JPH0371966A - Manufacture of dispersing reinforcing metal composite material - Google Patents

Manufacture of dispersing reinforcing metal composite material

Info

Publication number
JPH0371966A
JPH0371966A JP20543389A JP20543389A JPH0371966A JP H0371966 A JPH0371966 A JP H0371966A JP 20543389 A JP20543389 A JP 20543389A JP 20543389 A JP20543389 A JP 20543389A JP H0371966 A JPH0371966 A JP H0371966A
Authority
JP
Japan
Prior art keywords
molten metal
reinforcing material
metal
molten
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20543389A
Other languages
Japanese (ja)
Other versions
JPH0681662B2 (en
Inventor
Koji Hikita
疋田 耕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1205433A priority Critical patent/JPH0681662B2/en
Publication of JPH0371966A publication Critical patent/JPH0371966A/en
Publication of JPH0681662B2 publication Critical patent/JPH0681662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a composite material, in which reinforcing material is uniformly dispersed in matrix metal, by dropping the temp. in the range of coexistence of solid and liquid of the matrix metal while stirring the molten matrix metal mixing the reinforcing material and after that, raising the temp. CONSTITUTION:For example, in molten Al alloy 14 as the matrix metal, the reinforcing material 22 of SiC particles is mixed while stirring this with propeller 18 in a stirring device 16. Further, the temp. in the range of coexistence of solid and liquid of the matrix metal is dropped under condition of stirring the molten metal 14 with the propeller 18, and after, the temp. is raised. At the time of dropping the temp. of molten metal 14, this crystallized material is increased and agglomerate of the reinforcing material 22 is broken into fine particles by shearing action with the crystallized material of solid phase, and the broken reinforcing materials 22 are uniformly dispersed in the molten metal 14, which the fluidity is improved by raising the temp. thereof. Therefore, the composite material uniformly dispersing the reinforcing material without remaining the agglomerated condition, is manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、分散強化金属複合材料に係り、更に詳細には
その製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to dispersion-strengthened metal composite materials, and more particularly to methods of manufacturing the same.

従来の技術 分散強化金属複合材料の製造方法の一つとして、例えば
特開昭61−147826号公報に記載されている如く
、マトリックス金属の溶湯の温度をマトリックス金属の
液相線以下の温度に低下させて固液共存状態とし、溶湯
を撹拌しっつ溶湯中に粒子の如き分散強化材を混入させ
るコンポキャスト法が従来より知られている。
Conventional Techniques One of the methods for manufacturing dispersion-strengthened metal composite materials is to lower the temperature of a molten matrix metal to a temperature below the liquidus line of the matrix metal, as described in, for example, Japanese Patent Application Laid-open No. 147826/1983. A compocasting method is conventionally known in which the molten metal is stirred to form a solid-liquid coexistence state, and a dispersion reinforcing material such as particles is mixed into the molten metal.

コンポキャスト法に於ては、溶湯中に分散粒子が混入さ
れるにつれて溶湯の粘性が高くなるので、混入された分
散粒子及び溶湯中の晶出物の合計の固相率が一定になる
よう、従来より一般に、分散粒子の混入量の増大と共に
溶湯の温度が徐々に上昇され、分散粒子の混入が完了し
た時点に於て鋳造が行われている。
In the composite casting method, as the molten metal is mixed with dispersed particles, the viscosity of the molten metal increases. Conventionally, the temperature of the molten metal is gradually raised as the amount of dispersed particles mixed in increases, and casting is performed when the mixing of dispersed particles is completed.

発明が解決しようとする課題 このコンポキャスト法に於ては、溶湯の流動性は溶湯を
撹拌することにより得られるチクソトロピー効果により
確保され、溶湯の固液共存状態、即ち半溶融状態の高粘
性を利用して分散強化材が強制的に溶湯中に混入される
ので、分散強化材が液相状態の溶湯に対する濡れ性が悪
い強化材である場合にも、比較的良好に強化材を溶湯中
に分散させることができる。
Problems to be Solved by the Invention In this composite casting method, the fluidity of the molten metal is ensured by the thixotropic effect obtained by stirring the molten metal, and the high viscosity of the molten metal in a solid-liquid coexistence state, that is, a semi-molten state, is maintained. Since the dispersion reinforcing material is forcibly mixed into the molten metal using this method, even if the dispersion reinforcing material has poor wettability with respect to the molten metal in the liquid phase, it is relatively easy to mix the reinforcing material into the molten metal. Can be dispersed.

