JPS5886967A - Production of abrasion-resistant composite aluminum member of cylindrical shape - Google Patents

Production of abrasion-resistant composite aluminum member of cylindrical shape

Info

Publication number
JPS5886967A
JPS5886967A JP18438881A JP18438881A JPS5886967A JP S5886967 A JPS5886967 A JP S5886967A JP 18438881 A JP18438881 A JP 18438881A JP 18438881 A JP18438881 A JP 18438881A JP S5886967 A JPS5886967 A JP S5886967A
Authority
JP
Japan
Prior art keywords
alloy
mold
abrasion
cylindrical shape
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18438881A
Other languages
Japanese (ja)
Inventor
Harumichi Hino
治道 樋野
Shunsuke Suzuki
俊輔 鈴木
Kimihiro Shibata
公博 柴田
Yosuke Miyashita
宮下 洋介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP18438881A priority Critical patent/JPS5886967A/en
Publication of JPS5886967A publication Critical patent/JPS5886967A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form

Abstract

PURPOSE:To provide extremely high abrasion resistance on the inside circumferential surface and to maintain machinability on the outside circumferential part by fluidizing the state in solid-liquid coexistence of abrasion resistant powder and an Al alloy in a molding die by the insertion of a plunger die thereby molding the same into a cylindrical shape. CONSTITUTION:An Al alloy and a powdery abrasion-resitant material are agitated at the temp. region in solid-liquid co-existence of the Al alloy, and the half melt thereof is supplied into a molding die 1. Immediately thereafter a plunger die 4 is inserted into the hole 2 of the die 1 and the half melt is molded to a cylindrical shape under pescribed pressure. Thus on account of the effect of the abrasion-resistant dissimilar material existing preferentially on the inside circumferential surface, the part near said inside circumferential surface has extremely high abrasion resistance.

Description

【発明の詳細な説明】 本発明は、アルミニウム合金に耐摩耗性物質を添加し九
複合材料からなる筒状部材の製造方法罠関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cylindrical member made of a composite material by adding a wear-resistant substance to an aluminum alloy.

アルミニウム合金(ht金合金の機能特性%に耐摩耗性
を向上させるべく 、At合金中に硬い粉末あるいは潤
滑性を示す材料からなる粉末例えば黒鉛t Atto@
 e SiCe活性炭等の粉末状の異物質を複合化した
材料およびこのような組成からなる2  バ 部材の製造方法についての開発が進んでいる。そのうち
、At合金を加熱して固液共存温度域で攪拌し、前記異
物質を混合する所四コyボキャスティング法は、At合
金に濡れに<<、また比重差のある異物質を多重に混合
できる利点があり、複合材料関係の方面で注目を集めて
いる。このコンポキャスティング法によれば、初晶固相
粒子が懸濁した所謂半溶融スラリー中に前記異物質全添
加する九め、異物質は初晶と初晶の間隙に保持された状
態で混合されるため、濡れ性や比重差にかかわらず前記
異物質はAt合金中に均一に分散すると1われている。
Aluminum alloy (ht) In order to improve the wear resistance to the functional properties of the gold alloy, hard powder or powder consisting of a material exhibiting lubricating properties, such as graphite, is added to the At alloy.
Development is progressing on materials that are composites of powdered foreign substances such as e-SiCe activated carbon, and on methods for manufacturing 2-bar members made of such compositions. Among them, the four-coy casting method, in which the At alloy is heated and stirred in the solid-liquid coexistence temperature range, and the foreign substances are mixed, is used to wet the At alloy and to mix foreign substances with different specific gravities in multiple layers. It has the advantage of being able to be mixed, and is attracting attention in the field of composite materials. According to this compocasting method, all the foreign substances are added to a so-called semi-molten slurry in which primary solid phase particles are suspended, and the foreign substances are mixed while being held in the gaps between the primary crystals. Therefore, it is said that the foreign substances are uniformly dispersed in the At alloy regardless of wettability or specific gravity difference.

しかし、局所的に見ると、初晶と初晶の間隙は液相であ
るため、本来At合金の液相に濡れにくくまた凝集し易
い前記異物質は完全に1個ずつ分散することは困離であ
り、異物質の凝集体が合金中に残ることがあるという問
題点があり九。
However, when viewed locally, the gap between the primary crystals is a liquid phase, so it is difficult to completely disperse the foreign substances, which are difficult to wet with the liquid phase of the At alloy and tend to aggregate, one by one. However, there is a problem that aggregates of foreign substances may remain in the alloy.

