JPS5886706A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS5886706A
JPS5886706A JP56184431A JP18443181A JPS5886706A JP S5886706 A JPS5886706 A JP S5886706A JP 56184431 A JP56184431 A JP 56184431A JP 18443181 A JP18443181 A JP 18443181A JP S5886706 A JPS5886706 A JP S5886706A
Authority
JP
Japan
Prior art keywords
phase
type
permanent magnet
sample
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56184431A
Other languages
Japanese (ja)
Inventor
Masashi Sahashi
政司 佐橋
Tetsuhiko Mizoguchi
徹彦 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56184431A priority Critical patent/JPS5886706A/en
Publication of JPS5886706A publication Critical patent/JPS5886706A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To form a permanent magnet having excellent magnetic characteristics by a method wherein a magnetic alloy composed of rare-earth elements, cobalt, etc. is melted and then cooled down rapidly so that it has a prescribed crystal structure. CONSTITUTION:A magnetic alloy composed of one or two or more kinds of rare- earth elements and other elements such as cobalt is melted. This melted magnetic alloy is cooled down rapidly, and thereby a TbCu7 or Th2Ni17 type phase is picked out in a single-phase state of a 2-17 type crystal structure from a high- temperature phase down to a room temperature. Next, aging is applied in the temperature ranging from 350 to 900 deg.C, and thereby a 1-5 type phase is educed in a 2-17 type phase. By this method, a permanent magnet having excellent magnetic characteristics and, in particular, having a large coercive force can be formed.

Description

【発明の詳細な説明】 本発明は希土類−コバルト系永久磁石の製造方法、更に
詳しくは、磁気特性の優れた、とりわけ保碑力(IHo
 )の大きい希土類−コバルト系永久磁石の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a rare earth-cobalt permanent magnet, and more particularly, to a method for producing a rare earth-cobalt permanent magnet, which has excellent magnetic properties, especially magnetic retention force (IHo
The present invention relates to a method for producing a rare earth-cobalt permanent magnet having a large value.

従来から、希土類−コバルト系永久磁石の製造に関して
は、■希土類元素の少くとも18にと他の元素の少くと
も1111とから成る所冗の組成の磁性合金を例えば開
局波誘導加熱手段を用いた溶解法で調製し、ついで該磁
性合金を粉砕して微粉末とした後、該微粉末を磁場中で
成形してから得られた成形体を焼結し、その後溶体化処
理、時効処理を施すという製造方法(特開昭52−10
9191号、特公昭55− r5096号参照)、■溶
解法で調製した磁性合金に、溶体化処理を施した後時効
処理し、その後これを粉砕して微粉末とし最後にこの微
粉末を磁気的に配列せしめて加圧底形する方法(特願昭
50−59884号、特願昭51−13070号参照)
などが知られている。
Conventionally, in the production of rare earth-cobalt permanent magnets, magnetic alloys with varying compositions consisting of at least 18 of rare earth elements and at least 1111 of other elements have been prepared using, for example, open-wave induction heating means. The magnetic alloy is prepared by a melting method, and then the magnetic alloy is crushed into a fine powder, the fine powder is compacted in a magnetic field, and the resulting compact is sintered, followed by solution treatment and aging treatment. A manufacturing method called
9191, Japanese Patent Publication No. 55-r5096), ■ A magnetic alloy prepared by the melting method is subjected to solution treatment and then aging treatment, and then crushed to make a fine powder.Finally, this fine powder is magnetically (See Japanese Patent Application Nos. 50-59884 and 1982-13070)
etc. are known.

上記した方法のうち、■の方法にあっては優れた磁気特
性の永久磁石が得られる反面、全体が固く脆弱であるた
め機械加工性にとほしく、寸法精度を必要とする磁石の
製造には適さない。また、■の方法は、加工性という点
では優れているか、その磁気特性に劣るという欠点があ
る。なお、両者の方法はいずれも合金成分中には高価な
希土類元素及びコバルトを多量に含有するためその製造
コストが高価になるという経済上の難点もある。
Among the methods described above, method (■) produces a permanent magnet with excellent magnetic properties, but the whole is hard and brittle, so machinability is desired and it is not suitable for manufacturing magnets that require dimensional accuracy. Not suitable. In addition, the method (2) has the disadvantage that it is superior in terms of workability, but it is inferior in magnetic properties. Both methods also have the economical disadvantage that the manufacturing cost is high because the alloy components contain large amounts of expensive rare earth elements and cobalt.