しかし分散強化材は凝集し易く、強化材が細かい程この
傾向が著しい。従って溶湯中に分散されるべき強化材が
細かい場合には、溶湯を撹拌するだけでは強化材の凝集
塊を十分にほぐすことはできず、そのため従来のコンポ
キャスト法に於ては凝集塊が残存することなく強化材が
均一に分散された複合材料を製造することが困難である
However, dispersed reinforcing materials tend to aggregate, and this tendency is more pronounced as the reinforcing materials become finer. Therefore, when the reinforcing material to be dispersed in the molten metal is fine, it is not possible to sufficiently loosen the reinforcing material agglomerates by simply stirring the molten metal, and therefore, in the conventional composite casting method, the agglomerates remain. It is difficult to produce composite materials in which reinforcement is uniformly dispersed without

本発明は、従来のコンポキャスト法により細かい強化材
を溶湯中に分散させる場合に於ける上述の如き不具合に
鑑み、分散強化材が細かい場合にも溶湯中に強化材を均
一に分散させることができ、これによりマトリックス金
属中に強化材が均一に分散された複合材料を製造するこ
とのできる方法を提供することを目的としている。
In view of the above-mentioned problems in dispersing fine reinforcing material into molten metal using the conventional composite casting method, the present invention has been developed to make it possible to uniformly disperse the reinforcing material in molten metal even when the dispersed reinforcing material is fine. The object of the present invention is to provide a method for producing a composite material in which the reinforcing material is uniformly dispersed in the matrix metal.

課題を解決するための手段 上述の如き目的は、本発明によれば、マトリックス金属
の溶湯中に分散強化材を混入し、前記溶湯を撹拌しつつ
前記マトリックス金属の固液共存温度範囲内にて前記溶
湯の温度を降温させた後昇温させることを含む分散強化
金属複合材料の製造方法によって達成される。
Means for Solving the Problems According to the present invention, a dispersion reinforcing material is mixed into a molten metal of a matrix metal, and while the molten metal is stirred, the solid-liquid coexistence temperature range of the matrix metal is maintained. This is achieved by a method for producing a dispersion-strengthened metal composite material, which includes lowering and then increasing the temperature of the molten metal.

本発明の一つの局面によれば、マトリックス金属の溶湯
中に分散強化材が混入される工程に於ては、溶湯の温度
はマトリックス金属の固液共存温度に設定され、溶湯が
撹拌される状態にて分散強化材が混入される。
According to one aspect of the present invention, in the step of mixing the dispersion reinforcing material into the molten metal of the matrix metal, the temperature of the molten metal is set to the solid-liquid coexistence temperature of the matrix metal, and the molten metal is stirred. Dispersion reinforcing material is mixed in.

また本発明の他の一つの局面によれば、溶湯の降温及び
昇温は繰返し行われる。
According to another aspect of the present invention, the temperature of the molten metal is repeatedly lowered and raised.

尚本発明の方法に於ける溶湯の昇温の終了段階及び溶湯
の降温及び昇温が繰返し行われる場合に於ける途中の昇
温工程に於ては、溶湯の温度はマトリックス金属の固液
共存温度よりも高い温度に上昇されてもよい。
In the method of the present invention, the temperature of the molten metal does not exceed the solid-liquid coexistence of the matrix metal in the final stage of heating the molten metal and in the intermediate heating step when the temperature of the molten metal is repeatedly lowered and raised. The temperature may be increased to a higher temperature.

また本発明の方法に於ける分散強化材はマトリックス金
属の溶湯中に於て安定な任意の材料よりなる粒子、短繊
維(ウィスカを含む)であってよい。
Further, the dispersed reinforcing material in the method of the present invention may be particles or short fibers (including whiskers) made of any material that is stable in the molten metal of the matrix metal.

更にマトリックス金属の溶湯に対する強化材の量が多す
ぎる場合には強化材をマトリックス金属の溶湯中に均一
に分散させることが困難であり、また強化材の量が少な
過ぎる場合にはマトリックス金属を十分に強化すること
が困難になる。従ってマトリックス金属の溶湯に対する
強化材の体積比は4〜50%、特に10〜20%程度で
あることが好ましい。
Furthermore, if the amount of reinforcing material in the molten matrix metal is too large, it is difficult to uniformly disperse the reinforcing material in the molten matrix metal, and if the amount of reinforcing material is too small, it is difficult to disperse the reinforcing material uniformly into the molten matrix metal. becomes difficult to strengthen. Therefore, the volume ratio of the reinforcing material to the molten matrix metal is preferably about 4 to 50%, particularly about 10 to 20%.