このような局所的な異物質の凝集体の存在は材料の強度
特性にとって不利であり、tた摩耗に対しても異物質の
脱落による焼付を起こす等の問題となる。さらに、シリ
ンダライチ等の円筒部材について考えた場合、耐摩耗性
を要求されるのは一般に内周面だけで良く、他の部分は
むしろ機械加工性を要求される。したがって、耐摩耗性
を要求される部分のみに異物質を偏在させた方が耐摩耗
性2機械加工性共に満足されることに着目し、本発明者
らは円筒状部材の内周面のみに異物質を凝集させること
なく偏在させ、他の部分には異物質を存在させないよう
にするべく半軸の檀々の成形を行なった結果、半溶物を
成形型内に供給した後押型を挿入して筒状に成形し、半
溶物に塑性的な流動を与えることにより異物質の局所的
な凝集が流動によって均一に分散し、加えて前記半博物
の流動過程において最も剪断を受ける押型に沿った部位
に液体が優先的に流動し、結果的に該部位に異物質が多
く偏在することを見いだし良。
The presence of such local aggregates of foreign matter is disadvantageous to the strength characteristics of the material, and also causes problems such as seizure due to foreign matter falling off due to excessive wear. Furthermore, when considering a cylindrical member such as a cylinder lychee, wear resistance is generally required only on the inner peripheral surface, and machinability is rather required on other parts. Therefore, the present inventors focused on the fact that both wear resistance and machinability can be satisfied by unevenly distributing foreign substances only in the parts where wear resistance is required. As a result of molding the semi-shafts in order to make the foreign substances unevenly distributed without agglomeration and to prevent foreign substances from being present in other parts, the semi-molten material was supplied into the mold and a post-press die was inserted. By applying plastic flow to the semi-molten material, the local agglomeration of foreign substances is uniformly dispersed by the flow, and in addition, the semi-molten material is formed into a cylindrical shape. It was discovered that liquid flows preferentially in areas along the line, and as a result, foreign substances are unevenly distributed in these areas.

すなわち、本発明は、前述のような従来の問題点に着目
してなされたもので、耐摩耗性粉末とA4合金とIAt
合金の固液共存状態で攪拌して成形型に供給し、この成
形型内に押型を挿入して筒状に成形すると共に、成形体
の押型に沿った部分、すなわち内周面付近に粉末状の耐
摩耗性物質を優先的に偏在させることにより前記問題点
を解決することを目的としている。
That is, the present invention was made by paying attention to the conventional problems as described above, and the present invention was made by focusing on the conventional problems as described above.
The solid-liquid coexistence state of the alloy is stirred and supplied to a mold, and a mold is inserted into the mold to form it into a cylindrical shape. At the same time, a part of the molded body along the mold, that is, near the inner circumferential surface, is powdered. The purpose of the present invention is to solve the above-mentioned problems by preferentially distributing wear-resistant substances.

以下、実施例に基づいて本発明を詳述する。Hereinafter, the present invention will be explained in detail based on Examples.

実施例 1 本実施例で用いた鋳造用At合金の組成を表に示す。Example 1 The composition of the At alloy for casting used in this example is shown in the table.

(重tチ) 表に記載したA4合金を半溶融状聾で取扱うため、あら
かじめ温度と固相率の関係を熱分析および組織観察によ
り調べた。その結果を第1図および第2図に示す。次い
で、各合金における固相率が40〜SOSになる温度す
なわちAC8B合金では560℃、AC2A合金では6
00℃にそれ5に ぞれ加熱して保持し、機械的攪拌を与えながら半溶融ス
ラリーを製造し、該半溶融スラリーに耐摩耗性のある異
物質を混合させた。すなわち、AC8B合金には5重量
%のAj、O,(平均粒径3μfT1)と5重1チの黒
鉛(平均粒径50〜150μm)を混合させ、AC2A
合金には5重量sのStC<平均粒径70μm)と5重
量−の活性炭(平均粒径150μm)を混合させた半溶
物を製造した。
(Heavy tchi) In order to handle the A4 alloy listed in the table in a semi-molten state, the relationship between temperature and solid phase ratio was investigated in advance by thermal analysis and microstructural observation. The results are shown in FIGS. 1 and 2. Next, the temperature at which the solid phase ratio in each alloy becomes 40 to SOS, that is, 560°C for AC8B alloy and 660°C for AC2A alloy, is
A semi-molten slurry was prepared by heating and maintaining the sample at 00° C. while applying mechanical stirring, and a wear-resistant foreign material was mixed into the semi-molten slurry. That is, AC8B alloy is mixed with 5% by weight of Aj, O, (average grain size 3μfT1) and 5-layer 1-chi graphite (average grain size 50-150μm), and AC2A
A semi-molten alloy was prepared by mixing 5 weights of StC (average particle size 70 μm) with 5 weights of activated carbon (average particle size 150 μm).