さて、布上類系永久磁石、とりわけ5nuCO+y系永
久磁石においてtよ、その磁気特性を向上させるためr
c、希土類元素以外の元素としてコバルト(co)の外
に銅(Cu) 、鉄(Fe)、チタニウム(Ti)、ノ
ルコニウム(Zr)、ハフニウム(Hf)、ニオブ(N
b)、マンガン(kin)などを組成成分とする磁性合
金すこ、1000℃以上融点以下の高温域で俗体化処理
を應していわゆる2−17型の結晶構造の単相状態とし
、しかる後に所定、の時効処理を施して上記した2−1
7a!!相の中に1−5型相と呼はれるS+r+、  
CuVC富んだ相を微細に析出させるという方法が知ら
れている。
Now, in order to improve the magnetic properties of cloth-based permanent magnets, especially 5nuCO+y-based permanent magnets,
c. Elements other than rare earth elements include copper (Cu), iron (Fe), titanium (Ti), norconium (Zr), hafnium (Hf), and niobium (N) in addition to cobalt (co).
b) A magnetic alloy containing manganese (KIN) or the like as a composition component is subjected to a generalization treatment at a high temperature range of 1000°C or above and below the melting point to form a single phase state with a so-called 2-17 type crystal structure, and then 2-1 above after applying the prescribed aging treatment.
7a! ! Among the phases, S+r+, which is called the 1-5 type phase,
A method of finely precipitating a CuVC-rich phase is known.

一方、永久磁石の磁気特性、とりわけIHOを四に向上
せしめるためVこは、飽和磁束密[(Bs)の増大tこ
有効なFeの合金中における組成比を高めることが必要
である。
On the other hand, in order to improve the magnetic properties of a permanent magnet, particularly IHO, it is necessary to increase the effective composition ratio of Fe in the alloy to increase the saturation magnetic flux density (Bs).

しかしながら、磁性合金中のFe濃度が大きくなると、
上記した篩温域における溶体化処理温度の範囲が極めて
狭小となり、従来の製造方法、とりわけ、磁性合金を溶
融状態から急冷するときに適用される空冷、水冷、若し
くは強制ガス冷却による冷却速度では上記した高温単−
相を2相分解温度(スピノーダル分解温度)以下に過冷
却することが困難である。その結果、好適な磁気特性、
とりわけ大きなIHOを得ることができない。また、α
)の方法にあっては、成、形体を焼結した後、電体化処
理するために適用される冷却速度は該成形体の耐熱衝撃
性をも勘案して決定されなければならないという問題も
生ずる。
However, when the Fe concentration in the magnetic alloy increases,
The range of solution treatment temperatures in the above-mentioned sieve temperature range is extremely narrow, and conventional manufacturing methods, especially the cooling speeds of air cooling, water cooling, or forced gas cooling applied when rapidly cooling magnetic alloys from a molten state, do not exceed the above range. high temperature single
It is difficult to supercool the phases below the two-phase decomposition temperature (the spinodal decomposition temperature). As a result, suitable magnetic properties,
In particular, it is not possible to obtain a large IHO. Also, α
) method also has the problem that the cooling rate applied for electrification treatment after forming and sintering the shaped body must also be determined by taking into account the thermal shock resistance of the shaped body. arise.

