JPS5886134A - Endoscope - Google Patents

Endoscope

Info

Publication number
JPS5886134A
JPS5886134A JP56183842A JP18384281A JPS5886134A JP S5886134 A JPS5886134 A JP S5886134A JP 56183842 A JP56183842 A JP 56183842A JP 18384281 A JP18384281 A JP 18384281A JP S5886134 A JPS5886134 A JP S5886134A
Authority
JP
Japan
Prior art keywords
solid
endoscope
image sensor
state image
capsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56183842A
Other languages
Japanese (ja)
Inventor
潔 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56183842A priority Critical patent/JPS5886134A/en
Publication of JPS5886134A publication Critical patent/JPS5886134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Endoscopes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は内視鏡、特に固体撮儂素子を用い友内視鏡に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an endoscope, and particularly to a companion endoscope using a solid-state imaging device.

従来の内視鏡の多くは第1図に示される如く、儂伝送用
のオプティカルファイバー束lの両端部に対物レンズ2
と接眼レンズ3とを配置し、側視プリズム4および対物
レンズ2を経て被検体5の儂ヲオプテイカルファイバー
束1の端面1畠へ結像させ、オプティカルファイバー内
を伝送されて他端面1bに現われる伝送偉を接眼レンズ
3t−介して奈察するものであった。オプティカルファ
イバー束1は、直径10〜20μの単繊維数万事からな
る集束体であって、両端面1g、1bでは各繊維の正し
い対応配列がなされ、全体として6〜lO−程度の直径
を有するものである。このようか従来の内視鏡はそのオ
プティカルファイバー束の製造コストが高いために全体
として高価なものでToシ内視鏡の全長が長くなればそ
れに比例してコスト高となるものであった。また、従来
はガストロスコープとしての用途においてもその頚管の
直径が10〜13■と太いため例えば胃の中に挿入する
際に患者に与える苦痛は大きく、また咽頭の麻酔が必要
となるなど従来の内視鏡には操作性、経済性の点で賭点
が多い。
As shown in Fig. 1, most conventional endoscopes have objective lenses 2 at both ends of an optical fiber bundle l for transmission.
and an eyepiece lens 3, an image is formed on the end surface 1 of the optical fiber bundle 1 of the subject 5 through the side viewing prism 4 and the objective lens 2, and is transmitted through the optical fiber to the other end surface 1b. The appearing transmission was observed through the eyepiece 3T. The optical fiber bundle 1 is a bundle consisting of tens of thousands of single fibers with a diameter of 10 to 20μ, and each fiber is arranged in a correct manner on both end faces 1g and 1b, and the optical fiber bundle 1 has a diameter of about 6 to 1O− as a whole. It is something. As described above, conventional endoscopes are expensive as a whole because the manufacturing cost of the optical fiber bundle is high, and the longer the total length of the endoscope, the higher the cost will be. In addition, when used as a gastroscope, the diameter of the cervical canal is as large as 10 to 13 cm, which causes great pain to the patient when inserted into the stomach, and requires pharyngeal anesthesia. Endoscopes have a lot of stakes in terms of operability and economy.