次に、との半溶物を第3図に示す成形装置を用いて成形
した。第3図において、1は筒状部材の外形を定める成
形型で、底部が直径96−2高さ160■の末広がりの
円柱状空孔2を備え、かつ上部に開口部6を備えている
。4は開口部6から成形型1の空孔2内に挿入される筒
内周面成形用の押型で、直径74−である。これら成形
型1と押型4とを前記AC8B系については400℃に
予熱し、艙記AC2A系については450℃に予熱して
おき、半溶物を成形型1に供給したのちただちに押型4
を成形型1の空孔2内に10■/l@−6打 の速度で挿入し、1300 Kf/ as”の圧力で円
筒状に成形した。次いで得られた二種類の円筒状部材5
の各々から内周面近傍と外周面近傍から試験片を切り出
し、チムケンの摩耗試験機で摩耗量を測定した。なお、
比較のために異物質を混入しない通常のアルミニウム合
金(AC8B)の摩耗量も測定した。試験条件は潤滑油
を80℃で供給し、相手材(FC25材にクロムメッキ
したもの)に9.07 K4の荷重で試料を押しつけ、
2時間の摩耗試験を行なった。その結果を第4図に示す
。なお、第4図においてI61はAC8B系、屋2はA
C2A系である。第4図から明らか卒ように、本発明に
よるものでは内周面は優先的に偏在した耐摩耗性の異物
質の効果によりこの内周面付近が:著しい耐摩耗特性を
有していることがわかる。
Next, the semi-molten product was molded using a molding apparatus shown in FIG. In FIG. 3, reference numeral 1 denotes a mold for determining the outer shape of a cylindrical member, which has a cylindrical hole 2 with a diameter of 96-2 and a height of 160 cm widening toward the bottom at the bottom, and an opening 6 at the top. Reference numeral 4 denotes a press die for molding the inner peripheral surface of the cylinder, which is inserted into the hole 2 of the mold 1 through the opening 6, and has a diameter of 74-. The mold 1 and the mold 4 are preheated to 400°C for the AC8B system, and to 450°C for the AC2A system, and after supplying the semi-molten material to the mold 1, the mold 4 is
was inserted into the cavity 2 of the mold 1 at a speed of 10 cm/l@-6 strokes and molded into a cylindrical shape under a pressure of 1300 Kf/as''.Then, the two types of cylindrical members 5 obtained were
A test piece was cut from each of the specimens near the inner circumferential surface and near the outer circumferential surface, and the amount of wear was measured using a Chimken wear tester. In addition,
For comparison, the amount of wear of a normal aluminum alloy (AC8B) that does not contain any foreign substances was also measured. The test conditions were to supply lubricating oil at 80℃, press the sample against the mating material (chromium plated FC25 material) with a load of 9.07K4,
A 2 hour wear test was conducted. The results are shown in FIG. In addition, in Fig. 4, I61 is AC8B series, and Ya2 is A
It is C2A type. As is clear from FIG. 4, in the case of the present invention, the inner circumferential surface has significant wear-resistant properties due to the effect of unevenly distributed wear-resistant foreign substances. Recognize.

実施例 2 実施例1と同じ組成のAC8B合金を固相率が10−に
なるような温度すなわち580℃に保ちつつkA、0.
と黒鉛とt実施例1と同じ割合で添加し、固液共存斌で
攪拌し几のち成形型1内に供給7に し、実施例1と同じ条件で円筒状部材5を成形した。
Example 2 An AC8B alloy having the same composition as in Example 1 was heated at kA, 0.0°C while maintaining the temperature such that the solid phase ratio was 10-, that is, 580°C.
and graphite were added in the same proportions as in Example 1, stirred in a solid-liquid coexistence state, and then fed into the mold 1 (7) to form a cylindrical member 5 under the same conditions as in Example 1.

