JPS5885580A - Manufacture of tunnel type josephson junction - Google Patents

Manufacture of tunnel type josephson junction

Info

Publication number
JPS5885580A
JPS5885580A JP56184051A JP18405181A JPS5885580A JP S5885580 A JPS5885580 A JP S5885580A JP 56184051 A JP56184051 A JP 56184051A JP 18405181 A JP18405181 A JP 18405181A JP S5885580 A JPS5885580 A JP S5885580A
Authority
JP
Japan
Prior art keywords
superconductor layer
forming
tunnel
josephson junction
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56184051A
Other languages
Japanese (ja)
Inventor
Junichi Nakano
純一 中野
Masato Wada
正人 和田
Fumihiko Yanagawa
柳川 文彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56184051A priority Critical patent/JPS5885580A/en
Publication of JPS5885580A publication Critical patent/JPS5885580A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To remarkably reduce a leakage current in a sub cap region in a tunnel type Josephson junction U by heat treating a superconductive layer in atmosphere containing no oxygen. CONSTITUTION:A silicon substrate is used as an insulating substrate 1, a superconductive layer 2 is formed of Pb-In-Au alloy in the first step, and the surface 3 purified from the layer 2 is obtained by high frequency sputtering with argon gas in the second step. A high frequency discharge oxidation is performed in the third step to form an oxidized film 4 as an insulating film 5 to become tunnel barrier on the surface, and the second superconductive layer 6 is formed in the fourth step. In this invention, a tube is evacuated in high vacuum after the second step before the third step, and the layer 2 is heat treated.

Description

【発明の詳細な説明】 本発明は、基板上に所要のパターンを有する第1の超伝
導体層が形成され、その第1の超伝導体層のPfT要の
表面上にトンネル障壁となる絶縁膜を介して第2の超伝
導体層が延長じてなる構成を有するトンネル型ジョセフ
ソン接合の製法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that a first superconductor layer having a desired pattern is formed on a substrate, and an insulating film serving as a tunnel barrier is formed on the surface of a PfT layer of the first superconductor layer. The present invention relates to an improvement in the manufacturing method of a tunnel-type Josephson junction having a structure in which a second superconductor layer extends through a membrane.

斯棟トンネル型ジョセフンン接合の製法として従来、第
1図に示す如く、予め得られた基板1上に所要のパター
ンを有する第1の超伝導体j曽2を形成する第1の工程
(第1ト1−A)と、その第1の工程后第1の超伝導体
層2の所要の表面を不活性ガスを用いたスパックリンク
処理によって清浄化された着面ろに清浄化する第2の工
程(第1図B)と、その第2の工程后第1の超伝導体層
2の清浄化された表面6上(こ品周波放電酸化へ理によ
って醇化膜4をトンネル障壁となる駿縁膜5として形成
する第6の工程(第1図C)と、その第6の工程后絶5
縁膜5上に婬長せる第2の超伝導体層6を形成する第4
の工程(第1図D)とを含んで、目的とせるトンネル型
ジョセフソン接合Uを得るという方法か提案されている
Conventionally, as shown in FIG. 1, the method for manufacturing a tunnel-type Josephun junction includes a first step (first step) of forming a first superconductor having a desired pattern on a substrate 1 obtained in advance. 1-A) and, after the first step, a second step of cleaning the required surface of the first superconductor layer 2 to a surface that has been cleaned by spuck-linking treatment using an inert gas. (FIG. 1B), and after the second step, on the cleaned surface 6 of the first superconductor layer 2 (this step, the oxidized film 4 is formed as a tunnel barrier by a frequency discharge oxidation process). The sixth step of forming the film 5 (FIG. 1C) and the termination of the sixth step 5
A fourth layer for forming a second superconductor layer 6 on the membrane 5.
A method has been proposed to obtain the desired tunnel-type Josephson junction U by including the steps (FIG. 1D).