これら離点を解消するものく最近第2図に示す如く、内
視鏡の頭部となるカプセル6内に対物レンズ2と後述す
る如き固体撮偉素子(SOLID8TATE  IMA
GE 8EN80R8ARRAY)7とを配置し、対物
レンズ2によって被検体5の像を固体撮儂素子7面に結
ばせ、画像点の光に対応してこの素子から得られる電気
信号を導418によυ増巾器9を経て離隔位置にあるブ
ラウン管lOに導きどれに被検体儂を再生させて観察可
能とする方法が用いられるようになつ九、固体撮像素子
7は縦、横およそ2〜3■11&のチップに、縦、横約
200X200個の微少な光電素子がマトリックス状に
形成され、各々がパケット、ブリゲート、レジスター等
より成す、光が照射されると逆方向にバイアスされたM
08トランジスターのソース−ドレイン間がフォトダイ
オードとして働くのと同効の作用をするもので、素子全
体に第3図に示す如く走査信号発生器11.  ドライ
バー12、X軸シフター13、Y軸シフター14よ構成
る作動回路15をI!続しておくことKよシ、各光電素
子における上記の光電変換作用と同時に、更に各光電素
子の順次の自己走査が行われて画像に対応する信号出力
が得られるものである。従って頭部カプセル6を被接体
内に挿入し、対物レンズ2によって被検体の所要部分の
儂を固体撮像素子7面に結ばせると、各光電素子がその
画儂点の光を光電変換し、同時にそれらの自己走査が行
われ、その出力信号によシブラウン管10に画像が再生
されるものである。
Recently, as shown in Fig. 2, a solution to these problems has been to install an objective lens 2 and a solid-state imaging device (SOLID8TATE IMA) as described later in a capsule 6 that is the head of the endoscope.
GE 8EN80R8ARRAY) 7 is arranged, an image of the subject 5 is focused on the solid-state camera element 7 by the objective lens 2, and an electric signal obtained from this element corresponding to the light of the image point is transmitted through the conductor 418. The solid-state imaging device 7 is approximately 2 to 3 cm tall and 3 cm wide. On the chip, microscopic photoelectric elements of approximately 200 x 200 in length and width are formed in a matrix, each consisting of a packet, brigade, register, etc., which is biased in the opposite direction when irradiated with light.
08 transistor has the same effect as a photodiode between its source and drain, and the entire device is connected to a scanning signal generator 11.08 as shown in FIG. The operating circuit 15 consisting of the driver 12, the X-axis shifter 13, and the Y-axis shifter 14 is I! As a continuation, at the same time as the above-mentioned photoelectric conversion action in each photoelectric element, sequential self-scanning of each photoelectric element is performed to obtain a signal output corresponding to an image. Therefore, when the head capsule 6 is inserted into the subject and the objective lens 2 connects the surface of the desired part of the subject to the solid-state image sensor 7, each photoelectric element photoelectrically converts the light at the image point. At the same time, self-scanning is performed, and an image is reproduced on the cathode ray tube 10 using the output signal.

上述の如く、構成された固体撮像素子を用いた内視鏡に
おいても、受光面が一個であるために観察できる視野が
限定されてしまう結果、全方位を観察しようとする場合
には、体内において内視鏡の受光面が、対象物に正対す
る位置に回転、あるいは移動しなければならない。した
がって、内視鏡には移動、回転お機構が必要となシ構造
が複雑となる。また、内視鏡の体内部での移動は患者に
苦痛をメ友えるものとして、好感がもたれてはいないの
が現状である。
As mentioned above, even in an endoscope that uses a structured solid-state image sensor, the field of view that can be observed is limited because there is only one light-receiving surface. The light-receiving surface of the endoscope must be rotated or moved to a position directly facing the object. Therefore, the endoscope has a complicated structure, requiring mechanisms for movement and rotation. Furthermore, the movement of endoscopes inside the body is currently not viewed favorably by patients as it relieves them of pain.

本発明は、かかる点を鑑みてなされたものでめシ複数個
の固体撮像素子を用いることを特徴とする。以下、本発
明の絆細を図をもちいて説明する。
The present invention has been made in view of this point, and is characterized by the use of a plurality of solid-state image sensors. Hereinafter, the bond details of the present invention will be explained with reference to the drawings.