次に得られた円筒状部材5を水平および縦方向に切断し
てその切断面のマクロ組織を調べた。その結果を第5図
および第6図に写真で示す。これらの写真からもわかる
ように、円筒状部材5の内周面に沿って耐摩耗性異物質
が偏在していることがわかる。
Next, the obtained cylindrical member 5 was cut horizontally and vertically, and the macrostructure of the cut surface was examined. The results are shown in photographs in FIGS. 5 and 6. As can be seen from these photographs, it can be seen that the wear-resistant foreign material is unevenly distributed along the inner peripheral surface of the cylindrical member 5.

比較のために、半溶物をそのまま冷却して#!固させ友
塊の断面の写真を第7図に示す。第7図によれば、At
、O,および黒鉛がはy均一に混合されているものの、
局所的な粉末の凝集が残っている。
For comparison, let the semi-molten solution cool as it is #! A photograph of the cross section of the solidified tomato block is shown in Fig. 7. According to FIG. 7, At
, O, and graphite are mixed uniformly,
Localized powder agglomerations remain.

一方、第5図および第6図でみる本発明の方法によって
製造された円筒状部材5の場合、異物質が凝集している
ことはない。第8図(1) (b)はミクロな組織を示
す走査型電子−黴鏡写真で、白い部分はAj、O,、黒
い部分は黒鉛、灰色の部分はアル(=ラムであり、内周
面近傍の写*(1)(第8図(a)の左側が内周面側で
ある)と外周部の写真(b)(第8図(b)の右側が外
周面側である)とを比較して、内周面近傍にAt、Os
と黒鉛が密に分布していることが特開11a 58−8
69fi7(3)わかる。
On the other hand, in the case of the cylindrical member 5 manufactured by the method of the present invention shown in FIGS. 5 and 6, there is no agglomeration of foreign substances. Figure 8 (1) (b) is a scanning electron microscopic photograph showing the microstructure. Photo of the area near the surface* (1) (the left side of Fig. 8 (a) is the inner circumferential surface side) and photo of the outer circumference (b) (the right side of Fig. 8 (b) is the outer circumferential surface side) By comparing At and Os near the inner peripheral surface.
JP 11a 58-8 shows that graphite is densely distributed.
69fi7 (3) I understand.

実施例 3 実施例1と同様な組成のA CZ A合金を第2図から
固相率が20チになるような温度を調べてその温度に保
持しつつSICと活性炭を実施例1と同じ割合で混入し
、以下実施例1と同じ方法で円筒状部材5を製造、した
。製造した円筒状部材5の内周面近傍と外周部分とから
試料を切り出し、g微鏡で組織を調べた。その結果を第
9図(a) (b)に示す。
Example 3 Using the A CZ A alloy with the same composition as in Example 1, check the temperature at which the solid phase ratio becomes 20 cm from Figure 2, and while maintaining it at that temperature, add SIC and activated carbon in the same proportions as in Example 1. The cylindrical member 5 was manufactured in the same manner as in Example 1. Samples were cut from the vicinity of the inner peripheral surface and the outer peripheral portion of the manufactured cylindrical member 5, and the structure was examined using a g-microscope. The results are shown in FIGS. 9(a) and 9(b).

なお、第9図(a)の左側が内周面側であり、第9図(
b)の右側が外周面側である。第9図からも明らかなよ
うに、内周面近傍においては異物質が多く、かつ凝集せ
ずに分散していることがわかる。これに対して外周部で
は異物質が凝集はしていないもののtは少ないことがわ
かる。なお、写真の大きい黒い部分は活性炭であり、白
い部分はアルミニウムである。
Note that the left side of FIG. 9(a) is the inner peripheral surface side, and the left side of FIG.
The right side of b) is the outer peripheral surface side. As is clear from FIG. 9, there are many foreign substances in the vicinity of the inner peripheral surface, and it can be seen that they are dispersed without agglomeration. On the other hand, it can be seen that although foreign substances are not aggregated in the outer peripheral area, t is small. The large black part in the photo is activated carbon, and the white part is aluminum.

本発明において、異物質が内周面に多く選択的あるいは
優先的に偏在するのは次の理由によるものと思われる。
In the present invention, the reason why a large amount of foreign substances is selectively or preferentially localized on the inner circumferential surface is considered to be due to the following reason.