発明の作用 本発明の方法によれば、マトリックス金属の溶湯中に強
化材が混入された後、溶湯は撹拌される状態でマトリッ
クス金属の固液共存温度範囲内にて降温されしかる後昇
温される。溶湯が降温されるとその品出物の量が増大し
、強化材の凝集塊が固相の晶出物による剪断作用によっ
てほぐされ、かくしてほぐされた強化材が溶湯の昇温に
より流動性が向上された溶湯中に均一に分散される。
Effect of the Invention According to the method of the present invention, after the reinforcing material is mixed into the molten metal of the matrix metal, the molten metal is cooled while being stirred within the solid-liquid coexistence temperature range of the matrix metal, and then heated. Ru. When the temperature of the molten metal is lowered, the amount of the product increases, and the agglomerates of the reinforcing material are loosened by the shearing action of the crystallized substances in the solid phase, and the loosened reinforcing material becomes fluid as the temperature of the molten metal rises. Improved uniform dispersion in the molten metal.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例1 第1図に示されている如く、ルツボ10内にマトリック
ス金属としてのアルミニウム合金(JIS規格AC8A
)の塊を導入し、該塊をヒータ12によって加熱するこ
とにより溶解した。次いでかくして形成されたアルミニ
ウム合金の溶湯14の温度をヒータ12によりアルミニ
ウム合金の液相線温度である570℃に維持した状態で
、溶湯を撹拌装置16のプロペラ18により撹拌しつつ
、強化材供給装置20より粒径0.1〜50μのSiC
粒子22を溶湯中に30分間かけて混入した。
Example 1 As shown in FIG. 1, an aluminum alloy (JIS standard AC8A
) was introduced, and the mass was heated by the heater 12 to melt it. Next, while the temperature of the molten aluminum alloy 14 thus formed is maintained at 570° C., which is the liquidus temperature of the aluminum alloy, by the heater 12, the molten metal is stirred by the propeller 18 of the stirring device 16, and the reinforcing material supplying device SiC with a particle size of 0.1 to 50μ from 20
Particles 22 were mixed into the molten metal over a period of 30 minutes.

尚粒径10μ以下のSiC粒子の殆どはプロペラの撹拌
のみによっては溶湯中に均一に分散させることが困難な
凝集塊の形態をなしていた。
Most of the SiC particles with a particle size of 10 μm or less were in the form of aggregates that were difficult to uniformly disperse in the molten metal only by stirring with a propeller.

次いでプロペラにより溶湯を撹拌しつつ、溶湯を第2図
に示されたパターンにて降温及び昇温させ、溶湯の温度
が600℃の状態にて鋳造を行なうことにより、SiC
粒子が分散されたアルミニウム合金よりなる複合材料を
製造した。
Next, while stirring the molten metal with a propeller, the temperature of the molten metal is lowered and raised in the pattern shown in Figure 2, and casting is performed when the temperature of the molten metal is 600°C.
A composite material consisting of an aluminum alloy with dispersed particles was manufactured.

次いでかくして製造された複合材料を切断し、その断面
を観察したところ、SiC粒子はその凝集塊が残存する
ことなく均一に分散されていることが認められた。尚S
iC粒子の体積率は約15%であった。
When the composite material thus produced was then cut and its cross section was observed, it was found that the SiC particles were uniformly dispersed without any remaining agglomerates. Nao S
The volume fraction of iC particles was about 15%.

実施例2 アルミニウム合金の降温及び昇温のパターンが第3図に
示されたパターンに設定された点を除き、上述の実施例
1の場合と同一の要領にてSiC粒子が分散されたアル
ミニウム合金よりなる複合材料を製造し、その断面を観
察した。
Example 2 An aluminum alloy in which SiC particles were dispersed in the same manner as in Example 1 above, except that the pattern of temperature decrease and temperature increase of the aluminum alloy was set to the pattern shown in FIG. A composite material was manufactured and its cross section was observed.

その結果この複合材料に於てもSiC粒子はその凝集塊
が残存することなく均一に分散されていることが認めら
れた。尚この複合材料のSiC粒子の体積率は約15%
であった。
As a result, it was found that even in this composite material, the SiC particles were uniformly dispersed without any remaining aggregates. The volume fraction of SiC particles in this composite material is approximately 15%.
Met.

