JPS5882302A - Temperature control circuit - Google Patents

Temperature control circuit

Info

Publication number
JPS5882302A
JPS5882302A JP56181545A JP18154581A JPS5882302A JP S5882302 A JPS5882302 A JP S5882302A JP 56181545 A JP56181545 A JP 56181545A JP 18154581 A JP18154581 A JP 18154581A JP S5882302 A JPS5882302 A JP S5882302A
Authority
JP
Japan
Prior art keywords
temperature
feedback
positive feedback
differential amplifier
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56181545A
Other languages
Japanese (ja)
Other versions
JPS6146841B2 (en
Inventor
Shozo Kato
加藤 昇三
Hiroshi Ikeda
博 池田
Ichiro Okubo
一郎 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP56181545A priority Critical patent/JPS5882302A/en
Publication of JPS5882302A publication Critical patent/JPS5882302A/en
Publication of JPS6146841B2 publication Critical patent/JPS6146841B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • G05D23/1909Control of temperature characterised by the use of electric means using an analogue comparing device whose output amplitude can only take two discrete values

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Resistance Heating (AREA)
  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)

Abstract

PURPOSE:To perform stable switching operation and less-overshoot temperature control by providing negative feedback which exceeds the extent of positive feedback in a prescribed time to the other input terinal of a differential amplifier. CONSTITUTION:Positive feedbck is provided during the switching operation of an operational amplifier 4 to stabilize the operation of the amplifier 4 accompanying the switching, preventing the hunting operation of a relay 7 and the frequent starting and stopping of a heater 6. After the switching of the amplifier 4, negative feedback which exceeds the extent of positive feedback in a prescribed time is provided from a feedback extent adjusting circuit 9 to the amplifier 4 to cut- off the supply of power to the heater 6 before the temperature of a body to be heated reaches set temperature, and to supply power to the heater 6 while the temperature of the body is higher than the set temperature, thus performing temperature control while anticipating overshooting.

Description

【発明の詳細な説明】 本発明は感温抵抗素子を一片に含む抵抗ブリフジ回路の
異なる出力点を差動増幅器の2個の入力端子に接続する
とともに、差動増幅器の出力端子を正帰還抵抗全弁して
一方の入力端子に接続し、差動増幅器の出力端子から熱
負荷の駆動出力をとるようにした温度制御回路に関する
ものである。
Detailed Description of the Invention The present invention connects different output points of a resistance bridge circuit including a temperature-sensitive resistance element in one piece to two input terminals of a differential amplifier, and connects the output terminal of the differential amplifier to a positive feedback resistor. This invention relates to a temperature control circuit in which all valves are connected to one input terminal, and the driving output of a thermal load is taken from the output terminal of a differential amplifier.

従来の此種の温度制御回路は第1図に示すものが一般的
である。同図に於いて、(1)は電池端子、(2)は基
準端子であり、抵抗(R1’)ないしくR3)と、温度
設定用可変抵抗(VR)と、感温抵抗素子としてのサー
ミスタ(TH”lとからブリフジ回路(3)が構成され
ている。(4)は差動増幅器としてのオペアンプであり
、負入力端子I41)がブIJ ツジ回路(3)の出力
点体)に、又正入力端子に)がブリッジ回路(3)の出
力点(ト)に夫々接続され、出力端子&3と正入力端子
@りとの間に正帰還抵抗(RA)が接続されている。(
5)は差動増幅器(4)の出力端子−に接続された出力
端子であり、出力端子(5)と基準端子(2)の間に熱
源としてのヒータ(6)駆動用のリレー(7)が接続さ
れている。
A conventional temperature control circuit of this kind is generally shown in FIG. In the figure, (1) is a battery terminal, (2) is a reference terminal, which includes a resistor (R1' or R3), a variable resistor (VR) for temperature setting, and a thermistor as a temperature-sensitive resistance element. (TH"l) constitutes the Brifuji circuit (3). (4) is an operational amplifier as a differential amplifier, and the negative input terminal I41) is connected to the output point body of the Tsuji circuit (3). Also, the positive input terminals) are connected to the output point (g) of the bridge circuit (3), and a positive feedback resistor (RA) is connected between the output terminal &3 and the positive input terminal @.
5) is an output terminal connected to the output terminal - of the differential amplifier (4), and a relay (7) for driving a heater (6) as a heat source is connected between the output terminal (5) and the reference terminal (2). is connected.