すなわち、成形型1の空孔2の底頁 部に注入された半溶物の中に押型4が挿入されると、空
孔2内の上部空間へ半溶物の一部が移動し、空孔2と押
型4との間のキャビティが半溶融物で一杯に満された状
態になる。ところで、半溶融物の固体すなわち初晶ケイ
素は結晶粒子も大きくしかも他の結晶粒子とぶつかり合
い動きにくい。一方、異物質はこまかい粉末であるので
液体と行動を共にする。そこで、押型4が下降すると、
押型4の周囲には流動性の高い液体部分が初晶の間隙を
ぬって流れ込み、異物質も液体部分の流れに乗って押型
4の周囲に集まる。この流れによって異物質は凝集が妨
げられるのである。1+、押型4の先端の角部A(第3
図参照)は半溶物が最も大金な剪断を受ける九め、押型
4が下降するにつれて液体が前記異物質を伴なって押型
4の周辺に優先的に流動し、結果として異物質が円筒状
部材5の内周面近傍に多く偏在することになる。
That is, when the press mold 4 is inserted into the semi-molten material injected into the bottom part of the cavity 2 of the mold 1, a part of the semi-molten material moves to the upper space of the cavity 2, and the cavity The cavity between the hole 2 and the mold 4 is now completely filled with semi-molten material. By the way, semi-molten solid, ie, primary silicon, has large crystal grains and collides with other crystal grains, making it difficult to move. On the other hand, since foreign substances are fine powders, they act together with liquids. Therefore, when the press die 4 descends,
A liquid portion with high fluidity flows through the gaps between the primary crystals around the mold 4, and foreign substances also gather around the mold 4 along with the flow of the liquid portion. This flow prevents foreign substances from coagulating. 1+, corner A of the tip of the mold 4 (third
(see figure), the semi-molten material is subjected to the heaviest shearing, and as the mold 4 descends, the liquid flows preferentially around the mold 4, accompanied by the foreign material, and as a result, the foreign material becomes cylindrical. Many of these particles are unevenly distributed near the inner circumferential surface of the shaped member 5.

なお、前記実施例では加圧して成形しているが必ずしも
加圧する必要はない。しかし、加圧した方がち密な成形
体をつくることができる。また、10  □ 異物質tkt合金と攪拌する際のAt合金の固相の割合
は上記実施例では10チ、20チ、40〜50%で行っ
ているが、予備実験で調べたところ、固相の割合は5〜
50係で良い成形性を示した。
In the above embodiments, the molding is performed under pressure, but it is not necessarily necessary to apply pressure. However, it is possible to create a denser compact by applying pressure. In addition, the ratio of the solid phase of the At alloy when stirring with the 10 □ foreign material TKT alloy was 10 and 20, and 40 to 50% in the above examples, but as a result of preliminary experiments, it was found that the solid phase The ratio is 5~
Good moldability was shown at a ratio of 50.

さらに、At合金がAC8B、ACZAである場合の実
施例を示したが、所定の温度で固液共存状態が得られる
ものでちれば本発明の方法で製造できることは言うまで
もない。
Furthermore, although examples have been shown in which the At alloys are AC8B and ACZA, it goes without saying that any material that can obtain a solid-liquid coexistence state at a predetermined temperature can be manufactured by the method of the present invention.

