JPS588605B2 - Easy mode filter - Google Patents

Easy mode filter

Info

Publication number
JPS588605B2
JPS588605B2 JP50047413A JP4741375A JPS588605B2 JP S588605 B2 JPS588605 B2 JP S588605B2 JP 50047413 A JP50047413 A JP 50047413A JP 4741375 A JP4741375 A JP 4741375A JP S588605 B2 JPS588605 B2 JP S588605B2
Authority
JP
Japan
Prior art keywords
electrodes
crystal plate
attenuation pole
electrode
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50047413A
Other languages
Japanese (ja)
Other versions
JPS51123040A (en
Inventor
郡司勝彦
小林正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP50047413A priority Critical patent/JPS588605B2/en
Publication of JPS51123040A publication Critical patent/JPS51123040A/en
Publication of JPS588605B2 publication Critical patent/JPS588605B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor

Description

【発明の詳細な説明】 本発明は圧電結晶板上に蒸着ないしは印刷等の手法を用
いることにより電極部を形成し、各電極間の無電極部分
を介しての振動エネルギーの機械的結合を利用したエネ
ルギー閉じ込め型フィルタに関するものである。
Detailed Description of the Invention The present invention forms electrode portions on a piezoelectric crystal plate by using a technique such as vapor deposition or printing, and utilizes mechanical coupling of vibrational energy through the non-electrode portion between each electrode. This paper relates to an energy confinement type filter.

一般に有限の周波数軸上に減衰極をもたない無極型のエ
ネルギー閉じ込め型フィルタは遮断特性が緩慢であり、
より急峻な遮断特性が得られる有限の周波数軸上に減衰
極を有する有極型エネルギ閉込め型フィルタが必要にな
ってきている。
In general, non-pole energy confinement filters that do not have an attenuation pole on a finite frequency axis have slow cutoff characteristics.
There is an increasing need for a polarized energy confinement filter that has an attenuation pole on a finite frequency axis and can provide steeper cutoff characteristics.

従来の有極型多重モードフィルタは、圧電結晶板Pの上
に第1図に示す様に奇数個の電極E1,E2,・・・E
2n−1を形成し、その信号入力端子1,2と信号出力
端子3,4の間に並列にコンデンサCを接続するもので
第2図の様にバンドパスフィルタの中心周波数f0に対
し、低周波領域側のみに減衰極f−∞が実現出来る。
A conventional polarized multimode filter has an odd number of electrodes E1, E2,...E on a piezoelectric crystal plate P as shown in FIG.
2n-1, and a capacitor C is connected in parallel between the signal input terminals 1 and 2 and the signal output terminals 3 and 4. Attenuation pole f-∞ can be realized only on the frequency domain side.

又奇数個の電極を形成し、第3図の様に信号出力端子を
入れ換え電極に対し並列にコンデンサを接続することに
より第4図の様にバンドパスフィルタの中心周波数に対
し高周波領域側のみに減衰極f+∞が実現出来る。
Also, by forming an odd number of electrodes, replacing the signal output terminals as shown in Figure 3, and connecting a capacitor in parallel to the electrodes, it is possible to output signals only in the high frequency region with respect to the center frequency of the bandpass filter, as shown in Figure 4. Attenuation pole f+∞ can be realized.

更に圧電板上に第5図に示す様に偶数個の電極E1・・
・E2nを形成し、信号入力端子と信号出力端子の間へ
電極に対し並列にコンデンサCを接続すると第6図の様
にバンドパスフィルタの中心周波数に対し、高周波領域
及び低周波領域側に対称に減衰極を実現することが出来
る。
Furthermore, as shown in Fig. 5, an even number of electrodes E1...
・If E2n is formed and a capacitor C is connected in parallel to the electrode between the signal input terminal and the signal output terminal, it will be symmetrical in the high frequency region and low frequency region with respect to the center frequency of the bandpass filter as shown in Figure 6. It is possible to realize an attenuation pole.

