JPS5885008A - Radiant tube - Google Patents

Radiant tube

Info

Publication number
JPS5885008A
JPS5885008A JP18418181A JP18418181A JPS5885008A JP S5885008 A JPS5885008 A JP S5885008A JP 18418181 A JP18418181 A JP 18418181A JP 18418181 A JP18418181 A JP 18418181A JP S5885008 A JPS5885008 A JP S5885008A
Authority
JP
Japan
Prior art keywords
combustion
tube
gas
tubular wall
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18418181A
Other languages
Japanese (ja)
Inventor
Masatomo Nakamura
雅知 中村
Kenjiro Sato
健二郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP18418181A priority Critical patent/JPS5885008A/en
Publication of JPS5885008A publication Critical patent/JPS5885008A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube

Abstract

PURPOSE:To lower the temperature in a heat-treating furnace, and to decrease NOX in exhaust gas, during combustion, by providing an inner tube which has a gas-permeable tubular wall, to the inside of a metallic tube, and by forming an annular combustion chamber in a gap between the tubular wall of an inner tube and the metallic tube, where combustion is taken place dispersedly around the external periphery of a tubular wall. CONSTITUTION:When a radiant tube 2, provided to a heat-treating furnace by piercing through a furnace wall 1, 1, is operated, fuel gas is fed into a gas inlet port 12, and combustion air is fed into an inlet port 6, respectively. The fuel gas, passing through a gas feed tube 7 and an inner tube 8, is fed into a combustion chamber 13, nearly in the diametral direction, permeating through a tubular wall 9. On the other hand, the combustion air is fed into the combustion chamber 13 in the axial-flow direction, passing through an air box 5 and the end part of a metallic tube 3. The combustion air is mixed with the above-mentioned fuel gas, and is ignited, and then, combustion is started. Combustion can be taken place widely dispersed over the whole area of external surface of a tubular wall 9, because fuel gas is fed into the combustion chamber 13, being straightened and dispersed over the full length of an inner tube 8 when it passes through the tubular wall 9.

Description

【発明の詳細な説明】 こ°の発明はラジアントチューブに関する。[Detailed description of the invention] This invention relates to a radiant tube.

一般に熱処理炉等に用いられるラジアントチューブは、
金属チューブの端部にバーナを設け、金属チューブ内で
燃料を燃焼させて得られた高温の燃焼ガスにより金属チ
ューブを加熱する形式のものであるので、上記バーナの
火焔の高温部においてNOxが発生しやすく、また金属
チュ〒ブが局部的に高温に加熱され軸方向の温度分布が
不均一で、寿命も短かいという欠点があった。さらに金
属チューブは燃焼ガスからの対流伝熱およびふく射伝熱
により加熱されるのであるが、一般にガスは固体に比べ
てふく射射出能力が小さいため、燃焼ガスは充分金属チ
ューブを加熱することなく高温のまま排出されてしまい
、加熱効率が低かった。
Radiant tubes generally used in heat treatment furnaces, etc.
A burner is installed at the end of the metal tube, and the metal tube is heated by the high-temperature combustion gas obtained by burning fuel within the metal tube, so NOx is generated in the high temperature part of the flame of the burner. Moreover, the metal tube was locally heated to a high temperature, resulting in uneven temperature distribution in the axial direction, and the service life was short. Furthermore, the metal tube is heated by convection heat transfer and radiation heat transfer from the combustion gas, but since gases generally have a smaller radiation injection capacity than solids, the combustion gas does not heat the metal tube sufficiently and reaches a high temperature. The heating efficiency was low.

この発明は上記従来の欠点を解消するもので、NOxの
発生量が少なく、金属チューブの軸方向温度分布が均一
化され、加熱効率のすぐれたラジアントチューブを提供
しようとするものである。
The present invention solves the above-mentioned conventional drawbacks, and aims to provide a radiant tube that generates less NOx, has a uniform axial temperature distribution of the metal tube, and has excellent heating efficiency.

以下第1図によりこの発明の第1実施例を説明する。A first embodiment of the present invention will be described below with reference to FIG.