以上説明してきたように、本発明によれば、At合金と
耐摩耗性を付与する異物質粉末とをAt合金の固液共存
の温度で攪拌し、次いでこの半溶融物を成形型内に供給
し、押型を成形型内に挿入して半溶物を成形型内で流動
させて筒状に成形するようにしたので、At合金からな
る筒状部材の内周面近傍に耐摩耗性異物質を優先的に効
率良く偏在させることが可能であり、かつ本発明による
筒状部材は内周面に耐摩耗性異物質が凝集することなく
均一に分散しているため、著しい耐摩耗特性含有してお
り、しかも外周部にはこのような異物質が少く機械加工
性が損われないというすぐれた特性を有しており、シリ
ンダライナ、軸受等圧用いることが可能でその工業的価
値は大きい。
As explained above, according to the present invention, an At alloy and a foreign material powder that imparts wear resistance are stirred at a temperature at which the solid and liquid of the At alloy coexist, and then this semi-molten material is supplied into a mold. However, since the press die was inserted into the mold and the semi-molten material was made to flow within the mold to form a cylinder, a wear-resistant foreign substance was formed near the inner peripheral surface of the cylinder made of At alloy. The cylindrical member according to the present invention has remarkable wear-resistant properties because the wear-resistant foreign substances are uniformly dispersed on the inner circumferential surface without agglomeration. Furthermore, it has excellent properties in that there are few such foreign substances on the outer periphery and machinability is not impaired, and it can be used for cylinder liners and bearings at equal pressure, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の実施例で用いた鋳造用k
1合金の温度と固相率との関係を示すグラフ、第3図は
本発明の実施例で用い九成形型および押型の構成を示す
断面説明図、第4図は本発明の実施例において行った摩
耗試験の結果を示すグラフ、第5図および第6図は本発
明法によって製造した円筒部材のそれぞれ水平方向およ
び縦方向のマクロ組織(第5図は1.5倍、第6図は0
.8倍)写真、第7図はAC8B合金を固液共存状態で
攪拌してAt、O,と黒鉛を混合させた半溶物の凝固組
織(2倍)写真、第8図(a) (b)および第9図(
荀(b)は本発明法によって製造した円筒部材のミクロ
組織(第8図は500倍、第9図は100倍)写真で、
各図の(a)は内周側、各図の伽)は外周側を示す。 1・・・成形型、2・・・円柱状空孔、6・・・・開口
部、4・・・押型、5・・・円筒状部材。 18開昭58−86967(4) i、、i3i麺 オ、ベリ違度− 第5図 第6図 第7図 手続補正書(自発) 昭和67年1月7日 特許庁長官 島田春樹殿 1、 !41:件の表示 昭和66年 特 許願第184388号材の 事件との関係 置針出願人 、’l、″tf、:、7.   神奈川県横浜市神奈川
区宝町2番地46代理人 一号 (句 口 6、 補正により増加する発明の数 7、補正の対象 @flA@の発明の詳5ift随明の欄8、補正の内容
別紙の通り 一3舶 2.1 1、明#111第9頁第5行の「ケイ素」を「α相(ア
ルミニウム固溶体)」に補正する。 代理人弁理士   小  塩     豊り
Figures 1 and 2 show casting k used in the embodiment of the present invention.
1 is a graph showing the relationship between temperature and solid fraction of alloy, FIG. 3 is a cross-sectional explanatory diagram showing the structure of the mold and press used in the example of the present invention, and FIG. Graphs showing the results of wear tests, Figures 5 and 6 are macrostructures in the horizontal and vertical directions, respectively, of the cylindrical member manufactured by the method of the present invention (Figure 5 is 1.5x, Figure 6 is 0x).
.. 8x) photograph, Figure 7 is a solidified structure of a semi-solid mixture of At, O, and graphite obtained by stirring AC8B alloy in a solid-liquid coexistence state (2x), Figure 8 (a) (b) ) and Figure 9 (
Xun (b) is a photograph of the microstructure of a cylindrical member manufactured by the method of the present invention (Fig. 8 at 500x, Fig. 9 at 100x);
(a) in each figure shows the inner peripheral side, and (a) in each figure shows the outer peripheral side. DESCRIPTION OF SYMBOLS 1... Molding die, 2... Cylindrical hole, 6... Opening part, 4... Embossing die, 5... Cylindrical member. 18 1982-86967 (4) i,, i3i Meno, Veri-Degree - Figure 5 Figure 6 Figure 7 Procedural amendment (voluntary) January 7, 1986 Haruki Shimada, Commissioner of the Patent Office 1. ! 41: Display of the matter 1986 Relationship with the case of Patent Application No. 184388 Applicant: 'l,''tf:, 7. Agent No. 1, 2-46 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture (Kakuguchi) 6. The number of inventions increased by the amendment 7. Details of the invention subject to the amendment @flA@ 5ift summary column 8, contents of the amendment as shown in the attached sheet 13 Vessel 2.1 1, Mei #111, page 9, No. 5 Correct "silicon" in the row to "α phase (aluminum solid solution)". Patent attorney Toyori Oshio

Claims (1)

【特許請求の範囲】[Claims] (1)  アルミニウム合金と粉末状の耐摩耗性物質と
をアルミニウム合金の固液共存温度域で攪拌し、次いで
この半溶物を成形型内に供給し、該成形型内に押型を挿
入することにより、前記半溶物を筒状に成形すること′
を特徴とする耐摩耗性筒状アルミニウム複合部材の製造
方法。
(1) Stirring an aluminum alloy and a powdered wear-resistant substance in the solid-liquid coexistence temperature range of the aluminum alloy, then supplying this semi-molten material into a mold, and inserting a press into the mold. Forming the semi-molten material into a cylindrical shape by
A method for manufacturing a wear-resistant cylindrical aluminum composite member, characterized by:
JP18438881A 1981-11-19 1981-11-19 Production of abrasion-resistant composite aluminum member of cylindrical shape Pending JPS5886967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18438881A JPS5886967A (en) 1981-11-19 1981-11-19 Production of abrasion-resistant composite aluminum member of cylindrical shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18438881A JPS5886967A (en) 1981-11-19 1981-11-19 Production of abrasion-resistant composite aluminum member of cylindrical shape

