JPS588825A - Static pressure bearing - Google Patents

Static pressure bearing

Info

Publication number
JPS588825A
JPS588825A JP10698381A JP10698381A JPS588825A JP S588825 A JPS588825 A JP S588825A JP 10698381 A JP10698381 A JP 10698381A JP 10698381 A JP10698381 A JP 10698381A JP S588825 A JPS588825 A JP S588825A
Authority
JP
Japan
Prior art keywords
bearing
pressure chamber
fluid
casing
low pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10698381A
Other languages
Japanese (ja)
Inventor
Yuji Kanao
金尾 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10698381A priority Critical patent/JPS588825A/en
Publication of JPS588825A publication Critical patent/JPS588825A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings

Abstract

PURPOSE:To provide a static pressure bearing for conducting a fluid in a high- pressure chamber to the static bearing, and then conducting same to a low- pressure chamber which can lessen the variation of expansion of a bearing gap by making a heat exchange between a part of fluid in the high-pressure chamber and a fluid in the low-pressure chamber to be conducted to a static shaft portion. CONSTITUTION:The interior of an outside casing 11 is partitioned by a bearing casing 5 into a high-pressure chamber 3 and upper and lower-pressure chambers 8, 9. An impeller 2 positioned in the lower low-pressure chamber 9 is fixed on a shaft 16. The shaft 16 is supported by a static pressure bearing 7 comprising a bearing bush 14 fixed on the bearing casing 5 with a circular space 19, and a bearing sleeve 15 fitted close to the shaft 16. A portion of the bearing casing that is exposed to the interior of the high-pressure chamber is covered with a shelter plate 17, and further is coupled thereto by a heat exchanger 18 comprising a supply hole 6' mounted on the casing 5 and a pipe meandering in the circular space 19, which can lessen the variation of a bearing gap 20 caused by thermal expansion and contraction of the bearing casing.

Description

【発明の詳細な説明】 本発明は、静圧軸受の改良に係り、特に流体の温度が急
激に変動しても、静圧軸受の軸受隙間の弯化量を極力小
さくした静圧軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in hydrostatic bearings, and particularly to a hydrostatic bearing in which the amount of stiffening of the bearing gap of the hydrostatic bearing is minimized even if the temperature of a fluid changes rapidly.

静圧軸受は、通常のボールベアリングとは違って、固定
側と回転側との間に一定の環状隙間を設け(以下この隙
間を軸受隙間という。)、この軸受隙間内に圧力流体を
噴出し、この圧力流体の静圧によって、軸を支持するよ
うにしている。
Unlike normal ball bearings, hydrostatic bearings have a fixed annular gap between the stationary side and the rotating side (hereinafter referred to as the bearing gap), and pressurized fluid is ejected into this bearing gap. , the shaft is supported by the static pressure of this pressure fluid.

従ってこの支持構造では、圧力流体の圧力と、軸受隙間
の寸法によって支持状態が変る。
Therefore, in this support structure, the support state changes depending on the pressure of the pressure fluid and the size of the bearing gap.

従来の静圧軸受は、第1図に示す構造であった。A conventional hydrostatic bearing has a structure shown in FIG.

即ち吸入口1から流入した流体は、インペラ2によって
昇圧され、大部分の流体は、高圧室3を通って吐出口4
から流出し、その一部は軸受ケーシング5に穿設された
供給孔6より静圧軸受7に配液されて摺動面を潤滑した
後、上部低圧室8と、下部低圧室9に分れて流れるよう
になっている。
That is, the fluid flowing in from the suction port 1 is pressurized by the impeller 2, and most of the fluid passes through the high pressure chamber 3 and enters the discharge port 4.
A part of the liquid is distributed to the static pressure bearing 7 through the supply hole 6 drilled in the bearing casing 5 to lubricate the sliding surfaces, and then divided into an upper low pressure chamber 8 and a lower low pressure chamber 9. It's flowing.