尚分散2強化材として平均繊維径0.3μ、平均繊維長
5μのSiCウィスカを使用して実施例1及び2の場合
と同一の要領にて複合材料を製造したところ、何れの複
合材料に於ても凝集塊が残存することな(SiCウィス
カが均一に分散されていることが確認された。
In addition, when composite materials were manufactured in the same manner as in Examples 1 and 2 using SiC whiskers with an average fiber diameter of 0.3 μm and an average fiber length of 5 μm as the dispersion 2 reinforcing material, in both composite materials. It was confirmed that no agglomerates remained (SiC whiskers were uniformly dispersed).

実施例3 分散強化材として平均粒径0.1μ、0.3μ、3μ、
10μ、40μ、100μであるSiC粒子が使用され
た点を除き、上述の実施例1の場合と同一の要領及び条
件にてSiC粒子が分散されたアルミニウム合金よりな
る複合材料を製造し、各複合材料についてSiC粒子の
分散の均一性を調査した。
Example 3 Average particle diameters of 0.1μ, 0.3μ, 3μ, as dispersion reinforcement
A composite material made of an aluminum alloy in which SiC particles were dispersed was produced in the same manner and under the same conditions as in Example 1 above, except that SiC particles of 10μ, 40μ, and 100μ were used. The material was investigated for uniformity of dispersion of SiC particles.

尚この場合分散の均一性は第4図に示されている如く五
段階の状態を目安として調査した。第4図に於て、1度
は元の凝集塊が実質的にそのまま残存している状態であ
り、2度は元の凝集塊が僅かに小さくなっているが比較
的大きい凝集塊が残存している状態であり、3度は凝集
塊が比較的小さくなってはいるが凝集塊が残存している
状態であり、4度は殆どの凝集塊がほぐされているが、
はぐされたSiC粒子の分散状態に僅かなむらがある状
態であり、5度は凝集塊が全く残存せず、SiC粒子も
均一に分散した状態である。
In this case, the uniformity of dispersion was investigated using five levels as shown in FIG. In Figure 4, the first degree indicates that the original agglomerates remain essentially intact, and the second degree indicates that the original agglomerates have become slightly smaller, but relatively large agglomerates remain. At 3rd degree, the agglomerates have become relatively smaller but still remain, and at 4th degree, most of the agglomerates have been loosened, but
The dispersion state of the stripped SiC particles is slightly uneven, and at 5 degrees, no aggregates remain at all, and the SiC particles are uniformly dispersed.

また比較の目的で、固液共存状態での溶湯の撹拌を行わ
ず、全てのSiC粒子が溶湯中に混入された直後に鋳造
が行われた場合(比較例1)、及びd人されたSiC粒
子及び溶湯中の晶出物の合計の体積率が実質的に一定に
なるよう、溶湯を固液共存状態にて撹拌しつつその温度
を漸次上昇させた場合(比較例2)についても同様にS
iC粒子の分散の均一性を測定した。
For the purpose of comparison, a case where the molten metal was not stirred in a solid-liquid coexistence state and casting was performed immediately after all the SiC particles were mixed into the molten metal (Comparative Example 1), and a case where the SiC The same applies to the case (Comparative Example 2) where the temperature is gradually increased while stirring the molten metal in a solid-liquid coexistence state so that the total volume fraction of particles and crystallized substances in the molten metal becomes substantially constant. S
The uniformity of dispersion of iC particles was measured.

これらの測定結果を第5図に示す。第5図より、本発明
の方法によれば、従来の方法に比して分散強化材を均一
にマトリックス金属中に分散させることができ、特に非
常に細かい強化材の分散の均一性を向上させ得ることが
解る。
The results of these measurements are shown in FIG. From FIG. 5, it can be seen that the method of the present invention allows the dispersion reinforcing material to be more uniformly dispersed in the matrix metal than in the conventional method, and in particular improves the uniformity of dispersion of very fine reinforcing material. I know what I'm getting.

実施例4 分散強化材として平均粒径0.3μのSiC粒子が使用
された点を除き、上述の実施例3、比較例1及び2の場
合と同一の要領にてSiC粒子が体積率15%にて分散
されたアルミニウム合金よりなる複合材料を製造し、各
複合材料より引張り試験片を形成し、各試験片について
引張り試験を行った。
Example 4 The same procedure as in Example 3 and Comparative Examples 1 and 2 above was used, except that SiC particles with an average particle size of 0.3 μm were used as the dispersion reinforcement, and the volume ratio of SiC particles was 15%. A composite material made of an aluminum alloy dispersed in the above was manufactured, tensile test pieces were formed from each composite material, and a tensile test was conducted on each test piece.