所でル[る方、法による場合、絶縁〃°板1上に形成さ
れた第1の超伝導体)vIi2の表面を清浄化された表
面3に背6)化する第2の工程(第1図B)を有するの
で、第1の超伝導体層2がその所要の表面に自然酸化膜
の形成されたものとして得られても、その自然酸化膜が
除去された状態で、第1の超伝導体層2の所要の表面上
に酸化膜4が形成されるので、目的とするトンネル型ジ
ョセフソン接合Uを、そのトンネル障壁となる絶縁膜5
が酸化膜4のみで形成されたものとして得ることが出来
、一方トンネル障壁となる絶縁膜5としての酸化膜4が
高周波数tm化処理によって形成されるので、他の気相
成長処理、熱酸化処理等によって形成する場合に比し制
御性よく短時間に容易に優れた絶縁膜として形成するこ
とが出来、依って目的とするトンネル型ジョセフソン接
合Uを所期の優れた特性を有するものとして容易に得る
ことが出来るという特徴を有するものである。
Then, a second step (6) of turning the surface of the first superconductor (formed on the insulating plate 1) vIi2 to the cleaned surface 3 is carried out. 1B), even if the first superconductor layer 2 is obtained with a natural oxide film formed on the required surface, the first superconductor layer 2 is formed with the natural oxide film removed. Since the oxide film 4 is formed on the required surface of the superconductor layer 2, the intended tunnel-type Josephson junction U is formed using the insulating film 5 that becomes the tunnel barrier.
can be obtained by forming only the oxide film 4. On the other hand, since the oxide film 4 as the insulating film 5 which becomes the tunnel barrier is formed by high frequency TM processing, other vapor phase growth processing and thermal oxidation are not required. It can be easily formed as an excellent insulating film in a short time with better control than when it is formed by processing, etc. Therefore, the target tunnel type Josephson junction U can be made to have the desired excellent characteristics. It has the characteristic that it can be easily obtained.

然し乍ら第1図にて上述せる従来の方法の場合、その方
法によって得られるトンネル型ジョセフソン接合Uが、
第2図にて実線図示の電圧(V)−電流(I)特性にみ
られる如く、所副サブキャップ領域Aに於てそれ以外の
領域の抵抗値RNに比し大なる抵抗値R6を呈するもの
であるが、それ等抵抗値R6及び顯の比R()/’〜を
して比較的小であるものとしてしか得られず、従ってザ
ブギャップ領域Aに於て比較的大なるリーク電流を伴う
ものとしてしか得られないという欠点を有していた。
However, in the case of the conventional method described above in FIG. 1, the tunnel type Josephson junction U obtained by that method is
As seen in the voltage (V)-current (I) characteristic shown by the solid line in FIG. 2, the resistance value R6 in the sub-subcap region A is larger than the resistance value RN in other regions. However, the resistance value R6 and the ratio R()/'~ can only be obtained as relatively small, and therefore, a relatively large leakage current is involved in the subgap region A. It had the disadvantage that it could only be obtained as a product.

斜上に鑑み本発明者等は、種々の実験の結果、第1図に
て上述せる第1〜第4の順次の工程をとるも、その第2
の工程后、第6の工程前をこ於て、第1の超伝導体層2
に対する熱処理を酸素を含まさる雰囲気中でなせば、目
的とするトンネル型ジ′:′:セフンン接合Uを、上述
せる抵抗比へ△、が、斯る熱処理をなさない場合に比し
格段的に犬なるものとして得ることが出来、この為上述
せるサブギャップ領域に於けるリーク電流が斯る熱処理
をなさない場合に比し格段的に小なるものとして得るこ
とが出来ることを確認するに到った。
In view of the above-mentioned problem, the inventors of the present invention, as a result of various experiments, adopted the sequential steps 1 to 4 described above in FIG.
After the step and before the sixth step, the first superconductor layer 2
If heat treatment is performed in an oxygen-containing atmosphere, the resistance ratio of the target tunnel-type di′:′:sefunn junction U as described above, △, will be significantly greater than in the case without such heat treatment. Therefore, we have confirmed that the leakage current in the sub-gap region mentioned above can be obtained as being much smaller than in the case where such heat treatment is not performed. Ta.