Publications (1)

Publication Number Publication Date
JPS5886967A true JPS5886967A (en) 1983-05-24

Family

ID=16152304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18438881A Pending JPS5886967A (en) 1981-11-19 1981-11-19 Production of abrasion-resistant composite aluminum member of cylindrical shape

Country Status (1)

Country Link
JP (1) JPS5886967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371966A (en) * 1989-08-08 1991-03-27 Toyota Motor Corp Manufacture of dispersing reinforcing metal composite material
US5549151A (en) * 1991-04-29 1996-08-27 Lanxide Technology Company, Lp Method for making graded composite bodies and bodies produced thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371966A (en) * 1989-08-08 1991-03-27 Toyota Motor Corp Manufacture of dispersing reinforcing metal composite material
US5549151A (en) * 1991-04-29 1996-08-27 Lanxide Technology Company, Lp Method for making graded composite bodies and bodies produced thereby

Similar Documents

Publication Publication Date Title
Lee et al. The improvement of mechanical properties of friction-stir-welded A356 Al alloy
Hariharasakthisudhan et al. Influence of metal powder premixing on mechanical behavior of dual reinforcement (Al2O3 (μm)/Si3N4 (nm)) in AA6061 matrix
US20120315399A1 (en) Method of making nanoparticle reinforced metal matrix components
US5577546A (en) Particulate feedstock for metal injection molding
JPH06506726A (en) Powder mixture and its manufacturing method
Rana et al. Development and analysis of Al-matrix nano composites fabricated by ultrasonic assisted squeeze casting process
Bhowmik et al. Microstructure, mechanical and wear behaviour of Al7075/SiC aluminium matrix composite fabricated by stir casting
DE3247535C2 (en) Process for producing a wear-resistant cast aluminum material
Singh et al. Fabrication and Mechanical Characterization of Al-Zn-Cu Alloy/SiC/TiB2 Hybrid Reinforced Metal Matrix Composite using Top Loaded Bottom Pouring Stir Casting Method
JPS5886967A (en) Production of abrasion-resistant composite aluminum member of cylindrical shape
Zhang et al. Microstructure and property of a functionally graded aluminum silicon alloy fabricated by semi-solid backward extrusion process
Ghanaraja et al. Processing and mechanical properties of hot extruded Al (Mg)-Al2O3 composites
Abhijith et al. Fabrication & analysis of aluminum 2024 & tungsten carbide (WC) metal matric composite by in-situ method
Boopathy et al. Structure–Property correlation of Al–SiC–Al 2 O 3 composites: Influence of processing temperatures
Shash et al. Influence of Al 2 O 3 Nano-dispersions on Mechanical and Wear Resistance Properties of Semisolid Cast A356 Al Alloy
Tokisue et al. Friction and wear properties of aluminum-particulate graphite composites
Mahmoud Tribological behaviour of A390/Grp metal—matrix composites fabricated using a combination of rheocasting and squeeze casting techniques
US4906531A (en) Alloys strengthened by dispersion of particles of a metal and an intermetallic compound and a process for producing such alloys
Fono-Tamo et al. Effect of reinforcememt particles preheating on mechanical and microstructural properties of AMC
JP4220598B2 (en) Method for producing metal / ceramic composite material for casting
Krishna et al. Synthesis and characterization of zircon/graphite and flyash/graphite reinforced Aluminium7075 Alloy: a comparative study
CN109475932B (en) Grain refiner for magnesium alloy, preparation method thereof and grain refining method for magnesium alloy
Bhiftime et al. Microstructure and mechanical properties of micro-SiCp particles reinforced magnesium matrix composites with semi-solid stir casting method
CN109182819A (en) A kind of smelting preparation method of graphene enhancing almag
Besekar et al. Recycling of titanium as reinforcement in cast aluminium alloy A356 for improving the microstructural refinement and mechanical performance towards a sustainable material development