しかし、以上の方法は、特に減衰極の周波数がフィルタ
のカットオフ周波数の近傍に存在する時、減衰極の周波
数が外部からの寄生容量の影響を受けやすくなるという
欠点があり、又電極数が偶数の場合、中心周波数に関し
対称に1個ずつの減衰極のみしか実現出来ないという欠
点がある。
However, the above method has the disadvantage that the frequency of the attenuation pole is easily influenced by external parasitic capacitance, especially when the frequency of the attenuation pole is near the cutoff frequency of the filter, and the number of electrodes is In the case of an even number, there is a drawback that only one attenuation pole can be realized symmetrically with respect to the center frequency.

従って本発明は従来の技術の上記欠点を改善するもので
、その目的は有限周波数軸上に安定な減衰極をもった有
極型多重モードフィルタを提供することにある。
Therefore, the present invention aims to improve the above-mentioned drawbacks of the prior art, and its object is to provide a polarized multimode filter having a stable attenuation pole on a finite frequency axis.

この目的を達成する為の本発明の特徴は、1枚の圧電結
晶板の上に形成されたエネルギー閉じ込め電極を含む3
対の電極の組を少なくとも1組有し、該結晶板の一方の
面上の電極の1組を共通に接続する部材と、該結晶板の
他方の面上の電極に接続される入力端子及び出力端子と
、前記部材と共通入出力端子との間に接続されるコンデ
ンサまたはインダクタにより、電気信号の帰還作用を利
用し、有限周波数軸上に減衰極を実現することにあり、
本発明によれば減衰極の周波数位置は、電極の寸法、電
極間間隔、電極の膜厚、及び前記リアクタンスにより定
まるので非常に安定である。
The features of the present invention to achieve this objective include three energy trapping electrodes formed on a single piezoelectric crystal plate.
a member having at least one set of paired electrodes and commonly connecting one set of electrodes on one side of the crystal plate; an input terminal connected to the electrode on the other side of the crystal plate; The purpose is to realize an attenuation pole on a finite frequency axis by utilizing the feedback effect of an electric signal by a capacitor or inductor connected between an output terminal, the above-mentioned member, and a common input/output terminal,
According to the present invention, the frequency position of the attenuation pole is determined by the dimensions of the electrodes, the spacing between the electrodes, the film thickness of the electrodes, and the reactance, and is therefore very stable.

以下図面により実施例を説明する。Examples will be described below with reference to the drawings.

第7図と第8図は本発明による有極型多重モードフィル
タの構造図である。
7 and 8 are structural diagrams of a polarized multimode filter according to the present invention.

第7図、第8図において、1,2は信号入力端子、3,
4は信号出力端子、5,6,7は圧電結晶板上に形成さ
れた電極である。
In Figures 7 and 8, 1 and 2 are signal input terminals, 3,
4 is a signal output terminal, and 5, 6, and 7 are electrodes formed on the piezoelectric crystal plate.

圧電結晶板Pの一方の面上の3個の電極は電極組として
共通電気端子を形成する共通接続部材8により共通接続
される。
The three electrodes on one surface of the piezoelectric crystal plate P are commonly connected by a common connection member 8 forming a common electric terminal as an electrode set.

第7図のC及び第8図のLは各々減衰極を実現するため
に圧電結晶板上に形成された電極に対し、直列に接続さ
れたコンデンサ及びインダクタである。
C in FIG. 7 and L in FIG. 8 are a capacitor and an inductor connected in series to electrodes formed on the piezoelectric crystal plate to realize attenuation poles, respectively.

第7図、第8図共入力端子1,2より印加された電気信
号は電極5において圧電結晶板Pの圧電作用により機械
振動に変換され、定在波を構成し、圧電結晶板上の無電
極部を伝搬し電極7に到達する。
The electrical signals applied from the input terminals 1 and 2 in both FIGS. 7 and 8 are converted into mechanical vibrations by the piezoelectric action of the piezoelectric crystal plate P at the electrode 5, forming a standing wave, and forming a standing wave. It propagates through the electrode section and reaches the electrode 7.