第4図は本発明の一笑施例の要部を示す図である。すな
わち、内視鏡の先端部のカプセル6を光学的に透明な物
質(例えばプラスチック)t−もちいて作成し、かつ、
その外形を完全な球形にしたことt−特徴とするもので
ある。ま九カプセル6内部を立方形に切欠く構造にする
と、カプセル6はちょうど5個の凸レンズ(例えばプラ
スチックレンズ)を貼プ會せた形状となる。したがって
、外部から入射する光22は、それぞれの凸レンズを通
して、カプセルのほぼ中央に集束させることができる九
めに1この集束点に、5個の固体撮像素子7を配置し、
それぞれの素子の受光面が各々の凸レンズの光軸方向と
一致させておけば、光軸方向から入射する光学的情報を
すべてとらえることができる。
FIG. 4 is a diagram showing a main part of a simple embodiment of the present invention. That is, the capsule 6 at the tip of the endoscope is made of an optically transparent material (for example, plastic), and
It is characterized by having a completely spherical outer shape. If the inside of the capsule 6 is cut into a cubic shape, the capsule 6 will have a shape in which exactly five convex lenses (for example, plastic lenses) are pasted together. Therefore, the light 22 incident from the outside can be focused almost at the center of the capsule through each convex lens.Ninthly, five solid-state image sensors 7 are arranged at this focusing point,
By aligning the light-receiving surface of each element with the optical axis direction of each convex lens, all optical information incident from the optical axis direction can be captured.

第5図は、上記固体撮像素子の制御を説明するための図
である1図において、それぞれの固体撮像素子7は、ス
イッチ20によって切換えながらブラウン管10上に表
面すれば、カプセル6の周囲のほぼ全方位を観察するこ
とが可能でメジ、視野を定めるために、その都度カプセ
ル6を移動させることをしなくてもよく、従来の内視鏡
での問題点を除去できる。
FIG. 5 is a diagram for explaining the control of the solid-state image sensing device. In FIG. It is possible to observe in all directions, and there is no need to move the capsule 6 each time to determine the field of view, which eliminates problems with conventional endoscopes.

以上の説明ではカプセル内部を立方形に切欠き、5個の
固体撮像素子が装着できる構造について述べたが、本発
明はこれに限らず多角形の場合でも通用できるものでお
る。即ち、第6図に示す如く、多角形の各々の而と、カ
プセル表面とが凸レンズ′t−構成するようにし、それ
ぞれの凸レンズに対応した位置に固体撮像素子7を装着
(各撮像素子は絶縁材で構成された支持部23の先端に
接着される)すれば、得られる儂はよシ全方向に近いも
のとなる。
In the above description, a structure has been described in which the inside of the capsule is cut out in a cubic shape and five solid-state imaging devices can be mounted therein, but the present invention is not limited to this, and can also be applied to a polygonal shape. That is, as shown in FIG. 6, each of the polygons and the capsule surface constitute a convex lens, and a solid-state image sensor 7 is mounted at a position corresponding to each convex lens (each image sensor is insulated). (adhered to the tip of the support part 23 made of a material), the resultant structure becomes nearly omnidirectional.

なお、第4図及び第6図において、カプセル6が形成す
る凸レンズの焦点が固体撮像素子7の向上に位置しない
場合にはカプセル6内に光に対してその折屈を任意に変
えられる物質21(この檻の屈折液は光学測定関係では
通常使用されている)を封入することによシ、焦点11
i1′ft固体素子面上に位置するようにすることがで
きる。
In FIGS. 4 and 6, if the focal point of the convex lens formed by the capsule 6 is not located above the solid-state image sensor 7, there is a substance 21 inside the capsule 6 that can arbitrarily change the refraction of light. (The refractive liquid in this cage is commonly used in optical measurement).
i1'ft can be located on the solid state element surface.