第1図(a)において、lは熱処理炉の炉壁、2はこの
炉壁を貫通して取付けたストレート形のラジアントチュ
ーブで、3はその本体である耐熱鋳鋼時の金属チューブ
、4は排ガス口である。5は金属チューブ3の燃焼側端
部に取付けた短円筒状のウィンドボックス、6はこのウ
ィンドボックスへの空気流入口で、図示しない送風機等
の燃焼用空気供給源に接続されている。7はウィンドボ
ックス5を貫通し該ウィンドボックスに一端部を固定し
たガス供給管、8はこのガス供給管の他端部に接続固定
した円筒で、9は通気性を有する円筒状の筒壁、10は
環状の端板、11は円盤状の端板である。本実施例にお
いては筒壁9の構成材料としてステンレス金網(線径0
.7mm、14メツシユ)を20枚積層して板状とした
ものを用いたが、ステンレス以外の金属やセラミック等
の耐熱固体材料を用いてもよく、また網状のほかノ・ニ
カム状、線維状、多孔質状などの通気性を有する適宜の
形状のものを用いてもよい。12はガス供給管7のガス
流入口で、図示しない燃料ガス供給源に接続されている
。また13は金属チュ〒ブ3と内筒8との間に形成した
環状の燃焼室である。
In Fig. 1(a), l is the furnace wall of the heat treatment furnace, 2 is a straight radiant tube installed through the furnace wall, 3 is the main body of the heat-resistant cast steel metal tube, and 4 is the exhaust gas. It is the mouth. 5 is a short cylindrical wind box attached to the combustion side end of the metal tube 3, and 6 is an air inlet to this wind box, which is connected to a combustion air supply source such as a blower (not shown). 7 is a gas supply pipe that passes through the wind box 5 and has one end fixed to the wind box; 8 is a cylinder connected and fixed to the other end of the gas supply pipe; 9 is a cylindrical wall having air permeability; 10 is an annular end plate, and 11 is a disc-shaped end plate. In this embodiment, the material of the cylinder wall 9 is stainless wire mesh (wire diameter 0).
.. Although 20 sheets (7 mm, 14 mesh) were laminated to form a plate shape, metals other than stainless steel or heat-resistant solid materials such as ceramics may also be used. An appropriate shape having air permeability, such as a porous shape, may be used. Reference numeral 12 denotes a gas inlet of the gas supply pipe 7, which is connected to a fuel gas supply source (not shown). Further, 13 is an annular combustion chamber formed between the metal tube 3 and the inner cylinder 8.

上記構成のラジアントチューブ2において、燃料ガスを
ガス流入口12に、燃焼用空気を空気流入口6にそれぞ
れ供給すれば、燃料ガスはガス供給管7、円筒8内を経
て筒壁9を通過して燃料室13内へほぼ直径方向に流入
する。一方燃焼用空気はウィンドボックス5、金属チュ
ーブ3の端部内を経て燃焼室13内へ軸流方向に流入し
、筒壁9から流入する燃料ガスと混合するので、図示し
ない点火バーナ等により着火すれば、以後燃焼室13内
において燃料ガスが燃焼する。この燃熔は、燃料ガスが
筒壁9により整流されて円筒全長にわたって分散して燃
焼室13内へ流入するため、筒壁9の外周面全面の広面
積にわたって分散燃焼の形でおこなわれる。このため燃
焼温度の最高値は低下しNOxの発生量が抑制されると
ともに、金属だ金属チューブ3は、燃焼ガスのふく射伝
熱および対流伝熱により加熱されるとともに、燃焼が内
In the radiant tube 2 having the above configuration, if fuel gas is supplied to the gas inlet 12 and combustion air is supplied to the air inlet 6, the fuel gas passes through the gas supply pipe 7, the inside of the cylinder 8, and the cylinder wall 9. and flows into the fuel chamber 13 approximately diametrically. On the other hand, the combustion air flows axially into the combustion chamber 13 through the wind box 5 and the end of the metal tube 3, and mixes with the fuel gas flowing in from the cylinder wall 9, so that it can be ignited by an ignition burner (not shown) or the like. For example, the fuel gas is then combusted within the combustion chamber 13. This combustion is carried out in the form of distributed combustion over a wide area of the entire outer peripheral surface of the cylinder wall 9 because the fuel gas is rectified by the cylinder wall 9 and flows into the combustion chamber 13 while being dispersed over the entire length of the cylinder. Therefore, the maximum value of the combustion temperature is lowered and the amount of NOx generated is suppressed, and the metal tube 3 is heated by radiant heat transfer and convection heat transfer of the combustion gas, and combustion occurs internally.

筒の筒壁9の外周面付近でおこなわれることにより筒壁
9の表面温度が上昇し、ガスに比べてふく射射出能力の
大きい固体から成る筒壁9からのふく射伝熱によっても
金属チューブ3が加熱されるため、金属チューブ3への
伝熱量が増加し、高い加熱効率を有するラジアントチュ
ーブが得られるのである。
This occurs near the outer circumferential surface of the cylindrical wall 9 of the tube, increasing the surface temperature of the cylindrical wall 9, and the metal tube 3 also increases due to radiant heat transfer from the cylindrical wall 9, which is made of a solid material that has a higher radiation ejection capacity than gas. Since it is heated, the amount of heat transferred to the metal tube 3 increases, and a radiant tube with high heating efficiency can be obtained.