又第1図にて上述せる第1〜第4の順次の工程をとるも
、その第2の工程后、第6の工程前に於て、第1の超伝
導体層2に対する熱処理を酸素を含む雰囲気中でなし、
これにより第1の超伝導体層2の表面上に熱酸化膜を形
成すれば、目的とするトンネル型ジョセフソン接合Uを
、その上述せる抵抗比R,/π、が斯る熱処理をなさな
い場合に比し格段的に大なるものとして得ることが出来
、この為上述せるサブギャップ領域に於けるリーク電流
が期る熱処理をなさない場合に比し格段的に小なるもの
として得ることが出来ることも確認するに到った。
Furthermore, although the first to fourth steps described above in FIG. Not in an atmosphere containing
If a thermal oxide film is thereby formed on the surface of the first superconductor layer 2, the target tunnel-type Josephson junction U can be formed such that the above-mentioned resistance ratio R, /π does not undergo such heat treatment. Therefore, the leakage current in the sub-gap region described above can be obtained as being much smaller than when the proper heat treatment is not performed. I also came to confirm this.

1の超伝導体/in 2 tこ対する熱処理を酸素を金
談ざる雰囲気中でなし、次で酸素を含む雰囲気中でなす
ことlこより第1の超伝導体層2の所要の表面上に熱酸
化膜を形成すれば、目的とするトンネル型ジョセフソン
接合Uを、その上述せる抵抗比RG/1堀が斯る熱処理
をなさない場合に比し格段的に大なるものとして得るこ
とが出来、この為上述せるサブギャップ領域に於けるリ
ーク電流が勘る熱処理をなさない場b・に比し格段的に
小なるものとして得ることが出来ることを確認するに到
った。
Heat treatment is performed on the first superconductor layer 2 in an oxygen-containing atmosphere, and then in an oxygen-containing atmosphere. By forming the oxide film, it is possible to obtain the desired tunnel-type Josephson junction U with the above-mentioned resistance ratio RG/1 moat being much larger than in the case where such heat treatment is not performed, For this reason, it has been confirmed that the leakage current in the above-mentioned sub-gap region can be significantly reduced compared to the case (b) in which no heat treatment is performed.

依って此処に本発明者等は、特許請求の範囲第1、第2
及び第6項所載の本発明を提案するに到ったもので、以
下本発明の実施例を述べる所より更に明らかとなるであ
ろう。
Therefore, the present inventors hereby claim that the first and second claims
This has led us to propose the present invention as described in Section 6, which will become clearer from the description of the embodiments of the present invention below.

本発明の実施例に於ては、第1図にて上述せる第1〜第
4の順次の工程をとるも、絶縁基板1としてシリコン基
板を用い、而して第1の工程(第1図A)に於て第1の
超伝導体層2をPb−1,n −Au  合金(In 
: ’12 車量%、Au:4重量%)でなるものとし
て形成した。又第2の工程(第1図B)に於て、不活性
カスを用いたスパッタリング処理をアルゴンガスを用い
た、電力150W、時間6分の高周波スパッタリンク処
理として、第1の超伝導体N2の清浄化されてなる表面
3を得た。更に第6の工程(第1図0)に於て、筒周波
放電酸化処理を、電力25W1時間10分の高周波放電
酸化処理として、第1の超伝導体層2の清浄化された表
面6上にトンネル障壁となる絶縁膜5としての酸化膜4
を形成した。又第4の工程(第1図D)に於て、第2の
超伝導体層6を、pb−Bi金合金 Bi : 29重
量%)でなるものとして形成した。
In the embodiment of the present invention, although the first to fourth steps described above in FIG. 1 are carried out, a silicon substrate is used as the insulating substrate 1, and the first step (see In A), the first superconductor layer 2 is made of Pb-1,n-Au alloy (In
: '12 vehicle weight%, Au: 4% by weight). In the second step (FIG. 1B), the sputtering process using inert dregs is performed as a high-frequency sputter link process using argon gas at a power of 150 W and a time of 6 minutes to form the first superconductor N2. A cleaned surface 3 was obtained. Further, in the sixth step (FIG. 1 0), the cleaned surface 6 of the first superconductor layer 2 is subjected to a cylindrical frequency discharge oxidation treatment as a high frequency discharge oxidation treatment with a power of 25 W for 1 hour and 10 minutes. An oxide film 4 as an insulating film 5 which becomes a tunnel barrier.
was formed. In the fourth step (FIG. 1D), the second superconductor layer 6 was formed of a pb-Bi gold alloy (Bi: 29% by weight).

而して本発明に基き、第2の工程后、第3の工程前に於
て、それ等紀2及び第6の工程が同じ管内でなされるも
のとして次の熱処理をなした。
According to the present invention, after the second step and before the third step, the following heat treatment was performed assuming that the second and sixth steps were performed in the same tube.