本発明者らは、2−17型磁石の保研力機構はSmCu
a−8m2Copy擬二元系状態図におけるスピノーダ
ル分解に依拠し、しかも、スピノーダル分解前の磁性合
金相は単相状態でなければなら々いという事実を基礎に
して、上記した問題点を解決すべく鋭意研究を重ね、単
相状態に関し詳細に検討を加えたところ、2−17相の
該単相状態は合金の組成及び温度によって3種類の異な
る結晶構造、すなわち、TbCuy型六方晶、Th2N
i+y型六方晶及びThg Zr1t型斜方晶をとり、
しかもこれらの結晶構造の相のうちTbCu7型相及び
Th鵞N1ty  m!相を高温相状態から少くともス
ピノーダル分解温度以下の温度にまで単相状態でそのま
ま引き抜き出すと、IHOの大きい優れた磁気特性が得
られるという新らたな知見を得、本発明方法を完成する
に到った。
The present inventors have discovered that the sharpening force mechanism of the 2-17 type magnet is made of SmCu.
In order to solve the above problems, we rely on the spinodal decomposition in the a-8m2Copy pseudo-binary system phase diagram and the fact that the magnetic alloy phase before the spinodal decomposition must be in a single phase state. After extensive research and detailed examination of the single phase state, we found that the single phase state of 2-17 phase has three different crystal structures depending on the composition and temperature of the alloy: TbCuy hexagonal, Th2N
Take i+y type hexagonal crystal and Thg Zr1t type orthorhombic crystal,
Furthermore, among these crystal structure phases, the TbCu7 type phase and the ThN1ty m! The method of the present invention was completed based on the new finding that excellent magnetic properties with a large IHO can be obtained by extracting the phase as it is from a high-temperature phase state to a temperature at least below the spinodal decomposition temperature in a single phase state. reached.

まず、本発明者らが見出したSmCu、 −8mz C
o17擬二元系の高温状態図の1例を第1図に示す。こ
の状態図から明らかなように、曲*ABCDの右側に存
在するSm2Co+yの固相は、合金組成、温度vcよ
って、TbCu7型相とTh鵞N1tt型相及びThm
Zr1+y型相を有することがわかる。また、Cuの組
成比が減少する(逆にいえばFeの組成比が増大する)
と、’1’bCu7型相、ThxNj+y型相の溶体化
処理温度の範囲は漸次せばまり、ついにはTbCuy型
相は消滅して幅の狭いThzNi+y型相のみが存在す
ることとなる。
First, SmCu, -8mz C, discovered by the present inventors
An example of a high-temperature phase diagram of the o17 pseudobinary system is shown in Figure 1. As is clear from this phase diagram, the solid phase of Sm2Co+y existing on the right side of the curve
It can be seen that it has a Zr1+y type phase. In addition, the composition ratio of Cu decreases (or conversely, the composition ratio of Fe increases).
Then, the solution treatment temperature range of the '1'bCu7 type phase and the ThxNj+y type phase gradually narrows, and finally the TbCuy type phase disappears and only the narrow ThzNi+y type phase exists.

これらのTbCuy型、 Th重N1ty型相はいずれ
も六方晶(hexagonal )であって、これらの
高温単−相をそのまま単相処理して少くともスピノーダ
ル分解温度以下に引き抜き出すと、得られた合金の磁気
特性は向上する。
Both of these TbCuy type and Th heavy N1ty type phases are hexagonal, and if these high-temperature single phases are subjected to single-phase treatment and extracted to at least the spinodal decomposition temperature or below, the resulting alloy The magnetic properties of are improved.

本発明は以上の知見に基づき、磁気%件、とりわけIH
Oの大きい希土類−コバルト系永久mbの製造方法を提
供することに目的がある。
The present invention is based on the above findings, and the present invention is based on the above findings.
It is an object of the present invention to provide a method for producing a rare earth-cobalt permanent MB with a high O content.

本発明方法は、希土類元素の少くともtmと他の元素の
少くなくとも1種とから成る磁性合金を溶融し;溶融し
た該磁性合金を急冷して、結晶構造がTbCu7型又は
ThzNitt型の2−17型高温相を室温にまで引き
抜き出し;ついで、350〜900Cの温度範囲で時効
処理を施して、該2−17型相中に1−5型相を微細析
出せしめることを特徴とするものである。
The method of the present invention involves melting a magnetic alloy consisting of at least tm of a rare earth element and at least one other element; rapidly cooling the melted magnetic alloy to form a crystal structure of TbCu7 type or ThzNitt type. - The 17-type high-temperature phase is drawn out to room temperature; then, an aging treatment is performed in a temperature range of 350 to 900C to finely precipitate the 1-5 type phase in the 2-17 type phase. It is.

本発明方法においては、まず、常法にしたかって、Sm
、 Pr、 Ce、 Sc、 Y、 La、 Nd、 
Pm、 Eu、 Gd、 Dy。
In the method of the present invention, first, in order to make it a conventional method, Sm
, Pr, Ce, Sc, Y, La, Nd,
Pm, Eu, Gd, Dy.