下部低圧室9に流入した流体は、バランスホール10a
を通ってインペラ2の吸込側に戻され、一方上部低圧室
8に流入した流体は、外ケーシング11内で自由液面を
形成し、連通孔12aを通ってオーバフロー管3より排
出され、1外部配管(図示省略)によって、インペラ2
の吸込口1に戻されるようになって匹る。
The fluid flowing into the lower low pressure chamber 9 flows through the balance hole 10a.
The fluid that has flowed into the upper low pressure chamber 8 forms a free liquid level within the outer casing 11, is discharged from the overflow pipe 3 through the communication hole 12a, and is discharged from the overflow pipe 3 through the communication hole 12a. Impeller 2 is connected by piping (not shown).
The fish are returned to the suction port 1 of the fish.

fiXz図において、従来の静圧軸受部をさらに詳しく
説明すると、静圧軸受部7は、軸受プッシュ14と、軸
16に密嵌させられた軸受スリーブ15と力為ら構成さ
れており、この軸受ブツシュ14の中に軸受隙間2oを
もたせて軸受スリーブ15が挿入されている。父上記軸
受ブツシュ14は、軸受ケーシング5との間に環状空間
19を形成しで取付けられ、この環状空間19と軸受隙
間20とによって、軸受ブツシュ14の内外面は、流体
に接するようになっている。
To explain the conventional hydrostatic bearing section in more detail in the fiXz diagram, the hydrostatic bearing section 7 is composed of a bearing pusher 14, a bearing sleeve 15 tightly fitted to the shaft 16, and a pusher. A bearing sleeve 15 is inserted into the bush 14 with a bearing gap 2o. The bearing bushing 14 is mounted with an annular space 19 formed between it and the bearing casing 5, and the annular space 19 and the bearing gap 20 allow the inner and outer surfaces of the bearing bushing 14 to come into contact with the fluid. There is.

即ち、高圧室3内の流体の一部は、供給孔6を通って直
接環状空間19内に流入し、次いで軸受供給孔141を
通って軸受−r&IU20内に流入するようKなってい
た。
That is, a portion of the fluid in the high pressure chamber 3 flows directly into the annular space 19 through the supply hole 6 and then into the bearing-r&IU 20 through the bearing supply hole 141.

その結果、高圧室3内の流体の1度(吸込口1での流体
温度)が急激に変動したような場合、比較的薄肉で熱容
量が小さく且っ内°外面が流体の流厚肉であってしかも
軸16に密嵌されでいて熱容量が大きく且つ外面しか流
体に接しないため、流体温度の変化に追従しにくく、あ
まり温度変化がない。
As a result, if the temperature of the fluid in the high pressure chamber 3 (fluid temperature at the suction port 1) fluctuates rapidly, the inner and outer surfaces are relatively thin and have a small heat capacity, and the inner and outer surfaces are thick walls for fluid flow. Moreover, since it is tightly fitted into the shaft 16 and has a large heat capacity, and only the outer surface is in contact with the fluid, it is difficult to follow changes in the fluid temperature, and the temperature does not change much.

然るにこれら両者の間の相対的な熱膨張及び収縮は、軸
受ブツシュ14のみが熱膨張及び収縮しているような状
態にあり、流体温度が急激に上昇した場合は、軸受隙間
20が過大となり、又流体温度が急激に低下した場合は
、軸受隙間20が小さくなって、゛軸16の静圧支持状
態が不安定となり、撮動等を誘発する原因となっていた
However, the relative thermal expansion and contraction between these two is such that only the bearing bushing 14 is thermally expanding and contracting, and if the fluid temperature rises rapidly, the bearing gap 20 becomes too large. Furthermore, if the fluid temperature suddenly decreases, the bearing gap 20 becomes smaller, making the static pressure support state of the shaft 16 unstable, which may lead to photographing or the like.

又時には、流体温度が急激に低下し過ぎた場合には、軸
受隙間がゼロとなって、いわゆる軸受ブツシュが軸受ス
リーブに抱き着く現象が起り、軸受が焼き付くことにな
る。
In some cases, if the fluid temperature drops too quickly, the bearing clearance becomes zero, causing a phenomenon in which the so-called bearing bush clings to the bearing sleeve, resulting in the bearing seizing.