(1)第2の工程に於けるアルゴンガスを用いた高周波
スパッタリング処理時に管内に導入されていたアルゴン
カスを排気して、管内を2X10  Torr  の高
真空状態にし、その状態で、第1の超伝導体層2&こ対
し約6時間、約70℃の熱処理をなした。
(1) The argon gas introduced into the tube during the high-frequency sputtering process using argon gas in the second step is evacuated to create a high vacuum state of 2×10 Torr inside the tube, and in that state, the first superconductor Body layer 2& was subjected to heat treatment at about 70° C. for about 6 hours.

然るときは、目的とするトンネル型ジョセフソン接合U
が、上述せる抵抗比R7〜をして約14.5の大なる値
を有するものとして得られた。因みに斯る熱処理をなさ
ない場合は、目的とするトンネル型ジョセフソン接合U
が、上述せる抵抗比R7〜をして約11.2の小なる値
でしか得られなかつた。従って目的とするトンネル型ジ
ョセフソン接合Uが、サブギャップ領域に於けるリーク
電流をして、斯る熱処理をなさない場合に比し格段的に
小なるものとしてイ(4られだ。
In such a case, the desired tunnel type Josephson junction U
However, the above-mentioned resistance ratio R7~ was obtained as having a large value of about 14.5. Incidentally, if such heat treatment is not performed, the desired tunnel type Josephson junction U
However, with the resistance ratio R7~ mentioned above, only a small value of about 11.2 could be obtained. Therefore, the target tunnel-type Josephson junction U has a leakage current in the sub-gap region which is significantly smaller than that without such heat treatment.

(2)  第2の工程に於けるアルゴンガスを用いた高
周波スパッタリング処理時に管内に導入されていたアル
ゴンカスを排気して、管内を2x10−7TOrr の
高真空状態にし、次で管内に酸素カスを導入して、′a
内を7X10 ’Torr  の圧力を治する酸素を含
む雰囲気とし、その状態で第1の超伝導体層2に対し約
3時間、約70℃の熱処理をなし、第1の超伝導体層2
の所要のfk#化された衣Tki 3上に薄い熱酸化膜
を形成した。
(2) The argon gas that was introduced into the tube during the high-frequency sputtering process using argon gas in the second step is exhausted, the inside of the tube is brought to a high vacuum state of 2 x 10-7 TOrr, and then the oxygen gas is introduced into the tube. Then,'a
An atmosphere containing oxygen that suppresses the pressure of 7×10' Torr is created inside the interior, and in that state, the first superconductor layer 2 is heat-treated at about 70° C. for about 3 hours.
A thin thermal oxide film was formed on the desired fk# coating Tki 3.

然るときは、目的とするトンネル型ジョセフソン接合U
が、上述せる抵抗比R^をして約15.5の大なる値を
有するものとして祷られた。従って目的とするトンネル
型ジョセフソン接合Uか、サブギャップ領域に於けるリ
ーク電流をして、斯る熱処理をなさない場合に比し格段
的に小なるものとして得られた。
In such a case, the desired tunnel type Josephson junction U
However, the above-mentioned resistance ratio R^ was expected to have a large value of about 15.5. Therefore, the leakage current in the target tunnel type Josephson junction U or the sub-gap region was significantly smaller than that in the case without such heat treatment.

(31第2の工程に於けるアルゴンガスを用いた為周波
スパッタリング処理時に管内に導入されていたアルゴン
ガスを排気して、管内を2X10  Torr  の高
真空状態にし、その状態で、第1の超伝導体層2に対し
約1時間、約70℃の熱処理をなし、次で管内に酸素ガ
スを導入して、管内を7x10−2Torrの圧力を有
する酸素を含む琢囲気とし、その状態で第1の超伝導体
層2に対し約2時間、約70℃の熱処理をなし、第1の
超伝導体層2の所要の清浄化された表面3上に薄い熱酸
化膜を形成した。
(31 Since argon gas was used in the second step, the argon gas that had been introduced into the tube during the frequency sputtering process was evacuated to create a high vacuum state of 2 x 10 Torr in the tube, and in that state, the first super The conductor layer 2 is heat-treated at about 70° C. for about 1 hour, and then oxygen gas is introduced into the tube to create an oxygen-containing atmosphere with a pressure of 7×10 −2 Torr. The superconductor layer 2 was subjected to heat treatment at about 70° C. for about 2 hours to form a thin thermal oxide film on the required cleaned surface 3 of the first superconductor layer 2.