電極7に到達した振動波は定在波を構成し、再び電気信
号に変換される。
The vibration wave that has reached the electrode 7 constitutes a standing wave and is converted into an electric signal again.

一方電極5,6,7から流出する電気信号は端子8,9
間コンデンサCあるいはインダクタLに印加される。
On the other hand, the electrical signals flowing out from the electrodes 5, 6, 7 are transmitted to the terminals 8, 9.
The voltage is applied to the capacitor C or inductor L between the two.

その場合コンデンサCあるいは、インダクタLの両端の
電圧が、入力端子1,2の間に帰還されるような構造に
なっている。
In that case, the structure is such that the voltage across the capacitor C or the inductor L is fed back between the input terminals 1 and 2.

第7図に示す系の動作を集中定数等価回路により表示す
ると第9図の様になる。
When the operation of the system shown in FIG. 7 is represented by a lumped constant equivalent circuit, it becomes as shown in FIG. 9.

第9図に於てL1−C1,L2−C3,L5−C5は第
7図の電極5,6,7を表わし破線で囲んだK1,K2
は、第7図の電極5−6間の無電極部分及び電極6−7
間の無電極部分を表わす虚ジャイレータである。
In FIG. 9, L1-C1, L2-C3, and L5-C5 represent the electrodes 5, 6, and 7 in FIG. 7, and K1 and K2 are surrounded by broken lines.
is the non-electrode portion between electrodes 5-6 and electrode 6-7 in FIG.
This is an imaginary gyrator that represents the electrodeless part between the two.

又Cは本発明によるバンドパスフィルタの中心周波数よ
り高周波領域側に減衰極を実現するために挿入するコン
デンサである。
Further, C is a capacitor inserted in order to realize an attenuation pole in a higher frequency region side than the center frequency of the bandpass filter according to the present invention.

次に第8図に示す系の動作を集中定数等価回路により表
わせば第10図の様に書ける。
Next, if the operation of the system shown in FIG. 8 is expressed by a lumped constant equivalent circuit, it can be written as shown in FIG.

第10図に於いてもL1−C1,L2−C3,L5−C
5は電極5,6,7を表わし破線で囲んだK1,K2は
電極5−6間の無電極部分及び電極6−7間の無電極部
分を表わす虚ジャイレータである。
Also in Figure 10, L1-C1, L2-C3, L5-C
Reference numeral 5 represents electrodes 5, 6, and 7, and K1 and K2 surrounded by broken lines are imaginary gyrators representing a non-electrode portion between electrodes 5-6 and a non-electrode portion between electrodes 6-7.

−C6は本発明によるバンドパスフィルタの中心周波数
より低周波領域側に減衰極を実現するために挿入する負
のコンデンサである。
-C6 is a negative capacitor inserted in order to realize an attenuation pole in a lower frequency region than the center frequency of the bandpass filter according to the present invention.

しかし狭帯域フィルタの動作範囲ではバンドパスフィル
タの中心周波数をf0とすると L=−1/(ω20C6) で表示することが出来る故第10図は第11図の集中定
数等価回路で表示出来る。
However, in the operating range of the narrowband filter, if the center frequency of the bandpass filter is f0, it can be expressed as L=-1/(ω20C6), so FIG. 10 can be expressed by the lumped constant equivalent circuit of FIG. 11.

第7図の実施例により表現される減衰極の周波数は、第
9図の集中定数等価回路を用いて、但し、C′3はC3
,C2,C4の直列接続容量であり、 で与えられる。
The frequency of the attenuation pole expressed by the embodiment of FIG. 7 is calculated using the lumped constant equivalent circuit of FIG.
, C2, and C4, and is given by:

また、第8図の実施例により実現される減衰極の周波数
は第10図の集中定数等価回路を用いてで与えられる。
Further, the frequency of the attenuation pole realized by the embodiment of FIG. 8 is given by using the lumped constant equivalent circuit of FIG.