このように従来の静圧軸受は、流体の温度変化に対する
信頼性が乏しく、シいては、プラント等において負荷変
動その他設計的事項に制約を加えることにもなり、プラ
ント全体に対しての信頼性を本低下させるという欠点が
あった。
As described above, conventional hydrostatic bearings have poor reliability against changes in fluid temperature, which may also place restrictions on load fluctuations and other design issues in plants, which may reduce the reliability of the entire plant. This had the disadvantage of lowering the actual value.

本発明は、上記従来の欠点を解決した信頼性の高い静圧
軸受を提、供せんとする本のである。
The present invention is an attempt to provide a highly reliable hydrostatic bearing that solves the above-mentioned conventional drawbacks.

即ち本発明は、従来のように高圧室の流体を直接軸受隙
間に供給するのではなく、高圧室内の流体のm−を、上
部低圧室に滞留してhる流体との間で熱交換させ、流体
温度の急激な変動を緩和した後に、軸受隙間に供給する
ようにして、軸受部に対する流体温度の変動の影響を少
なくシ、一方高圧室内に露出している軸受ケiシングの
外面を覆うように熱遮蔽板を設けて、流体温度の急激な
変動に対する外部からの影響を緩和し、たとえ流体温度
が急激に変動しても、軸受隙間をほぼ一定に保持するよ
うにしたことを特徴とする。
That is, the present invention does not directly supply the fluid in the high pressure chamber to the bearing gap as in the conventional case, but instead exchanges heat between the fluid m in the high pressure chamber and the fluid staying in the upper low pressure chamber. After alleviating sudden fluctuations in fluid temperature, the fluid is supplied to the bearing gap to reduce the influence of fluid temperature fluctuations on the bearing, while covering the outer surface of the bearing casing exposed in the high pressure chamber. A heat shield plate is provided to alleviate the external influence on sudden changes in fluid temperature, and the bearing clearance is maintained almost constant even if the fluid temperature changes suddenly. do.

以下その詳細を図に示した実施例によって説明する。第
3図において、外ケーシング11の内部に軸受ケーシン
グ5を設け、外ケーシング11内を低圧室と高圧室3に
区画し、前記低圧室は、静圧軸受7を介して、上部低圧
室8と下部低圧室9に区分している。14は軸受ブツシ
ュでありミ前記軸受ケーシング5に環状空間19を設け
て取付けられており、この軸受ブツシュ14内に、軸1
6に密嵌して取付けられた軸受スリーブ15を軸受隙間
20を設けて挿入し、静圧軸受7を構成している。2は
インペラであって、下部低圧室9内に位置し、上部低圧
室8内を貫通し、静圧軸受7に軸支された軸16に取付
けられている。6°′は、軸受ケーシング5に穿設され
た供給孔であって、高圧室3と上部低圧室8とを連通す
るように明けられている。17は、熱!!蔽板であって
、高圧室3内に露出している軸受ケーシング5の外面を
覆うようにある一定隙間をもたせて取付けられている。
The details will be explained below with reference to embodiments shown in the drawings. In FIG. 3, a bearing casing 5 is provided inside the outer casing 11, and the inside of the outer casing 11 is divided into a low pressure chamber and a high pressure chamber 3, and the low pressure chamber is connected to an upper low pressure chamber 8 via a static pressure bearing 7. It is divided into a lower low pressure chamber 9. Reference numeral 14 denotes a bearing bushing, which is attached to the bearing casing 5 with an annular space 19 provided therein.
A hydrostatic bearing 7 is constructed by inserting a bearing sleeve 15 tightly fitted into the bearing sleeve 6 with a bearing gap 20 provided therebetween. An impeller 2 is located in the lower low pressure chamber 9, passes through the upper low pressure chamber 8, and is attached to a shaft 16 supported by a hydrostatic bearing 7. 6°' is a supply hole bored in the bearing casing 5, and is opened so that the high pressure chamber 3 and the upper low pressure chamber 8 communicate with each other. 17 is fever! ! It is a shield plate and is attached with a certain gap so as to cover the outer surface of the bearing casing 5 exposed in the high pressure chamber 3.