然るときは、目的とするトンネル型ジョセフソン接合U
が、上述せる抵抗比R,,/H。
In such a case, the desired tunnel type Josephson junction U
is the resistance ratio R,,/H mentioned above.

をして約15.8の犬なる値を有するものとして得られ
た。
It was obtained as having a dog value of about 15.8.

従って目的とするトンネル型ジョセフソン接合Uが、サ
ブギャップ領域に於けるリーク電流をして、斯る熱処理
をなさない場合に比し格段的に小なるものとして得られ
た。
Therefore, the desired tunnel-type Josephson junction U was obtained with significantly smaller leakage current in the sub-gap region than in the case without such heat treatment.

尚上述に於ては、第1の超伝導体層2が、I+が12重
量%、Au が4mf−1i%の組成を有するpb −
I n −Au  合金でなる場合の実施例につき述べ
たが、第1の超伝導体層2が、今述べた組成以外の1.
’b −I n−Au  合金でなる場合であっても上
述せる優れた効果が得られた。又第2の工程に於ける不
活性ガスを用いたスパッタリング処理がアルゴンガスを
用いた高周波スパックリング処理である場合の実施例に
つき述べたが、不活性ガスを用いたスパッタリング処理
が、アルゴンガス、クリプトンガスを用いたイオンビー
ムスパッタリング処理である場合であっても上述せる優
れた効果が得られた。更に第2の工程后、第6の工程前
の熱処理が約70℃の温度による熱処理である場合の実
施例につき述べたが、70℃±10℃の温度による熱処
理である場合であっても、上述せる優れた効果が得られ
た。
In the above description, the first superconductor layer 2 has a composition of 12% by weight of I+ and 4mf-1i% of Au.
Although the embodiment has been described in which the first superconductor layer 2 is made of an In-Au alloy, the first superconductor layer 2 has a composition other than the one just described.
Even in the case of the 'b-I n-Au alloy, the excellent effects described above were obtained. Furthermore, although an example has been described in which the sputtering process using an inert gas in the second step is a high frequency sputtering process using an argon gas, the sputtering process using an inert gas is a high frequency sputtering process using an argon gas, Even in the case of ion beam sputtering treatment using krypton gas, the excellent effects described above were obtained. Further, an example has been described in which the heat treatment after the second step and before the sixth step is a heat treatment at a temperature of about 70°C, but even if the heat treatment is a heat treatment at a temperature of 70°C ± 10°C, The excellent effects described above were obtained.

又第2の工程后、第6の工程前の上記(1)及び(2)
の熱処理が、6時間の熱処理である場合の実施例につき
述べたが、6時間より多少短い時間の熱処理である場合
でも又3時間より多少長い時間の熱処理である場合であ
っても上述せる優れた効果が得られた。更に第2の工程
后、第3の工程前の上記(3)の熱処理が、1時間の熱
処理、それに続く2時間の熱処理である場合の実施例に
つき述べたが、1時間より多少短い又は長い時間の熱処
理、それに続く2時間より多少短い又は長い時間の熱処
理である場合であっても、上述せる優れた効果か得られ
た。
Also, the above (1) and (2) after the second step and before the sixth step
The above-mentioned examples have been described in which the heat treatment is for 6 hours, but the above-mentioned advantages can be achieved even if the heat treatment is for a time slightly shorter than 6 hours or for a time slightly longer than 3 hours. The effect was obtained. Furthermore, an example has been described in which the heat treatment in (3) above after the second step and before the third step is a heat treatment for 1 hour followed by a heat treatment for 2 hours, but the heat treatment may be slightly shorter or longer than 1 hour. The above-mentioned excellent effects were obtained even when the heat treatment was performed for a period of time followed by a heat treatment for a period somewhat shorter or longer than 2 hours.