Ho、 Er、 Yb、 Lu、 Tb、 Tmなどの
希土類元素の1棟又は2s以上と他の元素とから成る磁
性合金を溶融する。ここで、他の元素とは、Co、 F
e、 Cu、 Mn。
A magnetic alloy consisting of one or more than 2s of rare earth elements such as Ho, Er, Yb, Lu, Tb, and Tm and other elements is melted. Here, other elements are Co, F
e, Cu, Mn.

Cr、Niなどの1,11又は2種以上を主成分とする
が、磁気特性を同上させるためには、更に、Ti、Zr
The main component is 1, 11, or 2 or more of Cr, Ni, etc., but in order to improve the magnetic properties, Ti, Zr, etc.
.

Hf、 Nb、 Ta、 Wなどの遷移金属、Au、 
Pt  などの貴金属、 Zn、 In、 Sn、 S
bなどの低融点金属、Be。
Transition metals such as Hf, Nb, Ta, W, Au,
Precious metals such as Pt, Zn, In, Sn, S
A low melting point metal such as Be.

Mg などの周期律&llA族の金属、B、 A1.8
1. Te。
Periodic law & llA group metals such as Mg, B, A1.8
1. Te.

Cなどの半金属又は半導体元素などを添加することが好
塘しい。
It is preferable to add a semimetal such as C or a semiconductor element.

浴融け、上に列+!ピした希土類元素、他の元素のうち
必要な元素の粉末又は塊を所定の組成比になるように配
合し、これを例えば石英容器の中に収容した後、高周波
誘導コイルによる加熱;カーボンや金属発熱体を用いた
抵抗加熱;キセノノランf#の赤外線による加熱;電子
ビームによる加熱;アーク放゛邂による加熱などの加熱
方法を適用して行なわれる。このとき、希土類元素は酸
化又は蒸発し易いので、全体゛を真空にし九後、系にア
ルゴンなどの不活性ガスを導入した雰囲気下で溶融する
ことが必要となる、 さて、本発明方法の第lの特徴は、上記したような方法
で溶融した磁性合金を、急冷して高温相からTbCuy
型相又はThaNiry型相を単相状illそ室温にま
で引き抜き出すことである。
Bath melt, row on top +! Powders or lumps of rare earth elements and other necessary elements are blended to a predetermined composition ratio, placed in a quartz container, and then heated with a high-frequency induction coil; carbon or metal Heating methods include resistance heating using a heating element; heating by infrared rays of xeno-nolan f#; heating by electron beam; and heating by arc radiation. At this time, since rare earth elements are easily oxidized or evaporated, it is necessary to evacuate the entire system and then melt it in an atmosphere in which an inert gas such as argon is introduced into the system. The feature of TbCuy is that the magnetic alloy melted by the method described above is rapidly cooled and the high temperature phase is converted to TbCuy.
The purpose is to extract the mold phase or ThaNiry type phase to a single phase illumination to room temperature.

第1図の高温状態図から明らかなように、Fe組成比が
大きくなるCCuff1g比が小さくなる)と、TbC
u7型相、Tb2Ni+y型相の的体化処理温度のイ・
IL囲は極めて狭くなるので、これらTbCu7型相、
Th2 Ni17型相を単相状態で室温にまで引き抜き
田すためには、極めて大きな冷却速度を必要とすること
がわかる。
As is clear from the high-temperature phase diagram in Fig. 1, as the Fe composition ratio increases, the CCuff1g ratio decreases) and the TbC
A of the target temperature for u7 type phase and Tb2Ni+y type phase
Since the IL range is extremely narrow, these TbCu7 type phases,
It can be seen that an extremely high cooling rate is required to extract the Th2 Ni17 type phase to room temperature in a single phase state.

このため、本発明方法においては、上8己したTbCu
7型相又はTh、Ni、?型相の引き抜きのためには、
溶融状態にある上H1シした合金を、篩速で回転する熱
伝導性の良好なドラム又はロールの回転面に噴出きせる
方法、いわゆる浴湯急冷法を適用することが好ましい。
Therefore, in the method of the present invention, TbCu
Type 7 or Th, Ni,? In order to extract the pattern,
It is preferable to apply the so-called bath water quenching method, which is a method in which the molten H1 alloy is jetted onto the rotating surface of a drum or roll with good thermal conductivity that rotates at a screening speed.