従って第9図の集中定数等価回路より(1)式の減衰極
周波数が得られ、その特性を第12図に、又第10図の
集中定数等価回路より(2)式の減衰極周波数が得られ
、その特性を第13図に示す。
Therefore, the attenuation pole frequency of equation (1) is obtained from the lumped constant equivalent circuit shown in FIG. 9, and its characteristics are shown in FIG. 12, and the attenuation pole frequency of equation (2) is obtained from the lumped constant equivalent circuit of FIG. The characteristics are shown in FIG.

以上述べた実施例は圧電結晶板の電極が3対の場合であ
るが、圧電板に3対以上の電極が形成された場合に対し
ても上述の説明が適用できる。
Although the embodiment described above is a case where the piezoelectric crystal plate has three pairs of electrodes, the above explanation can also be applied to a case where three or more pairs of electrodes are formed on the piezoelectric plate.

第14図は圧電結晶板上に3対以上の電極が形成された
場合の一実施例であり第15図は第14図の特性である
FIG. 14 shows an example in which three or more pairs of electrodes are formed on a piezoelectric crystal plate, and FIG. 15 shows the characteristics shown in FIG. 14.

第14図の装置は、1枚の圧電結晶板P上に3電極以上
の電極を形成し、一方の面上の電極の複数個を電極組と
して接続部材により接続し、該接続部材の1つと共通入
出力端子との間にコンデンサCを、該接続部材の他の1
つと共通入出力端子との間にインダクタンスLを接続す
る。
In the device shown in FIG. 14, three or more electrodes are formed on one piezoelectric crystal plate P, a plurality of electrodes on one surface are connected as an electrode set by a connecting member, and one of the connecting members A capacitor C is connected between the common input/output terminal and the other one of the connecting members.
An inductance L is connected between the terminal and the common input/output terminal.

コンデンサCが接続される電極群とインダクタンスが接
続される電極群との間、およびインダクタンスが接続さ
れる電極群と出力端子3,4との間には対向電極群が設
けられ、各対向電極は共に共通帰線に接続される。
Opposing electrode groups are provided between the electrode group to which the capacitor C is connected and the electrode group to which the inductance is connected, and between the electrode group to which the inductance is connected and the output terminals 3 and 4. Both are connected to a common return line.

第14図の装置は、中心周波数に対し高周波数域側およ
び低周波数域側に各々1個の減衰極を有する有極形多重
モードフィルタである。
The device shown in FIG. 14 is a polarized multimode filter having one attenuation pole each on the high frequency side and the low frequency side with respect to the center frequency.

ここで、第7図に示される、高域側に減衰極を有する有
極形多重モードフィルタの具体的な設計例を以下に示す
Here, a specific design example of the polarized multimode filter shown in FIG. 7 and having an attenuation pole on the high frequency side will be shown below.

設計に際し以下の条件を設計パラメータとした。During the design, the following conditions were used as design parameters.

f−1=8.06MHz f+1=8.06365MHz f+∞=8.063825MHz インピーダンス 750Ω この場合に、第9図の等価回路の定数は、C3=8.9
354846×10−3PFC2=C4=36.637
266PF C=30.4850PF f2=8.063MHz となり、これらの定数を前記(1)式に代入すると、f
+∞=8.063825MHz が求められる。
f-1=8.06MHz f+1=8.06365MHz f+∞=8.063825MHz Impedance 750Ω In this case, the constant of the equivalent circuit in Fig. 9 is C3=8.9
354846×10-3PFC2=C4=36.637
266PF C=30.4850PF f2=8.063MHz, and by substituting these constants into the above equation (1), f
+∞=8.063825MHz is obtained.

前記の条件を満足する機械系の設計は、第7図において
、電極形状幅3mm×奥行2.62mm、電極間距離1
.232mm、水晶素板(圧電板)周波数8.218M
Hz(ATカット板)となる。
The design of the mechanical system that satisfies the above conditions is as shown in Fig. 7, with an electrode shape of 3 mm width x 2.62 mm depth, and an inter-electrode distance of 1.
.. 232mm, crystal plate (piezoelectric plate) frequency 8.218M
Hz (AT cut plate).