尚上述に於ては、本発明の僅かの実施例を述べたに留糠
り、第1及び第2の超伝導体層が鉛合金を可とするもそ
れ以外の超伝導体でなる場合に本発明を適用しても上述
せる搬れた効果が得られること明らかであろう。又第2
の工程后、第6の工程前に於ける熱処理が上述せる実施
例の場合とは異なる時間及び温度である場合でも、上述
せる優れた効果か得られること明らかであろう。
In the above, only a few embodiments of the present invention have been described; however, the first and second superconductor layers may be made of a lead alloy, but other superconductors may be used. It will be obvious that even if the present invention is applied, the above-mentioned effects can be obtained. Also second
It will be clear that even if the heat treatment after the step 2 and before the 6th step is performed at a different time and temperature than in the above-mentioned embodiments, the above-mentioned excellent effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Dは本発明によるトンネル型ジョセフソン接
合の製法の実施例を示す順次の工程に於ける路線的断面
図、第2図はトンネル型ジョセフソン接合の電圧−電流
特性を示す図である。 図中、1は基板、2は第1の超伝導体ノー、6は清浄化
された表向、4は酵化膜、5は絶縁膜、6はW2の超伝
導体層を夫々示す。 出願人  日本電信電話公社
Figures 1A to 1D are cross-sectional views showing sequential steps in an embodiment of the method for manufacturing a tunnel-type Josephson junction according to the present invention, and Figure 2 is a diagram showing voltage-current characteristics of the tunnel-type Josephson junction. It is. In the figure, 1 is a substrate, 2 is a first superconductor layer, 6 is a cleaned surface, 4 is a fermented film, 5 is an insulating film, and 6 is a W2 superconductor layer. Applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 1 基板上に所要のパターンを有する第1の超伝導体層
を形成する第1の工程と、該第1の工程后上記第1の超
伝導体層の所要の表面を不活性ガスを用いたスパッタリ
ング処理により清浄化された表面に清浄化する第2の工
程と、該第2の工程后上記i% 1の超伝導体層の清浄
化された表面上に高周波酸化処理によって酸化膜をトン
ネル障壁となる絶縁膜として形成する第3の工程と、該
第6の工程后上記絶縁膜上lこ延長せる第2の超伝導体
層を形成する第4の工程とを含むトンネル型ジョセフソ
ン接合の製法に於て、上記累2の工程后、上記第6の工
程前に於て、上記第1の超伝導体層に対する熱処理を酸
素を含まさる雰囲気中でなすことを特徴とするトンネル
型ジョセフソン接合の製法。 2、基板上にI”lr要のパターンを有する第1の超伝
導体層を形成する第1の工程と、該第1の工程后上記i
′AIの超伝導体層の所髪の表向を不活性ガスを用いた
スパッタリング処理により?1化された表面に/# r
q葦化する第2の工程と、該第2の工程后上記第1の超
伝導体層の清浄化された表面上に高周波酸化処理によっ
て酸イ…をトンネル障壁となる絶に膜として形成する第
6の工程と、該第6の工程后上記絶縁膜上に延長せる第
2の超伝導体層を形成する第4の工程とを含むトンネル
型ジョセフソン接合の製法に於て、上記第2の工程眉上
記第6のエイ景前に於て、上記第1の超伝導体層にX・
jする熱処理を酸素を含む雰囲気中でなすことを特徴と
するトンネル型ジョセフソン接合の製法。 3、 基板上に所要′のバ′クーンを有する第1の超伝
導体層を形成する第1の工程と、該第1の工程后上記第
1の超伝導体層の所要の表面を不活性カスを用いたスパ
ッタリング処理により清浄化された衣■に清υ化する第
2の工程と、該第2の工程后上記第1の超伝導体層の清
と化された表面上に高周波酸化処理によって配化膜をト
ンネル障壁となる絶縁膜として形成する第3の工程と、
該第3の工程后上記絶縁膜上に延長せる第2の超伝導体
層を形成する第4の工程とを含むトンネル型ジョセフソ
ン接合の製法に於て、上記第2の工程后、上記第3の工
程前に於て、上記第1の超伝導体層に対する熱処理を酸
素を含まさる雰囲気中でなし、次で酸素を含む雰囲気中
でなすことを特徴とするトンネル型ジョセフソン接合の
製法。
[Claims] 1. A first step of forming a first superconductor layer having a desired pattern on a substrate, and a step of forming a desired surface of the first superconductor layer after the first step. A second step of cleaning the surface cleaned by sputtering using an inert gas, and after the second step, high-frequency oxidation treatment on the cleaned surface of the i% 1 superconductor layer. a third step of forming an oxide film as an insulating film to serve as a tunnel barrier; and a fourth step of forming a second superconductor layer extending over the insulating film after the sixth step. The method for manufacturing a tunnel-type Josephson junction is characterized in that after the second step and before the sixth step, the first superconductor layer is heat-treated in an atmosphere containing oxygen. A method for manufacturing tunnel-type Josephson junctions. 2. A first step of forming a first superconductor layer having a pattern of I"lr on the substrate, and after the first step, the above i
'By sputtering the surface of the hair of the AI superconductor layer using an inert gas? On the unified surface/# r
A second step of forming into a reed, and after the second step, a high-frequency oxidation treatment is performed to form an acid ion film as a tunnel barrier on the cleaned surface of the first superconductor layer. In the method for manufacturing a tunnel Josephson junction, the method includes a sixth step, and a fourth step of forming a second superconductor layer extending on the insulating film after the sixth step. Before the sixth stingray scene above, the first superconductor layer is coated with X.
A method for manufacturing a tunnel-type Josephson junction characterized by performing heat treatment in an atmosphere containing oxygen. 3. A first step of forming a first superconductor layer having a required amount of vacuum on the substrate, and after the first step, inactivating the required surface of the first superconductor layer. A second step of cleaning the cloth cleaned by sputtering using waste, and after the second step, high-frequency oxidation treatment on the cleaned surface of the first superconductor layer. a third step of forming a dosing film as an insulating film to serve as a tunnel barrier;
After the third step, a fourth step of forming a second superconductor layer extending on the insulating film. A method for producing a tunnel-type Josephson junction, characterized in that, before step 3, heat treatment is performed on the first superconductor layer in an atmosphere containing oxygen, and then heat treatment is performed in an atmosphere containing oxygen.
JP56184051A 1981-11-17 1981-11-17 Manufacture of tunnel type josephson junction Pending JPS5885580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56184051A JPS5885580A (en) 1981-11-17 1981-11-17 Manufacture of tunnel type josephson junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56184051A JPS5885580A (en) 1981-11-17 1981-11-17 Manufacture of tunnel type josephson junction