斯かる温度制御回路はヒータ(6)にて加熱される被加
熱陣(図示せず)の溝1度をサーミスタ(TH)Kで検
出し、ブリッジ回路(3)の出力点(6)、但)の電圧
をオペアンプ(4)で比較し、オペアンプ(4)の出カ
ニてリレー(7)ヲオン、オフ制御することにより、被
加熱不の流展−が可変抵抗(VR)にて設定された温度
になるようにしている。又、正帰還抵抗(RA’)k介
して出力端子□□□から正入力端子(6)に正帰還をか
けることにより、オペアンプ(4)のスイッチング動作
を安定させ、リレー(7)のチャタリング及びヒータ(
6)の卸繁な発停を防止できるようにしている。ところ
で、被加熱体の温度f極力設定温度近傍に維持させる[
は正帰還抵抗(RA)による正帰還量を小さくシてオペ
アンプ(4)のオン、オフディフルンシャル温度差りを
小さくとるようにしているが、あまり小さくしすぎると
スイッチング動作が不安定となり、第2図に示すように
被加熱体の温度Tが設定温度TSより高いヒータオフ温
度T2でヒータ(6)の通電が切られ、TSより低いヒ
ータオンl都度T1でヒータ(6)が通電されるため、
設定温度TSからのオーパージ、−)O3が大きいとい
う欠点があった。
Such a temperature control circuit uses a thermistor (TH) K to detect the groove of the heated layer (not shown) heated by the heater (6), and detects the temperature at the output point (6) of the bridge circuit (3). ) voltages are compared with the operational amplifier (4), and by controlling the relay (7) on and off based on the output of the operational amplifier (4), the flow rate of the heated and unheated parts is set using the variable resistor (VR). I'm trying to keep it at the same temperature. In addition, by applying positive feedback from the output terminal □□□ to the positive input terminal (6) via the positive feedback resistor (RA'), the switching operation of the operational amplifier (4) is stabilized, and the chattering of the relay (7) and heater(
6) It is possible to prevent the frequent start and stop of wholesale. By the way, the temperature f of the heated body is maintained as close to the set temperature as possible [
The positive feedback amount by the positive feedback resistor (RA) is kept small to keep the difference in temperature between the ON and OFF differentials of the operational amplifier (4) small, but if it is made too small, the switching operation will become unstable. As shown in Fig. 2, the heater (6) is de-energized at the heater-off temperature T2, which is higher than the set temperature TS, and the heater (6) is energized at T1 each time the temperature T of the heated object is turned on, which is lower than TS. ,
There was a drawback that the overflow from the set temperature TS, -)O3, was large.

そこで第6図に示すようにオペアンプ(4)の出力端子
−と正入力端子に)との間に正帰還抵抗(RA)とコン
デンサ(8)を直列に接続し、オペアンプ(4)のスイ
ッチング当初の正帰還量を最大とし、その後漸次正帰還
量を減少させるようにしたものが提案されているが、こ
の場合も被加熱体温度が設定温度を境にヒータ(6)の
通電が断続されるため、大幅なオーパージ萬−トは避は
囃いものであつた。
Therefore, as shown in Figure 6, a positive feedback resistor (RA) and a capacitor (8) are connected in series between the output terminal of the operational amplifier (4) and the positive input terminal. It has been proposed that the amount of positive feedback is maximized and then the amount of positive feedback is gradually decreased, but in this case as well, the energization of the heater (6) is interrupted when the temperature of the heated body reaches the set temperature. Therefore, it was difficult to avoid a large opening.