上記構成のラジアントチューブ(外径170 m。Radiant tube with the above configuration (outer diameter 170 m).

炉内長1300mm)を用いた発明者の実験結果による
と、燃料としてブタンエアダイリュートガスを用い燃焼
量50. OOOkcal /時の燃焼をおこなったと
ころ、炉内温度800℃のときラジアントチューブの加
熱効率は67%であり、通常のバーナを用いた従来のラ
ジアントチューブ(同一寸法)の場合の加熱効率60%
に比べ約7チ向上した。
According to the inventor's experimental results using a furnace with an internal length of 1300 mm, the combustion amount was 50 mm using butane air dilute gas as the fuel. When combustion was performed at OOOkcal/hour, the heating efficiency of the radiant tube was 67% when the furnace temperature was 800°C, which was 60% of the heating efficiency of a conventional radiant tube (same dimensions) using a normal burner.
This is an improvement of about 7 inches compared to the previous year.

また第1図(b)に示すように、上記実験時の金属チュ
ーブ3の表面温度Tは、同図中鎖線で示す従来のラジア
ントチューブの表面温度l1loに比べ、最高温度が低
下し表面温度の均一化が達成されている。
Further, as shown in FIG. 1(b), the surface temperature T of the metal tube 3 during the above experiment was lower than the surface temperature l1lo of the conventional radiant tube shown by the chain line in the figure, and the maximum temperature was lower. Uniformity has been achieved.

次に第2図乃至第6図はこの発明の第2実施例を示し、
第1図と同一部分あるいは相当部分には同一符号を付し
である。
Next, FIGS. 2 to 6 show a second embodiment of this invention,
The same or equivalent parts as in FIG. 1 are given the same reference numerals.

図中、21はウィンドボックス5に一端部を固定した内
筒で、通気性を有する円筒状の筒壁22と、環状の端板
23と、円盤状の端板24とから成る。25は内筒21
内に設けた仕切で、内筒21内をガス流入口12が連通
する燃料流路26と、空気流入口6が連通ずる空気流路
27とに仕切るものである。28は仕切25の構成要素
である断面コ字状のリングで、その両フランジ面29.
30には各2個の通気穴31,32が90度位相をずら
せて穿設しである。仕切25はこのリング28を90度
ずつ位相をずらせて7個並べ、隣り合うリングの通気穴
31,32を角管状の通気管33で接続して成る。すな
わち空気流路27は各リング28と筒壁22とで囲繞さ
れた環状室27aを通気管33で連絡したものである。
In the figure, reference numeral 21 denotes an inner cylinder whose one end is fixed to the wind box 5, and is composed of a cylindrical cylinder wall 22 having air permeability, an annular end plate 23, and a disc-shaped end plate 24. 25 is the inner cylinder 21
A partition provided inside divides the inside of the inner cylinder 21 into a fuel passage 26 with which the gas inlet 12 communicates and an air passage 27 with which the air inlet 6 communicates. 28 is a ring having a U-shaped cross section and is a component of the partition 25, and both flange surfaces 29.
30 has two ventilation holes 31 and 32 formed therein with a phase shift of 90 degrees. The partition 25 is formed by arranging seven rings 28 with their phases shifted by 90 degrees, and connecting the ventilation holes 31 and 32 of adjacent rings with a rectangular ventilation pipe 33. That is, the air flow path 27 is an annular chamber 27a surrounded by each ring 28 and the cylindrical wall 22, which is connected by a ventilation pipe 33.

また燃料流路26は各リング28の内径部分と、隣り合
うリング28.28間に形成され筒壁22で囲繞された
円盤状室26Bとから成る。
Further, the fuel flow path 26 is composed of the inner diameter portion of each ring 28 and a disc-shaped chamber 26B formed between adjacent rings 28, 28 and surrounded by the cylindrical wall 22.