また比較例3として、アルミニウム合金(JIS規格A
C8A)のみよりなる引張り試験片を形成し、該試験片
についても引張り試験を行った。
In addition, as Comparative Example 3, aluminum alloy (JIS standard A
A tensile test piece consisting only of C8A) was formed, and the test piece was also subjected to a tensile test.

その結果を′W46図に示す。The results are shown in Figure 'W46.

第6図より、本発明に従って製造された複合材料は何れ
の比較例の材料よりも引張り強さに優れていることが解
る。特にこの実施例の複合材料が比較例1及び2のの複
合材料よりも引張り強さに優れているのは、SiC粒子
の凝集塊が残存せず、個々の粒子が均一に分散されてい
ることによるものと考えられる。
It can be seen from FIG. 6 that the composite material manufactured according to the present invention has better tensile strength than any of the comparative materials. In particular, the reason why the composite material of this example is superior in tensile strength to the composite materials of Comparative Examples 1 and 2 is that no agglomerates of SiC particles remain and individual particles are uniformly dispersed. This is thought to be due to

以上に於ては本発明を幾つかの実施例について詳細に説
明したが、本発明はこれらの実施例に限定されるもので
はなく、本発明の範囲内にて他の種々の実施例が可能で
あることは当業者にとって明らかであろう。
Although the present invention has been described above in detail with reference to several embodiments, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. It will be clear to those skilled in the art that

発明の効果 以上の説明より明らかである如く、本発明の方法によれ
ば、マトリックス金属の溶湯中に強化材が混入された後
、溶湯は撹拌される状態でマトリックス金属の固液共存
温度範囲内にて降温されしかる後昇温される。溶湯が降
温されるとその晶出物の量が増大し、強化材の凝集塊が
固相の晶出物による剪断作用によってほぐされ、かくし
てほぐされた強化材が溶湯の昇温により流動性が向上さ
れた溶湯中に均一に分散され、これにより強化材が凝集
塊の状態にて残存することなく均一に分散された複合材
料を製造することができる。
Effects of the Invention As is clear from the above explanation, according to the method of the present invention, after the reinforcing material is mixed into the molten metal of the matrix metal, the molten metal is stirred to maintain a temperature within the solid-liquid coexistence temperature range of the matrix metal. The temperature is lowered and then raised. When the temperature of the molten metal is lowered, the amount of crystallized substances increases, and the agglomerates of the reinforcing material are loosened by the shearing action of the crystallized substances in the solid phase, and the loosened reinforcing material becomes fluid as the temperature of the molten metal rises. The reinforcing material is uniformly dispersed in the molten metal, thereby making it possible to produce a composite material in which the reinforcing material is uniformly dispersed without remaining in the form of agglomerates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマトリックス金属の溶湯中に分散強化材が混入
される状態を示す解図的断面図、第2図は本発明の方法
の一つの実施例に於ける溶湯の降温及び昇温のパターン
を示すグラフ、第3図は本発明の方法の他の一つの実施
例に於ける溶湯の降温及び昇温のパターンを示すグラフ
、第4図は強化材の分散の均一性の評価に供された指標
を示す解図、第5図は本発明の方法により製造された複
合材料及び比較例について強化材の平均粒径と分散の均
一性との間の関係を示すグラフ、第6図は本発明に従っ
て製造された複合材料及び比較例の材料の引張り強さを
示すグラフである。 10・・・ルツボ、10・・・ヒータ、14・・・アル
ミニウム合金の溶湯、16・・・撹拌装置、18・・・
プロペラ、20・・・強化材供給装置、22・・・Si
C粒子特 許 出 願 人   トヨタ自動車株式会社
代   理   人   弁理士  明石 昌毅第 図 時間(分) 時間(分) 平均粒径(pml
Fig. 1 is a schematic cross-sectional view showing the state in which the dispersion reinforcing material is mixed into the molten metal of the matrix metal, and Fig. 2 shows the pattern of temperature drop and temperature rise of the molten metal in one embodiment of the method of the present invention. FIG. 3 is a graph showing the pattern of temperature drop and temperature rise of the molten metal in another embodiment of the method of the present invention, and FIG. Fig. 5 is a graph showing the relationship between the average particle size of the reinforcing material and the uniformity of dispersion for composite materials produced by the method of the present invention and comparative examples; 1 is a graph showing the tensile strength of a composite material made according to the invention and a comparative example material. DESCRIPTION OF SYMBOLS 10... Crucible, 10... Heater, 14... Molten aluminum alloy, 16... Stirring device, 18...
Propeller, 20... Reinforcement supply device, 22... Si
C Particle Patent Applicant Toyota Motor Corporation Representative Patent Attorney Masatake Akashi Diagram Time (minutes) Time (minutes) Average particle size (pml)