本発明は上述の事実に鑑みてなされたものであり、安定
り一だスイッチング動作と、オーバーシュートの少ない
湿度制御が行なわれるようにした?黒度制御回路を提供
することを目的とする。
The present invention has been made in view of the above-mentioned facts, and provides stable switching operation and humidity control with little overshoot. The purpose is to provide a blackness control circuit.

本発明の基本的な構成はサーミスタ等のIts品抵抗抵
抗素子片に含む抵抗ブリッジ回路の異なる出力点をオペ
アンプ等の差動増幅器の2個の入力端子に接続するとと
もに、差動増幅器の出力端子を正帰還抵抗を介して一方
の入力端子に接続し、差動増幅器の出力端子から熱源の
駆動出力をとるものに於いて、差動増幅器の駆動出力r
rc同期して正帰還抵抗による正帰還量を所定時間内に
上回る負帰還を差動増幅器の他方の入力端子に与える帰
還量調整回路を設けたことにあり、差動増幅器のスイッ
チング時には正帰還抵抗による正帰還にて安定した動作
が々されるようにしつつ、正帰還抵抗による正帰還量を
所定時間内に上回る負帰還を帰還調整回路から差動増幅
器に与えるようになし、被加熱体のオーバーシュートを
見込して熱源の発停を早めに行ない、被加熱体湿度を設
定治1度近傍に維持できるようにしたものである。
The basic configuration of the present invention is to connect different output points of a resistor bridge circuit included in an It's resistance element piece such as a thermistor to two input terminals of a differential amplifier such as an operational amplifier, and to connect the output terminals of the differential amplifier to two input terminals of a differential amplifier such as an operational amplifier. is connected to one input terminal via a positive feedback resistor, and the drive output of the heat source is taken from the output terminal of the differential amplifier.
The reason is that a feedback amount adjustment circuit is provided which synchronizes with the rc and gives negative feedback to the other input terminal of the differential amplifier that exceeds the positive feedback amount provided by the positive feedback resistor within a predetermined time. While ensuring stable operation through positive feedback provided by the positive feedback resistor, negative feedback that exceeds the amount of positive feedback provided by the positive feedback resistor is given to the differential amplifier from the feedback adjustment circuit within a predetermined time, thereby preventing overheating of the heated object. The heat source is turned on and off early in anticipation of the shoot, making it possible to maintain the humidity of the heated body at around 1 degree.

第4図は本発明の一実施例を示すものであh、第1図の
ものと同一部分には同一符号を付してあり、第1図のも
のと異なるのはブリッジ回路(3)と並列に積分回路構
成とした帰還量調整回路(9)を設けであることである
。帰還量調整回路(9)は直列接続された抵抗(R7)
、(R8)と、負入力端子(101)が抵抗(R7)、
(R8)の接続点(C)に抵抗(R5)を介して接続さ
れるとともに、正入力端子(102)が接続点0)に抵
抗(R6)を介して接続されたオペアンプQQと、オペ
アンプ<10の出力端子(103)と、抵抗(R5)及
び負入力端子(101)の接続点(ト)との間に接続さ
れたコンデンサQl)と、抵抗(R6)及び正入力端子
(102)の接続点υ)とオペアンプ(4)の出力端子
−との間に接続された抵抗(R4)と、オペアンプ00
の出力端子(103)及びコンデンサ01)の接続点(
ト)とプリフジ回路(3)の出力点(ロ)との間に接続
された抵抗(RB)とからなる。
FIG. 4 shows an embodiment of the present invention. The same parts as those in FIG. A feedback amount adjustment circuit (9) having an integral circuit configuration is provided in parallel. The feedback amount adjustment circuit (9) is a resistor (R7) connected in series.
, (R8) and the negative input terminal (101) is a resistor (R7),
The operational amplifier QQ is connected to the connection point (C) of (R8) via the resistor (R5), and the positive input terminal (102) is connected to the connection point 0) via the resistor (R6). A capacitor Ql) connected between the output terminal (103) of No. 10 and the connection point (G) of the resistor (R5) and the negative input terminal (101), and the A resistor (R4) connected between the connection point υ) and the output terminal of the operational amplifier (4) and the operational amplifier 00
The connection point (
(g) and a resistor (RB) connected between the output point (b) of the prefuji circuit (3).