本実施例の場合は、上部低圧室8と、環状空間19に対
応した部分に熱遮蔽板17が取付けられている。18は
、熱交換器であって、供給孔6′と環状空間19との間
を伝熱管によって連結しており、この供給孔6′と環状
空間19との間の部分は、上部低圧室8内に位置するよ
うになっている。即ちこの熱交換器18は、第4図(第
3図のA−A矢視図)に示すように、上部低圧室8内に
おいて、平面状に配設され、必要伝熱面積を構成する。
In the case of this embodiment, a heat shield plate 17 is attached to a portion corresponding to the upper low pressure chamber 8 and the annular space 19. Reference numeral 18 denotes a heat exchanger, which connects the supply hole 6' and the annular space 19 with a heat transfer tube, and the portion between the supply hole 6' and the annular space 19 is connected to the upper low pressure chamber 8. It is located inside. That is, as shown in FIG. 4 (A-A arrow view in FIG. 3), the heat exchanger 18 is disposed in a planar manner within the upper low pressure chamber 8, and constitutes a necessary heat transfer area.

本実施例の場合、熱交換器18の伝熱管は、平面状に配
設されているが、これを千鳥状或いは基盤目状に立体的
に配設してもよく、・設計上任意に行うことができこれ
に限定されるものではない。なお101は、バランスホ
ール、10はインペラシュラウド、14aは、軸受供給
孔である。
In the case of this embodiment, the heat exchanger tubes of the heat exchanger 18 are arranged in a planar manner, but they may be arranged three-dimensionally in a zigzag pattern or a grid pattern. However, it is not limited to this. Note that 101 is a balance hole, 10 is an impeller shroud, and 14a is a bearing supply hole.

以上のように構成した本願実施例において、次に作用を
説明する。先ずインペラ2は、要求される流体の流量乃
至は圧力に応じた回転速度で本って、軸16と共に回転
する。このインペラ2によって吸込口1(第1図)から
吸込まれた流体は、昇圧されて高圧室3に流出する。こ
のようにして昇圧され高圧室3に流出した流体の一部は
、供給孔6′から流入して環状空間19に導かれ、軸受
供給孔14mから軸受隙間20に圧送される。このよう
にして圧送された流体は、軸受スリーブ15の壁面に衝
突し、軸受隙間20内で上下に分流する。このようにし
て上方に分流した流体は、外ケーシング11内に貯留さ
れ、オーバフロー管13(第1図)から流出しながら自
由液面を形成し、滞留する。このようにして外ケーシン
グ11内に滞留している流体は、軸16の回転によって
旋回流となっている。又熱遮蔽板17と軸受ケーシング
5との間の隙間には、流体が滞留しており一種の断熱層
を形成している。
In the embodiment of the present application configured as above, the operation will be explained next. First, the impeller 2 rotates together with the shaft 16 at a rotational speed that depends on the required fluid flow rate or pressure. The fluid sucked in from the suction port 1 (FIG. 1) by the impeller 2 is pressurized and flows out into the high pressure chamber 3. A portion of the fluid thus pressurized and flowing out into the high pressure chamber 3 flows through the supply hole 6', is guided into the annular space 19, and is forced into the bearing gap 20 through the bearing supply hole 14m. The fluid pumped in this way collides with the wall surface of the bearing sleeve 15 and is divided into upper and lower directions within the bearing gap 20. The fluid thus diverted upward is stored in the outer casing 11, forms a free liquid level, and remains there while flowing out from the overflow pipe 13 (FIG. 1). The fluid thus retained in the outer casing 11 becomes a swirling flow due to the rotation of the shaft 16. Further, fluid remains in the gap between the heat shield plate 17 and the bearing casing 5, forming a kind of heat insulating layer.

さて流体温度が急激に変化した場合において、供給孔6
′から熱交換器18内に流入したその流体は、外ケーシ
ング11内に旋回流となって滞留している流体と熱交換
する。例えば流体a度が急激に上昇した場合、外ケーシ
ング11内に滞留している流体によって冷却され、又急
激に低温になった場合は、昇温されて、急激な温度変化
は緩和され、環状空間19内に供給される。
Now, when the fluid temperature changes suddenly, the supply hole 6
The fluid flowing into the heat exchanger 18 from ' is turned into a swirling flow and exchanges heat with the fluid staying in the outer casing 11 . For example, when the fluid a degree suddenly rises, it is cooled by the fluid staying in the outer casing 11, and when it suddenly becomes low temperature, it is heated, the sudden temperature change is alleviated, and the annular space 19.