本発明方法で適用される冷却速度は、通常、1000c
/see以上であって、これより小さい冷却速度の場合
には、凝固偏析が起り、TbCu7型相又は’l’h2
Ni+y型相を単相として室温まで引き抜き出・すこと
が困難となって、本発明の目的と合致しなくなる。この
冷却速度は、回転体の材質、ぞのト1転速度などによっ
て規定されるが、回転体の材質としでは1通常、A4 
Ag、 Cu、 Fe又はこれらの合金のように熱伝導
性に優れるもの、また回転速度としては100 rpm
以上であることが好ましい。
The cooling rate applied in the method of the invention is typically 1000c
/see or higher, and if the cooling rate is lower than this, solidification segregation occurs and the TbCu7 type phase or 'l'h2
It becomes difficult to extract the Ni+y type phase as a single phase to room temperature, which does not meet the purpose of the present invention. This cooling rate is determined by the material of the rotating body, the rotation speed, etc., but if the material of the rotating body is
Materials with excellent thermal conductivity such as Ag, Cu, Fe, or their alloys, and a rotation speed of 100 rpm
It is preferable that it is above.

このようにして、大部分がTbCuy[相又はTh* 
Ni+y型相から構成される過冷却合金の薄帯、薄片(
フレーク)、又は粉末が得られる。
In this way, most of the TbCuy [phase or Th*
Ribbons and flakes of supercooled alloys composed of Ni+y type phase (
flakes) or powder are obtained.

本発明方法の第2の特徴は、上記した過冷却合金の薄帯
、薄片、又は粉末に時効処理を施して2−17型相の中
に1−5型相を微細析出させることである。
The second feature of the method of the present invention is that the ribbon, flake, or powder of the above-mentioned supercooled alloy is subjected to an aging treatment to finely precipitate the 1-5 type phase in the 2-17 type phase.

このときの時効処理温度は、350〜900Cの範囲V
Cあることが必要で、この範囲を外れると、IHOの増
大が図れない。また時効処理時間については、格別限定
されることは々いが、0.1−100時間程腋であるこ
とが好ましい。
The aging treatment temperature at this time is in the range V of 350 to 900C.
It is necessary to have a certain value of C, and if it is outside this range, the IHO cannot be increased. The aging treatment time is not particularly limited, but it is preferably about 0.1 to 100 hours.

本発明における好ましい時効処理の態様の1例としては
、850Cで30分間時効後、以後100℃間隔で1時
間、2時間、4時間の4段時効処理である。
One example of a preferred aspect of aging treatment in the present invention is aging at 850C for 30 minutes, followed by four-stage aging treatment at 100C intervals for 1 hour, 2 hours, and 4 hours.

このようにして得られた薄帯、薄片、粉末を用い、常法
にしたがった方法で本発明にかかる永久磁石が製造され
る。すなわち、その方法の1例としては、上記の時効処
理を施した材料を粉砕して微粉末とし、これを磁気的に
配列せしめて加圧成形する方法が好んで適用される。
The permanent magnet according to the present invention is manufactured by a conventional method using the ribbon, flake, or powder thus obtained. That is, as an example of the method, a method of pulverizing the above-mentioned aging-treated material into fine powder, magnetically arranging the fine powder, and press-molding the fine powder is preferably applied.

以上のように、本発明方法はFe組成比が大きくCu組
成比が小さくても、IHOの大きい希土類系永久磁石を
製造することができるのでその工業的価値は極めて大で
ある。また、得られた永久磁石は従来の焼結法による磁
石に比べてその機緘加工性に優れるので有用である。更
に、本発明はSmzCo+7相中のT b CuT型相
又はThzNity型相を単相状態で引き抜き出すので
、高価な希土類元素、COの組成比を小さくすることが
できて得られる永久磁石は安価となる。また、前記した
ような耐熱衝撃性を勘案することなく製造することがで
きることも効果の1つである。
As described above, even if the method of the present invention has a large Fe composition ratio and a low Cu composition ratio, it is possible to produce a rare earth permanent magnet with a large IHO, so its industrial value is extremely large. Furthermore, the obtained permanent magnet is useful because it has superior machinability compared to magnets produced by conventional sintering methods. Furthermore, since the present invention extracts the T b CuT type phase or ThzNity type phase from the SmzCo+7 phase in a single phase state, the composition ratio of expensive rare earth elements and CO can be reduced, and the resulting permanent magnet is inexpensive. Become. Another advantage is that it can be manufactured without considering thermal shock resistance as described above.