尚、動作説明の簡略化のために、抵抗(R7)(R8)
は互いに抵抗値が等しく、且つ抵抗(R5)、(R6)
のそれに比べて十分低い値に選定されているものとし、
夫々電源端子(1)の電圧VaCの半分の1/ZVOO
ずつの定電圧がかかっているものとみなせるものとする
。又、抵抗(R4)は抵抗(R6)より十分大きな値に
設定しである。
In addition, in order to simplify the explanation of the operation, the resistors (R7) (R8)
have the same resistance value, and the resistances (R5) and (R6)
It is assumed that the value is selected to be sufficiently low compared to that of
1/ZVOO, half of the voltage VaC of the power supply terminal (1), respectively.
It can be assumed that a constant voltage of Further, the resistor (R4) is set to a sufficiently larger value than the resistor (R6).

次に本実施例の動作を第5図f参照して説明する。第5
図に於いてTは被加熱体温度、TSは可変析杭(VR)
による設定温度、TS’は正帰還抵抗(RA)及び帰還
量調整回路(9)Kで調整されるプリフジ回路(3)の
動作湿度である。又、VFは接続点の電圧、■Pけオペ
アンプ(4)の正入力端子θ埠(或いはブリッジ回路(
3)の出力点の))からみた出力端子61からの正帰M
電圧である。
Next, the operation of this embodiment will be explained with reference to FIG. 5f. Fifth
In the figure, T is the temperature of the heated body and TS is the variable analysis pile (VR).
TS' is the operating humidity of the pre-fuji circuit (3) adjusted by the positive feedback resistor (RA) and the feedback amount adjustment circuit (9) K. In addition, VF is the voltage at the connection point, and the positive input terminal θ of the P-type operational amplifier (4) (or bridge circuit (
Positive feedback M from the output terminal 61 seen from the output point )) of 3)
It is voltage.

而して、時刻tlに於いてサーミスタ(TH)にて感知
される被加熱陣の温度Tが動作温度TS′より高いもの
とすると、オペアンプ(4)ハ出力端子−の電圧が0と
なるオフ状ドレであり、リレー(7)が励磁すれず、ヒ
ータ(6)は通電されてない。この時陣 オペアンプ(4)の正入力端子(6)は正帰還電へV 
Pだけ低められている。−力、帰還量調整回路(9)は
接続点の)の電圧VDが接続点(C)よりX(抵抗(R
6)の電圧降下に相当する巖小電圧)だけ低い(1/2
VCC−Xlとなっており、積分作用により抵抗(R5
)f介してコンデンサ0】)に図示方向に充電され、コ
ンデンサθDの充電、電圧が1/2Vacオペアンプ0
0の出力端子r103)の電圧が0となっている。従っ
て抵抗(IRB)を介してブリフジ回路(3)の出力点
(A)(オペアンプ(4)の負入力端子01))を低め
る負帰還が相かっている。この負帰還電圧は正帰還抵抗
(RA)の正帰還電圧VPより大きく設定してあり、こ
の時の動作温pJTC!け設定温度TSより僅かに高い
T2となっている。
Assuming that the temperature T of the heated element sensed by the thermistor (TH) at time tl is higher than the operating temperature TS', the voltage at the output terminal of the operational amplifier (4) becomes 0 (off). The relay (7) is not energized and the heater (6) is not energized. At this time, the positive input terminal (6) of the operational amplifier (4) is connected to the positive feedback voltage V
Only P is lowered. - The voltage VD at the connection point (C) of the power and feedback adjustment circuit (9) is lower than the voltage VD at the connection point (C)
6) is lower (1/2) by a small voltage corresponding to the voltage drop of
VCC-Xl, and the resistance (R5
) is charged in the direction shown in the figure through capacitor θD, and the voltage is 1/2 Vac operational amplifier 0.
0 output terminal r103) is 0. Therefore, there is a negative feedback that lowers the output point (A) (negative input terminal 01 of the operational amplifier (4)) of the brifuji circuit (3) via the resistor (IRB). This negative feedback voltage is set higher than the positive feedback voltage VP of the positive feedback resistor (RA), and the operating temperature at this time pJTC! The temperature T2 is slightly higher than the set temperature TS.