上記熱交換に際して、外ケーシング11内に滞留してい
る流体は、旋回しているので、熱交換器18を構成して
いる伝熱管外を軸160回転速度に見合った速さで流れ
ることになシ、それだけ熱伝達率が向上する。一方高圧
室3内においては、熱遮蔽板17と、滞留している流体
の断熱層によって、軸受ケーシング5への熱伝導は緩和
される。
During the heat exchange, the fluid retained in the outer casing 11 is swirling, so it flows outside the heat transfer tubes forming the heat exchanger 18 at a speed commensurate with the rotational speed of the shaft 160. Yes, the heat transfer coefficient improves accordingly. On the other hand, in the high pressure chamber 3, heat conduction to the bearing casing 5 is relaxed by the heat shielding plate 17 and the heat insulating layer of the staying fluid.

以上詳述した通り本発明によれば、高圧室の流体の一部
を、上部低圧室に滞留している流体と熱交換させた後、
軸受隙間に供給するように−したので、吸込まれた流体
の温度が急激に変動しても、上記熱交換によって軸受隙
間に供給される流体の温度変化が緩和され、さらに高圧
室に露出している軸受ケーシングの外表面を覆うように
熱遮蔽板を設けたので、吸込まれた流体の温度が急激丸
変動しても、軸受ケーシングへの熱伝達が抑制されて、
軸受ケーシングの温度の急激な温度変化が緩和され、こ
れら二つの相乗効果によって、軸受ブツシュの熱膨張及
び収縮を小さくシ、軸受隙間をほぼ一定に保つことがで
き、信頼性の高い静圧軸受を得ることができ、しいては
プラント全体の信頼性をも同時に向上させると共に設計
上の制約をもなくすることができる等その効果は、顕著
な屯のがある。
As detailed above, according to the present invention, after a part of the fluid in the high pressure chamber is heat exchanged with the fluid staying in the upper low pressure chamber,
Since the fluid is supplied to the bearing gap, even if the temperature of the sucked fluid fluctuates rapidly, the temperature change of the fluid supplied to the bearing gap is alleviated by the above heat exchange, and furthermore, even if the temperature of the fluid sucked in changes rapidly, the temperature change of the fluid supplied to the bearing gap is alleviated. A heat shield plate is provided to cover the outer surface of the bearing casing, so even if the temperature of the sucked fluid fluctuates rapidly, heat transfer to the bearing casing is suppressed.
Sudden temperature changes in the bearing casing are alleviated, and the synergistic effect of these two makes it possible to keep the thermal expansion and contraction of the bearing bushings small and keep the bearing clearance almost constant, resulting in highly reliable hydrostatic bearings. This has significant effects, such as simultaneously improving the reliability of the entire plant and eliminating design constraints.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来例であって静圧軸受を使用している代表
例として液体金属ポンプを揚げ縦断面して示した図、第
2図は、従来の静圧軸受部分のみを拡大断面して示した
図、第3図け、本発明の実施例で静圧軸受部分を拡大し
て示した図、第4図は$3図のA−A矢視図である。 3・・・高圧室、5・・・軸受ケーシング、6.6’・
・・供給孔、7・・・静圧軸受、訃・・上部低圧室、9
・・・下部低圧室、11・・・外ケーシング、14・・
・軸受ブツシュ、15・・・軸受スリーブ、16・・・
軸、17・・・熱遮蔽板、18・・・熱交換器、19・
・・環状空間、20・・・軸受隙間。 第1図 第2図 /
Figure 1 is a vertical cross-sectional view of a liquid metal pump as a representative example of a conventional example that uses a hydrostatic bearing, and Figure 2 is an enlarged cross-sectional view of only the conventional hydrostatic bearing part. FIG. 3 is an enlarged view of a hydrostatic bearing portion in an embodiment of the present invention, and FIG. 4 is a view taken along the line A--A in FIG. 3. 3... High pressure chamber, 5... Bearing casing, 6.6'.
... Supply hole, 7... Static pressure bearing, End... Upper low pressure chamber, 9
...Lower low pressure chamber, 11...Outer casing, 14...
・Bearing bushing, 15...Bearing sleeve, 16...
Shaft, 17... Heat shielding plate, 18... Heat exchanger, 19.
...Annular space, 20...Bearing clearance. Figure 1 Figure 2/