上記構成のラジアントチューブ34に燃料ガスと燃焼用
空気を供給すれば、燃料ガスは燃料流路26内を流通し
各円盤状室26Bから筒壁22を通過して燃焼室13内
に流入する。また燃焼用空気は空気流路27内を流通し
各環状室2,7aから筒壁22を通過して燃焼室13内
へ流入し、隣接する円盤状室26aからの流入燃料ガス
と混合して燃焼がおこなわれる。すなわちこの実施例で
は燃焼用空気も内筒2へ経て燃焼室13内に供給するよ
うにした点が前記第1実施例と異な′るが、内筒21の
筒壁22の外周面全面にわたって分散燃焼がおこなわれ
るので、第1実施例と同様な効果を得ることができるも
のである。なおこの実施例において燃料流路の円盤状室
26aを囲繞する部分の筒壁22を除去して、燃料ガス
を円盤状室26aから直接燃焼室13内へ流入させるよ
うにしてもよい。
When fuel gas and combustion air are supplied to the radiant tube 34 configured as described above, the fuel gas flows through the fuel flow path 26 and flows from each disk-shaped chamber 26B through the cylindrical wall 22 into the combustion chamber 13. Further, the combustion air flows through the air passage 27, passes through the cylindrical wall 22 from each annular chamber 2, 7a, flows into the combustion chamber 13, and mixes with the inflowing fuel gas from the adjacent disc-shaped chamber 26a. Combustion takes place. That is, this embodiment differs from the first embodiment in that combustion air is also supplied into the combustion chamber 13 through the inner cylinder 2, but the air is distributed over the entire outer peripheral surface of the cylinder wall 22 of the inner cylinder 21. Since combustion takes place, the same effects as in the first embodiment can be obtained. In this embodiment, the cylindrical wall 22 of the portion of the fuel flow path surrounding the disk-shaped chamber 26a may be removed to allow the fuel gas to flow directly into the combustion chamber 13 from the disk-shaped chamber 26a.

この発明は上記各実施例に限定されるものではなく、た
とえば上記各実施例において燃料ガスの流通路と燃焼用
空気の流通路を入替えて用いることもできる。
The present invention is not limited to the above embodiments; for example, the fuel gas flow path and the combustion air flow path may be interchanged in each of the above embodiments.

以上説明したようにこの発明によれば、金属チューブ内
に通気性を有する筒壁部をそなえた内筒を設けて金属チ
ューブと内筒の筒壁部との間に環状の燃焼室を形成させ
、内筒の筒壁部外周面付近において分散燃焼をおこなう
ようにしたので、燃焼温度最高値の低下によりNOxの
発生量が減少し、金属チューブの温度分布が均一化され
るとともに、筒壁部からのふく射伝熱の付加によりラジ
アントチューブの加熱効率が向上する。
As explained above, according to the present invention, an inner cylinder having an air-permeable cylinder wall is provided inside the metal tube, and an annular combustion chamber is formed between the metal tube and the cylinder wall of the inner cylinder. Since decentralized combustion is performed near the outer peripheral surface of the cylinder wall of the inner cylinder, the amount of NOx generated is reduced by lowering the maximum combustion temperature, and the temperature distribution of the metal tube is made uniform. The heating efficiency of the radiant tube is improved by adding radiant heat transfer from the radiant tube.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)はこの発明の第1実施例を示すラ
ジアントチューブの縦断面および表面温度分布を示す図
、第2図はこの発明の第2実施例を示すラジアントチュ
ーブの縦断面図、第3図は第2図の内筒の拡大縦断面図
、第4図は第3図のA−A線断面図、第5図は同じ(B
−B線断面図、第6図は同じ(C−C線断面図である。 2・・・ラジアントチューブ、3・・・金属チューブ、
5・・・ウィンドボックス、6・・・空気流入口、7・
・・ガス供給管、8・・・内筒、9・・・筒壁、12・
・・ガス流入口、13・・・燃焼室、21・・・内筒、
22・・・筒壁、25・・・仕切、26・・・燃料流路
、27・・・空気流路、34・・・ラジアントチューブ
:。 口面 オ 1 口 廂     喘 牙 ? 【
FIGS. 1(a) and (b) are diagrams showing a longitudinal section and surface temperature distribution of a radiant tube showing a first embodiment of the invention, and FIG. 2 is a longitudinal section of a radiant tube showing a second embodiment of the invention. 3 is an enlarged vertical sectional view of the inner cylinder in FIG. 2, FIG. 4 is a sectional view taken along line A-A in FIG. 3, and FIG.
-B sectional view and FIG. 6 are the same (C-C line sectional view. 2...Radiant tube, 3...Metal tube,
5... Wind box, 6... Air inlet, 7.
... Gas supply pipe, 8 ... Inner cylinder, 9 ... Cylinder wall, 12.
...Gas inlet, 13...Combustion chamber, 21...Inner cylinder,
22... Cylinder wall, 25... Partition, 26... Fuel flow path, 27... Air flow path, 34... Radiant tube. Mouth surface 1 Mouth area ? [