時刻t2に於いて、被加藝陣渦度TがT2迄下がると、
ブリッジ回路(3)は出力点(ト)の電圧VBが出力点
(3)の電圧VAより高くなり、オペアンプ(4)不ン は出力端子−にVcoの電、圧が現わhる状態にスΔ イツチングする。このためリレー(7)が励磁され、ヒ
ータ(6)が通電される。又、オペアンプ(4)の出力
端子03から正帰還抵抗(FA)を介してブリ、ジ回路
(3)の出力点の)(入力端子θl[正帰還ががかり、
出力点但)の電圧が高められ、動作温度Tgけ正帰還量
だけ旨くなる。一方、帰還量調整回路(9)はW H4
A点(D)の電圧VDが(1/2■cc+X)となるた
め、コンデンサ面には図示と逆方向に電荷が蓄積される
よう抵抗(R5)を介して積分電流が流れ、所定時間後
にオペアンプ00の出力端子(106)の電圧(接続点
促)の電圧■F)が0からVc c4で上列し、コンデ
ンサ01)の充電市、圧は逆向きK 1. / 2 V
 c cとなる。この出力端子(106)の重圧上昇に
伴ない、プリフジ回路(3)の出力点(A)の電圧VA
が徐々に高められ、遂には出力、つ(ト)に供給される
正帰還電圧VPf上回るようになり、ブIl 、ジ回路
(3)の動作温度TS’は設定温度より低いTl迄低め
らJする。被加熱体温度Tはヒータ(6)が@熱を開始
した後もしばらくは低下を続け、その後上昇に転じる。
At time t2, when the modified vorticity T decreases to T2,
In the bridge circuit (3), the voltage VB at the output point (G) becomes higher than the voltage VA at the output point (3), and the voltage and voltage of Vco appear at the output terminal (-) of the operational amplifier (4). Switching. Therefore, the relay (7) is excited and the heater (6) is energized. In addition, from the output terminal 03 of the operational amplifier (4) through the positive feedback resistor (FA) to the output point of the circuit (3)) (input terminal θl [positive feedback is applied,
The voltage at the output point (however) is increased, and the operating temperature Tg is improved by the amount of positive feedback. On the other hand, the feedback amount adjustment circuit (9) is W H4
Since the voltage VD at point A (D) is (1/2 cc + The voltage at the output terminal (106) of the operational amplifier 00 (connection point) (F) increases from 0 to Vc c4, and when the capacitor 01) is charged, the voltage is in the opposite direction K1. / 2V
It becomes c c. As the pressure at the output terminal (106) increases, the voltage VA at the output point (A) of the prefuji circuit (3)
is gradually increased until it exceeds the positive feedback voltage VPf supplied to the output circuit (3), and the operating temperature TS' of the circuit (3) is lowered to Tl, which is lower than the set temperature. do. The temperature T of the heated object continues to decrease for a while even after the heater (6) starts heating, and then starts to increase.