Claims (1)

【特許請求の範囲】[Claims] マトリックス金属の溶湯中に分散強化材を混入し、前記
溶湯を撹拌しつつ前記マトリックス金属の固液共存温度
範囲内にて前記溶湯の温度を降温させた後昇温させるこ
とを含む分散強化金属複合材料の製造方法。
A dispersion-strengthened metal composite comprising mixing a dispersion reinforcing material into a molten metal of a matrix metal, lowering the temperature of the molten metal within the solid-liquid coexistence temperature range of the matrix metal, and then increasing the temperature while stirring the molten metal. Method of manufacturing the material.
JP1205433A 1989-08-08 1989-08-08 Method for producing dispersion-reinforced metal composite material Expired - Lifetime JPH0681662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1205433A JPH0681662B2 (en) 1989-08-08 1989-08-08 Method for producing dispersion-reinforced metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1205433A JPH0681662B2 (en) 1989-08-08 1989-08-08 Method for producing dispersion-reinforced metal composite material

Publications (2)

Publication Number Publication Date
JPH0371966A true JPH0371966A (en) 1991-03-27
JPH0681662B2 JPH0681662B2 (en) 1994-10-19

Family

ID=16506787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1205433A Expired - Lifetime JPH0681662B2 (en) 1989-08-08 1989-08-08 Method for producing dispersion-reinforced metal composite material

Country Status (1)

Country Link
JP (1) JPH0681662B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121178A (en) * 2008-11-19 2010-06-03 Nissei Plastics Ind Co Method for manufacturing carbon-nanocomposite magnesium-alloy base material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886967A (en) * 1981-11-19 1983-05-24 Nissan Motor Co Ltd Production of abrasion-resistant composite aluminum member of cylindrical shape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5886967A (en) * 1981-11-19 1983-05-24 Nissan Motor Co Ltd Production of abrasion-resistant composite aluminum member of cylindrical shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121178A (en) * 2008-11-19 2010-06-03 Nissei Plastics Ind Co Method for manufacturing carbon-nanocomposite magnesium-alloy base material

Also Published As

Publication number Publication date
JPH0681662B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US7837811B2 (en) Method for manufacturing a composite of carbon nanomaterial and metallic material
CN101300367B (en) Process for producing a grain refining master alloy
Mehrabian et al. Preparation and casting of metal-particulate non-metal composites
CN110157935A (en) Cast Al-Si alloy Al-V-B fining agent, preparation method and application
KR910006069B1 (en) Method for manufacture of cast articles of fiber-reinforced aluminium composite
JPH06284864A (en) Production of tempered confectionery
KR100432983B1 (en) Method for manufacturing of metallic materials in coexisting state of solid and liquid
JPH0371966A (en) Manufacture of dispersing reinforcing metal composite material
JP3160112B2 (en) Method for manufacturing composite metal member
US20040055734A1 (en) Metallic materials for rheocasting or thixoforming and method for manufacturing the same
JPH0371967A (en) Manufacture of dispersing reinforcing metal composite material
JPH0617165A (en) Production of metal carbide particle dispersed metallic composite material
JP3497167B2 (en) Granular feedstock for metal injection molding
JPH11170027A (en) Ingot for metal-ceramic composite and production thereof
JP3045395B2 (en) Method for producing silicon carbide-containing aluminum alloy
JP2000345254A (en) Aluminum base composite material and its production
JP2000129374A (en) Aluminum-based composite material and its manufacture
JPH0219177B2 (en)
JPH0551664A (en) Production of grain-dispersed composite material
JPH06256870A (en) Production of grain-dispersed metal base composite material having gradient region of volume ration
CN107760892B (en) A kind of method and application of the magnesium alloy of coal base solid waste enhancing Icosahedral phases enhancing
JPH0331433A (en) Production of metal matrix composite
JPH0471980B2 (en)
JPH115142A (en) Manufacturing method of casting metal slurry
JPH07299555A (en) Manufacture of metal based composite material