することが可能である。
Moreover, by adopting such a shape, the surface tension of the liquid fuel overcomes the affinity between the liquid fuel and the side surface 8a of the collision body, and the liquid fuel wets the side surface 8a of the collision body. The radial velocity of the nozzle is almost conserved, the thickness of the liquid film formed is reduced, very small atomized particles are produced, and it is possible to atomize almost the entire amount of fuel injected from the nozzle. .

この実施例で用いたノズル11は細孔の径が80μmで
、衝突面8の径は1鴫である。丑だ、ノズル11で得ら
れる燃料噴流の平滑流領域の長さは約70遍であった。
The nozzle 11 used in this example has a pore diameter of 80 μm, and the collision surface 8 has a diameter of 1 μm. Unfortunately, the length of the smooth flow region of the fuel jet obtained by the nozzle 11 was approximately 70 degrees.

これはノズル細孔の形状や燃料の噴出速度や外的なしよ
う乱によって決するものであるが、衝突面8は常にこの
領域内に位置させる必要がある。本実施例では、ノズル
出口から衝突面8までの距離は40瑞とした。衝突体9
の衝突面8付近は逆円錐状にし、衝突面8周辺のエツジ
部1oでの衝突面8と衝突体側面8aのなす角度は46
°である。本実施例では、衝突面6ベー二゛ 8は円形で平端な形状としているが、本発明はこれに限
定するものではなく、例えば衝突面8として半球状の凸
面を用いた場合でも同様な効果が得られる。
This is determined by the shape of the nozzle pore, the fuel jet speed, and external disturbances, but the collision surface 8 must always be located within this region. In this example, the distance from the nozzle outlet to the collision surface 8 was 40 mm. Collider 9
The vicinity of the collision surface 8 is shaped like an inverted cone, and the angle between the collision surface 8 and the collision body side surface 8a at the edge portion 1o around the collision surface 8 is 46.
°. In this embodiment, the collision surface 6 8 has a circular flat end shape, but the present invention is not limited to this. For example, even if a hemispherical convex surface is used as the collision surface 8, the same effect can be obtained. is obtained.

また、液体燃料に加える圧力は、燃焼量や平滑流領域の
長さを決定するから、これらを勘案して決めれば良い。
Further, since the pressure applied to the liquid fuel determines the amount of combustion and the length of the smooth flow region, it may be determined by taking these into consideration.

しかし、微粒化特性上からは、圧力Pと衝突面8で形成
される液膜の直径りがdD/dP (Oなる関係が成立
する領域に設定することが望ましい。圧力Pと液膜径り
の関係を説明すると、圧力Pを除々に増加させてゆくと
、形成される液膜径りは最初はPの増加とともに大きく
なる。すなわち、この領域ではdD/dP)○であり、
形成される液膜は平滑な層流膜で、噴霧粒子はほとんど
液膜周辺部のみで生成される。しかし、さらにPを増加
させると、形成される液膜は乱流膜となり、dD/dP
(○となる。この領域では噴霧粒子は液膜の周辺部以外
でも生成される様になり、この時の粒子径は層流膜から
生成される粒子径よりも小さくなる。従って、圧力Pは
この領域7ベ 内で設定することが望捷しい。
However, from the viewpoint of atomization characteristics, it is desirable to set the pressure P and the diameter of the liquid film formed at the collision surface 8 in a region where the relationship dD/dP (O) holds. To explain the relationship, as the pressure P is gradually increased, the diameter of the liquid film formed initially increases as P increases.In other words, in this region, dD/dP)○,
The liquid film formed is a smooth laminar flow film, and spray particles are almost exclusively generated around the liquid film. However, when P is further increased, the liquid film formed becomes a turbulent film, and dD/dP
(It will be ○. In this region, spray particles will be generated in areas other than the periphery of the liquid film, and the particle size at this time will be smaller than the particle size generated from the laminar flow membrane. Therefore, the pressure P will be It is desirable to set it within this area of 7.