また、第8図に示される、低域側に減衰極を有する有極
形多重モードフィルタの具体的な設計例を以下に示す。
Further, a specific design example of the polarized multimode filter having an attenuation pole on the low frequency side shown in FIG. 8 will be shown below.

設計に際し以下の条件を設計パラメータとした。During the design, the following conditions were used as design parameters.

f−1=8.06MHz f+1=8.06365MHz f−∞=8.059825MHz インピーダンス 750Ω この場合に、第10図に示される等価回路の定数は、 C3=8.9354846×10−3PFC2=C4=
36.637266PF C6=−118.6PF となり、以上の定数を(2)式に代入して減衰極周波数
を計算すると、f−∞=8.059825MHzとなる
f-1=8.06MHz f+1=8.06365MHz f-∞=8.059825MHz Impedance 750Ω In this case, the constants of the equivalent circuit shown in Figure 10 are: C3=8.9354846×10-3PFC2=C4=
36.637266PF C6=-118.6PF, and when the attenuation pole frequency is calculated by substituting the above constant into equation (2), it becomes f-∞=8.059825MHz.

また、第11図の等価回路におけるL6は、3.284
0μHである。
Moreover, L6 in the equivalent circuit of FIG. 11 is 3.284
It is 0μH.

以上説明した様に、本発明の有極型多重モードフィルタ
は一枚の圧電結晶板上に3対以上の電極を形成し、相い
隣り合った3対の電極の少なくとも一方の面が共通電気
端子を有し、その共通電気端子とフィルタの共通帰線間
にコンデンサ又はインダクタを接続し、有限の周波数軸
上に安定な減衰極を実現することに特徴がある。
As explained above, the polarized multimode filter of the present invention has three or more pairs of electrodes formed on a single piezoelectric crystal plate, and at least one surface of the three adjacent pairs of electrodes has a common electric field. The filter is characterized in that it has a terminal, and a capacitor or inductor is connected between the common electric terminal and the common return wire of the filter to realize a stable attenuation pole on a finite frequency axis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は従来の有極型多重モードフィルタの構
造及び特性図、第7図と第8図は本発明による有極型多
重モードフィルタの構造例、第9図〜第11図は本発明
による有極型多重モードフィルタの等価回路、第12図
と第13図は本発明による有極型多重モードフィルタの
特性図、第14図と第15図は本発明による有極型多重
モードフィルタの別の実施例の構造図と特性図である。 符号の説明、1・・・・・・信号入力端子、2−4・・
・・・・フィルタの共通帰線、3・・・・・・信号出力
端子、5・・・・・・信号入力電極、6・・・・・・エ
ネルギー閉じ込め電極、7・・・・・・信号出力電極、
8・・・・・・共通電気端子、9・・・・・・フィルタ
の共通帰線端子。
1 to 6 are structure and characteristic diagrams of conventional polarized multimode filters, FIGS. 7 and 8 are structural examples of polarized multimode filters according to the present invention, and FIGS. 9 to 11. 12 and 13 are characteristic diagrams of the polarized multimode filter according to the present invention, and FIGS. 14 and 15 are equivalent circuits of the polarized multimode filter according to the present invention. FIG. 7 is a structural diagram and a characteristic diagram of another example of a mode filter. Explanation of symbols, 1...Signal input terminal, 2-4...
... Common return line of filter, 3 ... Signal output terminal, 5 ... Signal input electrode, 6 ... Energy confinement electrode, 7 ... signal output electrode,
8... Common electric terminal, 9... Common return terminal of filter.