そしてTが設定湿度TSよシ僅かに低いT1に到達する
(時刻t 3 ’)と、ブリフジ回路(3)の出力点(
8)の電圧VAが出力点重圧VBより高くなり、オペア
ンプ(4)がオフ状態となり、ヒータ(6)の通電が切
られる。又、ブリッジ回路(3)の動作溝1度T♂はオ
ペアンプ(4)に正帰還ががかって瞬時に低められるた
め、オペアンプ(4)のスイッチング動作は安定したも
のとなる。−カ、帰還1調整回路(9)は再びコンデン
サQl)が図示方向に充電される積分作IIPlf行な
い、オペアンプaCtの出力端子電圧(接続点電圧VF
)がVcaがら01で低められるため、オペアンプ(4
)に正帰還量を上回る負帰還を与え、ブリフジ回路(3
)の動作温度TS!′は所定時間後にT2に戻る。そし
て、被加勢体流#Tが設定温度TSを趣えて僅かにオー
パージ・−卜した後、下降に転じ、T2になる(時刻t
4)とヒータ(6)が通電される。以後は上述の動作を
繰返す。
Then, when T reaches T1, which is slightly lower than the set humidity TS (time t3'), the output point of the Brifuji circuit (3) (
The voltage VA of 8) becomes higher than the output point pressure VB, the operational amplifier (4) is turned off, and the heater (6) is de-energized. Further, since the operating groove 1 degree T♂ of the bridge circuit (3) is instantaneously lowered by positive feedback to the operational amplifier (4), the switching operation of the operational amplifier (4) becomes stable. -F, the feedback 1 adjustment circuit (9) again performs the integration operation IIPlf in which the capacitor Ql) is charged in the direction shown, and the output terminal voltage of the operational amplifier aCt (the connection point voltage VF
) is lowered from Vca to 01, so the operational amplifier (4
) is given negative feedback that exceeds the amount of positive feedback, and the Brifuji circuit (3
) operating temperature TS! ' returns to T2 after a predetermined time. Then, after the force flow #T reaches the set temperature TS and slightly overflows, it turns downward and reaches T2 (time t
4) and the heater (6) are energized. Thereafter, the above-mentioned operation is repeated.

以上の如く、本実施例に依れば、オペアンプ(4)のオ
フからオン、オンからオフへのヌイッチング動作時に正
帰還がかかるようにしであるので、スイッチングに伴な
うオペアンプ(4)の動作を安定させ、リレー(7)の
ハンチング動作やヒータ(6)の頻繁な発停を防止でき
る。又、オペアンプ(4)のスイッチング後、所定時間
内に正帰還量を上回る負帰憚が帰還量調整回路(9)か
らオペアンプ(4)にががるようにしであるので、被加
熱体温度Tが設定ン晶度TSより低いうちにヒータ(6
)の通電をりり、逆にTがTSより高いうちにヒータ(
6)の通電ヲ入れ、オーパージ・−トを見込して緻密な
温度制御がなされるようにでき、オーバーシュー) O
S ilf来に比べて数分の1以下にできる。
As described above, according to this embodiment, since positive feedback is applied during the nwitching operation of the operational amplifier (4) from off to on and from on to off, the operation of the operational amplifier (4) accompanying switching can be stabilized, and hunting operation of the relay (7) and frequent starting and stopping of the heater (6) can be prevented. Furthermore, after switching the operational amplifier (4), the negative feedback that exceeds the positive feedback amount is transferred from the feedback adjustment circuit (9) to the operational amplifier (4) within a predetermined period of time, so that the heated body temperature T The heater (6) is lower than the set crystallinity TS.
) is turned off, and conversely, while T is higher than TS, the heater (
6) By turning on the current, precise temperature control can be performed in anticipation of overshoot (overshoe).
It can be reduced to a fraction of what it was before.

尚、上述の実施例に於いて=j14−源をヒータ(6)
とj−だが、本発明は加熱源に限定されるものでなく、
玲執源を用いて物体を玲却するものにも同様に適用でき
る。
In the above embodiment, =j14-source is heater (6)
However, the present invention is not limited to heating sources,
It can be similarly applied to those who use Reishigen to destroy objects.