以」二の説明から明らかな様に、本発明は極めて簡単な
構造で、非常に高い霧化効率と良好な微粒化特性を有す
る燃料微粒化手段を実現することで、液体燃料を効率よ
く完全燃焼させることができる液体燃料燃焼装置を提供
するものであり、その工業的価値は非常に高い。
As is clear from the following explanation, the present invention has an extremely simple structure and achieves a fuel atomization means having extremely high atomization efficiency and good atomization characteristics, thereby efficiently and completely converting liquid fuel. The present invention provides a liquid fuel combustion device that can burn liquid fuel, and its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液体燃料燃焼装置を一部切断した側面図
、第2図は第1図A部の拡大断面図、第3図は本発明の
一実施例にかかる液体燃料燃焼装置を一部切断した側面
図、第4図は第3図B部の拡大断面図である。 6 ・・・送風ファン、7・・・・・・炎口部、8・・
・・・・衝突面、8a・・・・・衝突面側面、9・・・
・・衝突体。
FIG. 1 is a partially cutaway side view of a conventional liquid fuel combustion device, FIG. 2 is an enlarged sectional view of section A in FIG. 1, and FIG. 3 is a side view of a conventional liquid fuel combustion device according to an embodiment of the present invention. FIG. 4 is an enlarged sectional view of section B in FIG. 3. 6...Blower fan, 7...Flamer mouth part, 8...
...Collision surface, 8a...Collision surface side, 9...
... Colliding object.

Claims (1)

【特許請求の範囲】[Claims] 液体燃料を衝突霧化させる衝突体を設け、前記衝突体の
液体燃料衝突面とそれに隣接する他の構成面とが鋭角を
なす様に構成した液体燃料燃焼装置。
A liquid fuel combustion device comprising: a collision body that collides and atomizes liquid fuel, and configured such that a liquid fuel collision surface of the collision body and another constituent surface adjacent thereto form an acute angle.
JP6586282A 1982-04-19 1982-04-19 Burner for liquid fuel Pending JPS58182010A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6586282A JPS58182010A (en) 1982-04-19 1982-04-19 Burner for liquid fuel
GB08310391A GB2120958B (en) 1982-04-19 1983-04-18 Atomizer
CA000426144A CA1218395A (en) 1982-04-19 1983-04-19 Atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6586282A JPS58182010A (en) 1982-04-19 1982-04-19 Burner for liquid fuel

Publications (1)

Publication Number Publication Date
JPS58182010A true JPS58182010A (en) 1983-10-24

Family

ID=13299235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6586282A Pending JPS58182010A (en) 1982-04-19 1982-04-19 Burner for liquid fuel

Country Status (1)

Country Link
JP (1) JPS58182010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232322A (en) * 2007-03-22 2008-10-02 Nissan Diesel Motor Co Ltd Automobile differential device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232322A (en) * 2007-03-22 2008-10-02 Nissan Diesel Motor Co Ltd Automobile differential device

Similar Documents

Publication Publication Date Title
US5249746A (en) Low pressure paint atomizer-air spray gun
US7721811B2 (en) High velocity low pressure emitter
US5456414A (en) Suction feed nozzle assembly for HVLP spray gun
ATE127366T1 (en) SPRAY GUN.
US3887135A (en) Gas-atomizing nozzle by spirally rotating gas stream
JPS58182010A (en) Burner for liquid fuel
JPH05138082A (en) Atomization device
JPH0343528B2 (en)
JPH06226149A (en) Liquid fine pulvelizing device
JPH05337405A (en) Liquid atomizing device
JPS58203308A (en) Liquid fuel burner
JPS58182011A (en) Burner for liquid fuel
JPS6212439Y2 (en)
JPS5952556A (en) Atomizing apparatus
JPH05261319A (en) Liquid atmization device
JPH0641642Y2 (en) Special spray device for electrostatic spraying
JPH0783846B2 (en) Low pressure air atomization internal mixing air spray gun
JPS5845782Y2 (en) sprayer
JPH06106098A (en) Atomizing device
JPH05285425A (en) Atomizing apparatus
JPH0824726A (en) Low pressure atomizing spray gun
JPS5916562A (en) Atomizer
JPH06126220A (en) Liquid atomizing device
JPS57156061A (en) Tornado generating nozzle
JPH0439502A (en) Liquid fuel burner