Claims (1)

【特許請求の範囲】[Claims] 1 1枚の圧電結晶板の上に形成されたエネルギー閉じ
込め電極を含む3対の電極の組を少なくとも1組有し、
該結晶板の一方の面上の電極の1組を共通に接続する部
材と、該結晶板の他方の面上の電極に接続される入力端
子及び出力端子と、前記部材と共通入出力端子との間に
接続されるコンデンサまたはインダクタにより、電気信
号の帰還作用を利用し、有限周波数軸上に減衰極を実現
することを特徴とするエネルギー閉じ込め型の有極型多
重モードフィルタ。
1. At least one set of three pairs of electrodes including an energy trapping electrode formed on one piezoelectric crystal plate,
A member that commonly connects one set of electrodes on one surface of the crystal plate, an input terminal and an output terminal that are connected to the electrodes on the other surface of the crystal plate, and a common input/output terminal with the member. An energy trapping type polarized multimode filter characterized by realizing an attenuation pole on a finite frequency axis by utilizing the feedback effect of an electric signal by using a capacitor or inductor connected between the filters.
JP50047413A 1975-04-21 1975-04-21 Easy mode filter Expired JPS588605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50047413A JPS588605B2 (en) 1975-04-21 1975-04-21 Easy mode filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50047413A JPS588605B2 (en) 1975-04-21 1975-04-21 Easy mode filter

Publications (2)

Publication Number Publication Date
JPS51123040A JPS51123040A (en) 1976-10-27
JPS588605B2 true JPS588605B2 (en) 1983-02-16

Family

ID=12774442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50047413A Expired JPS588605B2 (en) 1975-04-21 1975-04-21 Easy mode filter

Country Status (1)

Country Link
JP (1) JPS588605B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335332U (en) * 1989-08-14 1991-04-05
EP3961168A1 (en) 2020-08-27 2022-03-02 Yokogawa Electric Corporation Abnormal temperature detection device, abnormal temperature detection method, and storage medium
EP4012365A1 (en) 2020-12-14 2022-06-15 Yokogawa Electric Corporation Abnormal temperature detection device, abnormal temperature detection method, and abnormal temperature detection program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019229A (en) * 1973-06-25 1975-02-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5019229A (en) * 1973-06-25 1975-02-28

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335332U (en) * 1989-08-14 1991-04-05
EP3961168A1 (en) 2020-08-27 2022-03-02 Yokogawa Electric Corporation Abnormal temperature detection device, abnormal temperature detection method, and storage medium
EP4012365A1 (en) 2020-12-14 2022-06-15 Yokogawa Electric Corporation Abnormal temperature detection device, abnormal temperature detection method, and abnormal temperature detection program

Also Published As

Publication number Publication date
JPS51123040A (en) 1976-10-27

Similar Documents

Publication Publication Date Title
JP3281569B2 (en) Sound wave filter
US3585537A (en) Electric wave filters
US4468642A (en) Band pass filter device
CN204615783U (en) Acoustic wave device and filter apparatus
JPH1075154A (en) Sound wave filter
JPH01260911A (en) Composite filter for surface acoustic wave resonator
US2271200A (en) Wave filter
US4281298A (en) Flexural transducer
EP0637873A2 (en) SAW filter
JP3193403B2 (en) Ladder type piezoelectric filter
JPS588605B2 (en) Easy mode filter
JPH057125A (en) Surface acoustic wave filter, branching filter and mobile radio equipment
JPS5821444B2 (en) Energy Tojikomegata Atsuden Tairohaki
GB1209808A (en) Improvements in or relating to electromechanical band-pass filters
US4423394A (en) Multiple pole bandpass filter having monolithic crystal elements
US4267533A (en) Acoustic surface wave device
JPH05129872A (en) Surface wave resonator, surface wave filter, branching filter and mobile radio equipment
JPH0714133B2 (en) IDT excitation 2-port resonator
JPH03129914A (en) Surface acoustic wave resonator composite type filter
JPS58131810A (en) Surface acoustic wave device
JPS5997216A (en) Acoustic surface wave filter
JPS58182313A (en) Filter of surface acoustic wave
JPH06291600A (en) Surface acoustic wave filter
JPH0481823A (en) Filter combined with surface acoustic wave resonator
JP3368087B2 (en) Surface acoustic wave filter device