【図面の簡単な説明】[Brief explanation of the drawing]

Jl1図はオプティカルファイバーを用いた従来の内視
鏡の要部構成を示す側面図、第2図は固体撮像素子を用
いた内視鏡の要部構成を示す#1面図、第3図は固体撮
像素子の作動関係を説明する回路ブロック図、第4図は
本発明の一実施例の要部を示す図、第5図はその動作を
説明するための図、第6図は本発明の他の実施例の要部
を示す図でめ、¥i 3 図 163− χ 4 図 ¥15 図 刀 6 図 164−
Figure Jl1 is a side view showing the configuration of the main parts of a conventional endoscope using optical fibers, Figure 2 is a #1 side view showing the configuration of the main parts of an endoscope using a solid-state image sensor, and Figure 3 is A circuit block diagram explaining the operational relationship of the solid-state image sensor, FIG. 4 is a diagram showing the main part of an embodiment of the present invention, FIG. 5 is a diagram for explaining the operation, and FIG. A diagram showing the main parts of another embodiment, ¥i 3 Figure 163- χ 4 Figure ¥15 Illustration 6 Figure 164-

Claims (1)

【特許請求の範囲】[Claims] 結儂面の自己走査によって得られた固体撮儂素子からの
電気偏号を、固体撮gI素子から離れ九位置にある表示
装置に導いて画gIIを再生させる内視鏡において、複
数(ilの固体撮像素子を設けるとともに、それを保持
する容器が、固体撮儂素子面に所定の被検体の儂を結ぶ
対物レンズを形成することt特徴とする内視鏡。
In an endoscope that reproduces an image gII by guiding the electrical polarization from the solid-state image sensor obtained by self-scanning of the solid-state image sensor to a display device located at nine positions away from the solid-state image sensor, a plurality of What is claimed is: 1. An endoscope comprising a solid-state imaging device, and a container holding the solid-state imaging device forming an objective lens connecting a predetermined subject to the surface of the solid-state imaging device.
JP56183842A 1981-11-18 1981-11-18 Endoscope Pending JPS5886134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56183842A JPS5886134A (en) 1981-11-18 1981-11-18 Endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56183842A JPS5886134A (en) 1981-11-18 1981-11-18 Endoscope

Publications (1)

Publication Number Publication Date
JPS5886134A true JPS5886134A (en) 1983-05-23

Family

ID=16142788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56183842A Pending JPS5886134A (en) 1981-11-18 1981-11-18 Endoscope

Country Status (1)

Country Link
JP (1) JPS5886134A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110875A (en) * 1986-10-28 1988-05-16 Agency Of Ind Science & Technol Input system for plural camera information
JP2007136208A (en) * 2006-11-21 2007-06-07 Olympus Corp Capsule type endoscope for medical treatment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551270B2 (en) * 1973-05-31 1980-12-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551270B2 (en) * 1973-05-31 1980-12-23

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110875A (en) * 1986-10-28 1988-05-16 Agency Of Ind Science & Technol Input system for plural camera information
JP2007136208A (en) * 2006-11-21 2007-06-07 Olympus Corp Capsule type endoscope for medical treatment

Similar Documents

Publication Publication Date Title
US5495114A (en) Miniaturized electronic imaging chip
JP3003944B2 (en) Solid-state imaging device
JP4009473B2 (en) Capsule endoscope
US4692608A (en) Compact optical imaging system
JP3017245B2 (en) Endoscope
US5381784A (en) Stereoscopic endoscope
US20050027164A1 (en) Vision catheter
WO2011092901A1 (en) Image pickup unit for endoscope
US7251383B2 (en) Method and device of imaging with an imager having a fiber plate cover
US20090180197A1 (en) Grin lens microscope system
JP3659882B2 (en) Endoscopic imaging device
JP2008083398A (en) Compound-eye optics and optical apparatus using the same
JPH0228329B2 (en)
JPS5886134A (en) Endoscope
JP2001221961A (en) Binocular optical adapter
JP2000031445A (en) Solid-state image-pickup module
JPS60241010A (en) Endoscope
JPH0740974Y2 (en) Optical system for electronic endoscope
JPH0210497Y2 (en)
US20080045788A1 (en) Method and device of imaging with an in vivo imager
JPS60241011A (en) Endoscope
JPH0442816Y2 (en)
JPS6053923A (en) Endoscope
JPS5971019A (en) Image pickup device by endoscope
JPS5850934A (en) Photographing apparatus for endoscope