以下に本発明方法を実施例に基づいて説明する。The method of the present invention will be explained below based on examples.

実施例 1)永久磁石の製造 試料l: Sm 25.4 mm%、 Fe 30.0
重量%、 Cu3.0重旨%、 T12.0重量%、残
部がC。
Example 1) Production sample 1 of permanent magnet: Sm 25.4 mm%, Fe 30.0
Weight %, Cu 3.0 weight %, T 12.0 weight %, balance C.

から成る合金の材料を先端にノズルを備えた石英容器中
に入れ、高周波誘導加熱法によってアルコ9ン雰囲気中
で浴融した。
An alloy material consisting of was placed in a quartz container equipped with a nozzle at the tip and melted in an alcohol atmosphere by high frequency induction heating.

1350℃で保持した上記の浴融合金を、11000r
pで回転する直径300φの銅製片ロールの回転面上に
噴出した゛。冷却速度は約10’ C/seeであつ九
。フレーク状の薄片が得られた。
The above bath alloy held at 1350°C was heated at 11000r
It was ejected onto the rotating surface of a roll made of copper with a diameter of 300φ rotating at speed p. The cooling rate was approximately 10'C/see. Flaky flakes were obtained.

この薄片の結晶構造をXS回折法で調 べた。その回折パターンを@2図に示した。第2図から
明らかなように、薄片は大部分がTbCu7型相の六方
晶から構成されており、2θ−38〜39度近辺にある
’l’hl ZnIy型の斜方晶+2)(024)+2
)ピークはほとんど認められなかった。すなわち、薄片
においては、TbCuty m相が単相状態で引き抜き
出されていることが確認された。
The crystal structure of this thin piece was investigated by XS diffraction method. The diffraction pattern is shown in Figure @2. As is clear from Fig. 2, the flakes are mostly composed of hexagonal crystals of TbCu7 type phase, and 'l'hl ZnIy type orthorhombic crystals around -38 to 39 degrees 2θ (024). +2
) Almost no peak was observed. That is, it was confirmed that the TbCuty m phase was extracted in a single phase state in the thin section.

次に上記薄片を8500で30分間時効した後、100
℃間隔で1時間、2時間、4時間の4段時効処理した。
Next, the above flakes were aged at 8500 for 30 minutes, and then aged at 100
A four-stage aging treatment was performed at intervals of 1 hour, 2 hours, and 4 hours at °C.

時効処理した薄片を、次に20メツシュ篩通過程度に粗
粉砕した後、史にジェットミルで粉砕して平均粒径4μ
mの彼粉末とした。この微粉末を4%ナイロン−メタノ
ールfgaと混和した後、所定の押し型に充填し、20
.000エルステツげの磁界をかけなから2 ton/
−の圧力で圧a成形した。この圧粉体をゴム容器にいれ
更に5ton/ajで静水圧プレスした。得られた永久
磁石を試料lとした。
The aged flakes were then coarsely ground to the extent that they could pass through a 20-mesh sieve, and then ground in a jet mill with an average particle size of 4 μm.
It was made into a powder. After mixing this fine powder with 4% nylon-methanol fga, it was filled into a predetermined pressing mold and
.. Apply a magnetic field of 000 ersteg 2 ton/
Pressure molding was carried out at a pressure of -. This green compact was placed in a rubber container and further subjected to isostatic pressing at 5 tons/aj. The obtained permanent magnet was designated as Sample 1.

試料2:試料lと同一組成の合金の材料20Fをアルゴ
ン中で1200C,1時間加熱処理した後1000C/
−の冷却速度で急冷した。
Sample 2: An alloy material 20F with the same composition as Sample 1 was heat-treated at 1200C for 1 hour in argon, and then heated to 1000C/
It was rapidly cooled at a cooling rate of -.