Publications (1)

Publication Number Publication Date
JPS5885580A true JPS5885580A (en) 1983-05-21

Family

ID=16146508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56184051A Pending JPS5885580A (en) 1981-11-17 1981-11-17 Manufacture of tunnel type josephson junction

Country Status (1)

Country Link
JP (1) JPS5885580A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM TECHNICEL DISCLOSURO BULLETIN *

Similar Documents

Publication Publication Date Title
JPH0577347B2 (en)
JPS5885580A (en) Manufacture of tunnel type josephson junction
US5462919A (en) Method for manufacturing superconducting thin film formed of oxide superconductor having non superconducting region and device utilizing the superconducting thin film
JPH02186682A (en) Josephson junction device
JPH04285012A (en) Formation of oxide superconductor thin film
JP2680949B2 (en) Method for manufacturing superconducting field effect device
JPS63283179A (en) Manufacture of jusephson-junction device
JP3091032B2 (en) Method for manufacturing oxide superconductor element and method for manufacturing superconducting device
JPS6120377A (en) Superconductive circuit
JPH0365502A (en) Preparation of superconductive thin film
JP3120914B2 (en) Method for manufacturing superconducting device
JPS637675A (en) Manufacture of superconducting device
JP2822623B2 (en) Method of forming electrodes on superconductor
JP4104323B2 (en) Method for fabricating Josephson junction
JP3241798B2 (en) Method for manufacturing superconducting device
JP3081386B2 (en) Method for manufacturing oxide superconductor and method for manufacturing superconducting device
JP2680959B2 (en) Superconducting field effect device and method of manufacturing the same
JP2647251B2 (en) Superconducting element and fabrication method
JPS58108739A (en) Josephson junction device
JP2691065B2 (en) Superconducting element and fabrication method
JPH04171872A (en) Josephson device and manufacture thereof
JP3068916B2 (en) Manufacturing method of superconducting thin film
JPS59194482A (en) Tunnel junction type josephson element
JP3305821B2 (en) Superconducting device
JP2667289B2 (en) Superconducting element and fabrication method