Claims (1)

【特許請求の範囲】[Claims] 金属チューブ内に通気性を有する筒壁部をそなえた円筒
を設けて、上記金属チューブと上記内筒の筒壁部との間
に環状の燃焼室を形成させ、第1流入口から上記内筒内
を経て上記筒壁部を通過して上記燃焼室に至る第1流路
と、第2流入口から上記燃焼室に至る第2流路とを設け
、上記第1流路と上記第2流路のうちの一方に燃料ガス
を、他方に燃焼用空気をそれぞれ流通させて上記燃焼室
において上記燃料ガスの燃焼をおこなうようにしたこと
を特徴とするラジアントチューブ。
A cylinder having an air-permeable cylinder wall is provided inside the metal tube, an annular combustion chamber is formed between the metal tube and the cylinder wall of the inner cylinder, and the inner cylinder is connected to the cylinder from the first inlet. A first flow path passing through the cylinder wall and reaching the combustion chamber, and a second flow path leading from a second inlet to the combustion chamber are provided, and the first flow path and the second flow path are provided. A radiant tube characterized in that the fuel gas is caused to flow in one of the channels and the combustion air is caused to flow through the other channel so that the fuel gas is combusted in the combustion chamber.
JP18418181A 1981-11-16 1981-11-16 Radiant tube Pending JPS5885008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18418181A JPS5885008A (en) 1981-11-16 1981-11-16 Radiant tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18418181A JPS5885008A (en) 1981-11-16 1981-11-16 Radiant tube

Publications (1)

Publication Number Publication Date
JPS5885008A true JPS5885008A (en) 1983-05-21

Family

ID=16148773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18418181A Pending JPS5885008A (en) 1981-11-16 1981-11-16 Radiant tube

Country Status (1)

Country Link
JP (1) JPS5885008A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135133U (en) * 1985-02-08 1986-08-22
JPS61149616U (en) * 1985-03-07 1986-09-16
JPS6344035U (en) * 1987-05-20 1988-03-24
JPH02150608A (en) * 1988-11-29 1990-06-08 Toho Gas Co Ltd Tube burner
JP2013057448A (en) * 2011-09-08 2013-03-28 Toho Gas Co Ltd Radiant tube burner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040040U (en) * 1973-08-09 1975-04-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040040U (en) * 1973-08-09 1975-04-24

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135133U (en) * 1985-02-08 1986-08-22
JPH0216099Y2 (en) * 1985-02-08 1990-05-01
JPS61149616U (en) * 1985-03-07 1986-09-16
JPS6344035U (en) * 1987-05-20 1988-03-24
JPH029235Y2 (en) * 1987-05-20 1990-03-07
JPH02150608A (en) * 1988-11-29 1990-06-08 Toho Gas Co Ltd Tube burner
JP2013057448A (en) * 2011-09-08 2013-03-28 Toho Gas Co Ltd Radiant tube burner

Similar Documents

Publication Publication Date Title
US3425675A (en) Burner tube assembly for heat treating furnace
US4870947A (en) Radiant tube burner
JP3460441B2 (en) Combustion device and thermal equipment equipped with the combustion device
US2478732A (en) Combustion tube heating apparatus
EP0328418B1 (en) Radiant tube furnace and method of burning a fuel
US3688760A (en) Radiant tube assembly
ES345133A1 (en) Rotary cylinder for heat treatment of fabrics or the like continuous materials
US3187799A (en) Self-stabilizing combustion apparatus and method
JPS5885008A (en) Radiant tube
JPH064171Y2 (en) Radiant chives
US3212558A (en) Industrial burner
US3273623A (en) Self-stabilizing combustion apparatus
CN107957064A (en) A kind of thermal-storage burning device utilizing radiant tube
JPH06229522A (en) Radiant tube burner
JPH0684118U (en) Double tube radiant tube
JPS5892703A (en) Combustion apparatus
JP2984142B2 (en) Single-ended radiant tube and combustion method
US3244219A (en) Self-stabilizing apparatus
JP3059267B2 (en) Radiant tube burner
JPH06180108A (en) Combustion process for surface combustion burner and surface combustion burner
JPS61143613A (en) Radiant burner
CN207797036U (en) A kind of thermal-storage burning device utilizing radiant tube
GB1199092A (en) Radiant Heating Tubes for Industrial Furnaces
JPS63231109A (en) Tube burner
JPH01296003A (en) Tube burner