冷却後の該合金材料につきX線回折分析し九ところ、そ
の回折/4’ターンは20−38〜39度近辺にある特
徴的なThx Zn1t型の斜方晶の(024)のピー
クを示した。
After cooling, the alloy material was analyzed by X-ray diffraction, and the diffraction/4' turn showed a characteristic Thx Zn1t-type orthorhombic (024) peak around 20-38 to 39 degrees. .

ついで、この合金に試料lと同様の時 効処理を施した後、同様の粉砕、圧粉成形をして永久磁
石とした。これを試料2とした。
Next, this alloy was subjected to the same aging treatment as Sample 1, and then crushed and compacted in the same manner to obtain a permanent magnet. This was designated as sample 2.

試料3 : Sm 13.5 重kk%、Cet2.8
11[mm%、Fe25.0 M m%、Cu2.6重
蓋%、Mn1.0重−1%、’rt i、o憲1%、残
部がCOから成る合金の材料を用いたことを除いては、
試料lの場合と同一の条件で永久磁石を製造した。これ
を試料3とした。なお、得られた薄片のX線回折・リー
ンは典型的なTbCu7型のパターンでめった。
Sample 3: Sm 13.5 weight kk%, Cet 2.8
11[mm%, Fe25.0 Mm%, Cu2.6 heavy weight%, Mn1.0 weight-1%, 'rt i, o 1%, the balance was except that an alloy material consisting of CO was used. Well,
A permanent magnet was manufactured under the same conditions as for sample 1. This was designated as sample 3. Note that the X-ray diffraction/lean analysis of the obtained thin section showed a typical TbCu7 type pattern.

1料4:合金の材料が試料3で用いた組成と同一である
ことを除いては、試料2の場合と同一の条件で永久磁石
を製造した。これを試料4とした。
Material 1: A permanent magnet was manufactured under the same conditions as Sample 2, except that the composition of the alloy material was the same as that used in Sample 3. This was designated as sample 4.

試料5 : Pr25.7重蓋%、Fe28.OX量%
、Cu2.0)[mm%、Nb l 、0重量%、Zr
t、Ol[mm%、stt、o*電%、残部がCOから
成る合金の材料を用いたことを除いては、試料lの場合
と同一の条件で永久磁石を製造した。これを試料5とし
た。
Sample 5: Pr25.7 heavy lid%, Fe28. OX amount%
, Cu2.0) [mm%, Nb l , 0 wt%, Zr
A permanent magnet was manufactured under the same conditions as in the case of Sample 1, except that an alloy material consisting of t, Ol [mm%, stt, o*electron%, and the balance was CO was used. This was designated as sample 5.

試料6:合金の材料が試料5で用いた組成と同一である
ことを除いては、試料2の場合と同一の条件で永久磁石
を製造し、これ、を試料6としたう 試料7 : Ce2B、0重量%、Fe 25.0 *
 mm%、Cu3.0]!L量J16 、  V l 
、0 重t %、Ni1.0jfet%、残部かCo 
から取る合金のI料を用いたことを除いては、試料lの
場合と同一の条件で永久磁石を製造し、これを試料7と
した。
Sample 6: A permanent magnet was manufactured under the same conditions as Sample 2, except that the alloy material was the same as the composition used in Sample 5, and this was designated as Sample 6. Sample 7: Ce2B , 0% by weight, Fe 25.0 *
mm%, Cu3.0]! L amount J16, V l
, 0 weight t%, Ni 1.0jfet%, balance or Co
A permanent magnet was manufactured under the same conditions as Sample 1, and was designated as Sample 7, except that an alloy I material obtained from the above was used.

試08:合金の材料が試料7で用いた組成と同一である
ことを除いては、試料2の場合と同一の条件で永久磁石
を製造し、これを試料8とした。
Trial 08: A permanent magnet was manufactured under the same conditions as Sample 2, except that the composition of the alloy material was the same as that used in Sample 7, and this was designated as Sample 8.

以上の試料において、試料1,3,5.7が本発明方法
によるもの、試料2,4,6.8は比較例である。
Among the above samples, Samples 1, 3, and 5.7 were obtained by the method of the present invention, and Samples 2, 4, and 6.8 were comparative examples.