Claims (1)

【特許請求の範囲】[Claims] 外ケーシングの内部に軸受ケーシングを設け、外ケーシ
ングの内部を高圧室と低圧室に区分し、さらに該低圧を
静圧軸受を介して上部低圧室と下部低圧室に区分し、前
記高圧室内の一部流体を上部低圧室に滞留せる流体との
間で熱交換させた後、静圧軸受部に導くようになし、一
方高圧室内に露出せる軸受ケーシングの外表面を覆うよ
うに熱迩藪板を取付け、流体温度が急激に変動しても、
軸受部の熱膨張量の変化による静圧軸受隙間の変化量を
小さくしたことを特徴とする静圧軸受。
A bearing casing is provided inside the outer casing, the inside of the outer casing is divided into a high pressure chamber and a low pressure chamber, and the low pressure is further divided into an upper low pressure chamber and a lower low pressure chamber via a static pressure bearing, and one part of the high pressure chamber is divided into an upper low pressure chamber and a lower low pressure chamber. After exchanging heat with the fluid retained in the upper low-pressure chamber, the fluid is guided to the static pressure bearing section, while a heat exchanger plate is installed to cover the outer surface of the bearing casing exposed in the high-pressure chamber. installation, even if the fluid temperature fluctuates rapidly.
A hydrostatic bearing characterized in that the amount of change in a hydrostatic bearing gap due to a change in the amount of thermal expansion of a bearing portion is reduced.
JP10698381A 1981-07-10 1981-07-10 Static pressure bearing Pending JPS588825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10698381A JPS588825A (en) 1981-07-10 1981-07-10 Static pressure bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10698381A JPS588825A (en) 1981-07-10 1981-07-10 Static pressure bearing

Publications (1)

Publication Number Publication Date
JPS588825A true JPS588825A (en) 1983-01-19

Family

ID=14447493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10698381A Pending JPS588825A (en) 1981-07-10 1981-07-10 Static pressure bearing

Country Status (1)

Country Link
JP (1) JPS588825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817218A (en) * 1981-07-23 1983-02-01 Toshiba Corp Precision machine using air bearing
JPH01316512A (en) * 1988-04-29 1989-12-21 Mecanique Magnetique Sa:Soc Auxiliary bearing for magnetic bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817218A (en) * 1981-07-23 1983-02-01 Toshiba Corp Precision machine using air bearing
JPH0238805B2 (en) * 1981-07-23 1990-09-03 Tokyo Shibaura Electric Co
JPH01316512A (en) * 1988-04-29 1989-12-21 Mecanique Magnetique Sa:Soc Auxiliary bearing for magnetic bearing

Similar Documents

Publication Publication Date Title
CN107355389B (en) Solar thermal power generation high-temperature long-axis molten salt pump
GB2071764A (en) Liquid metal pump
US5035519A (en) Submersible thrust bearing apparatus
JPH0322598B2 (en)
US4848774A (en) Reactor coolant pump hydrostatic sealing assembly with externally pressurized hydraulic balance chamber
JPS588825A (en) Static pressure bearing
JPS626119B2 (en)
US4027928A (en) Cooling and lubrication arrangement for water cooled bearings having self contained lubrication systems
US2192654A (en) Compressing unit
JPH0151677B2 (en)
US3200753A (en) Turbo-boost pump
US4427337A (en) Bearing for liquid metal pump
JP2501074B2 (en) Canned motor pump
JPH08557Y2 (en) Pump shaft seal cooling structure
CN108227870A (en) A kind of cooling device for computing device
JPS5937294A (en) Pump for liquid metal
NO179758B (en) Device for relieving axial forces
US2733892A (en) Thrust bearings
JPH0137610B2 (en)
JPS595171B2 (en) pad bearing device
CN220378351U (en) Vertical oil immersed braking turbine expander
JPS588826A (en) Static pressure bearing
JPS6346279B2 (en)
JP2666095B2 (en) Mechanical pump for sodium
US3064148A (en) Auxiliary motor housing