2)各試料の磁気特性 冨法eこ従って、各試料の残留磁束密度、保磁力、最大
エネルギー積を測定した。結果を表に示した。
2) Magnetic properties of each sample Accordingly, the residual magnetic flux density, coercive force, and maximum energy product of each sample were measured. The results are shown in the table.

【図面の簡単な説明】[Brief explanation of the drawing]

1i81図はSmCua −3m2 COI?擬二元系
の高温状態図、第2図は実施例中の試料lにかかる薄片
のX−回折パターンである。 Cu (w會%) 2θ □
Is the 1i81 diagram SmCua -3m2 COI? The high-temperature phase diagram of the pseudo-binary system, FIG. 2, is the X-diffraction pattern of a thin piece of sample 1 in the example. Cu (w%) 2θ □

Claims (1)

【特許請求の範囲】 希土類元素の少くとも1種と他の元素の少くとも1mと
から成る磁性合金を溶融し; 溶融した#磁性合金を急冷して、結晶構造が’]’bC
u7型又はThtNi+を型の2−17!!!高温相を
室温にまで引き抜き出し; ついで、 350〜900 Cの温度範囲で時効処理を施して、#
2−17型相中K1−5型相を微細析出せしめること全
特徴とする永久磁石の製造方法。
[Claims] A magnetic alloy consisting of at least one rare earth element and at least 1 m of other elements is melted; the molten #magnetic alloy is rapidly cooled so that the crystal structure is
U7 type or ThtNi+ type 2-17! ! ! The high-temperature phase is drawn out to room temperature; then, an aging treatment is performed in a temperature range of 350 to 900 C, and #
A method for manufacturing a permanent magnet characterized by finely precipitating a K1-5 type phase in a 2-17 type phase.
JP56184431A 1981-11-19 1981-11-19 Manufacture of permanent magnet Pending JPS5886706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56184431A JPS5886706A (en) 1981-11-19 1981-11-19 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56184431A JPS5886706A (en) 1981-11-19 1981-11-19 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS5886706A true JPS5886706A (en) 1983-05-24

Family

ID=16153026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56184431A Pending JPS5886706A (en) 1981-11-19 1981-11-19 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS5886706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182802A (en) * 1982-04-21 1983-10-25 Pioneer Electronic Corp Preparation of permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58182802A (en) * 1982-04-21 1983-10-25 Pioneer Electronic Corp Preparation of permanent magnet
JPH0416923B2 (en) * 1982-04-21 1992-03-25 Pioneer Electronic Corp

Similar Documents

Publication Publication Date Title
US4585473A (en) Method for making rare-earth element containing permanent magnets
KR101474947B1 (en) R-Fe-B ANISOTROPIC SINTERED MAGNET
US8110049B2 (en) Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
Saito et al. The development of high performance Nd–Fe–Co–Ga–B die upset magnets
US5963774A (en) Method for producing cast alloy and magnet
CN107408436B (en) Terres rares permanent magnet and its manufacturing method
KR20100037030A (en) R-fe-b rare earth sintered magnet
US5314548A (en) Fine grained anisotropic powder from melt-spun ribbons
EP0517179B1 (en) Method of making two phase Rare Earth permanent magnets
WO2003066922A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JPH0574618A (en) Manufacture of rare earth permanent magnet
US5069713A (en) Permanent magnets and method of making
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
US4983230A (en) Platinum-cobalt alloy permanent magnets of enhanced coercivity
JP2024020341A (en) Anisotropic rare earth sintered magnet and method for manufacturing the same
JP2024023206A (en) Anisotropic rare earth sintered magnet and manufacturing method thereof
Harada et al. Amorphization of Nd15Fe77B8 alloy ingots by mechanical grinding
JPH062929B2 (en) Permanent magnet material
JPS5886706A (en) Manufacture of permanent magnet
JPH0146574B2 (en)
JPH058562B2 (en)
JPH0582319A (en) Permanent magnet
Harada et al. Crystallization of amorphous melt-spun Nd15Fe77Bx (x= 6–14) alloys
Kang et al. Microstructural and magnetic properties of low-energy ball milled LTP-MnBi powders via melt-spinning and gas-atomization
JPS6386502A (en) Rare earth magnet and manufacture thereof