本発明は以上該i明してきたように、オペアンプ等の差
動増幅器のスイッチング時の動作を安定化しつつ、従来
方式に比較して大幅にオーパージ。
As explained above, the present invention stabilizes the switching operation of a differential amplifier such as an operational amplifier, while greatly increasing the efficiency compared to conventional systems.

−ト現象を抑制でき、緻密な温度制御を可能とするもの
であり、棒めて有用なものである。
It is extremely useful because it can suppress the irradiation phenomenon and enable precise temperature control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の温度制御回路の一例を示す電、気回路図
1、第2図(イ)、(ロ)は第1図回路の動作部1明図
、第61¥1は他の従来回路例を示す電電回路図、第4
図は本発明の一実施例を示す湿度制御回路の電、気回路
図、第5図(イ)ないしくニ)は第4図の動作説明図で
ある。 (3)・・・・・・抵抗ブリッジ回路、(4)・・・・
・・オペアンプ(差動増幅器)、Oυ、に)・・・・・
・入力端子、−・・・・・・出力端子、(6)・・・・
・・ヒータ(熱源)、(9)・・・・・・帰還量調整回
路、(A)、(B)・・・・・・出力点、(TH)・・
・・・・サーミスタ(感温抵抗素子)、(RA)・・・
・・・正帰還抵抗。 ′ −一・ 輸 8−
Figure 1 is an electrical circuit diagram showing an example of a conventional temperature control circuit. Figures 2 (a) and (b) are diagrams of the operating section 1 of the circuit in Figure 1. Electrical circuit diagram showing a circuit example, No. 4
The figure is an electrical and mechanical circuit diagram of a humidity control circuit showing one embodiment of the present invention, and FIGS. 5(a) to 5(d) are explanatory diagrams of the operation of FIG. 4. (3)...Resistance bridge circuit, (4)...
・・Operative amplifier (differential amplifier), Oυ, ni)・・・・
・Input terminal, -... Output terminal, (6)...
... Heater (heat source), (9) ... Feedback amount adjustment circuit, (A), (B) ... Output point, (TH) ...
...Thermistor (temperature sensitive resistance element), (RA)...
...Positive feedback resistance. ′ -1. Export 8-

Claims (1)

【特許請求の範囲】[Claims] (1)感温抵抗素子を一片に含む抵抗ブリフジ回路の異
なる出力点を差動増幅器の2個の入力端子に接続すると
ともに、差動増幅器の出力端子を正帰還抵抗を介して一
方の入力端子に接続し、該差動増幅器の出力端子から熱
源の駆動出力をとるものに於いて、差動増幅器からの駆
動出力に同期して正帰還抵抗による正帰還量を所定時間
内に上回る負帰還を差動増幅器の他方の入力端子に与え
る帰還量調整回路を設けたことを特徴とする温度制御回
路。
(1) Connect different output points of the resistance bridge circuit that includes a temperature-sensitive resistance element in one piece to two input terminals of a differential amplifier, and connect the output terminal of the differential amplifier to one input terminal via a positive feedback resistor. is connected to the output terminal of the differential amplifier and takes the driving output of the heat source from the output terminal of the differential amplifier, and in synchronization with the driving output from the differential amplifier, negative feedback is generated that exceeds the amount of positive feedback due to the positive feedback resistor within a predetermined time. 1. A temperature control circuit comprising a feedback amount adjustment circuit applied to the other input terminal of a differential amplifier.
JP56181545A 1981-11-11 1981-11-11 Temperature control circuit Granted JPS5882302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56181545A JPS5882302A (en) 1981-11-11 1981-11-11 Temperature control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56181545A JPS5882302A (en) 1981-11-11 1981-11-11 Temperature control circuit

Publications (2)

Publication Number Publication Date
JPS5882302A true JPS5882302A (en) 1983-05-17
JPS6146841B2 JPS6146841B2 (en) 1986-10-16

Family

ID=16102650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56181545A Granted JPS5882302A (en) 1981-11-11 1981-11-11 Temperature control circuit

Country Status (1)

Country Link
JP (1) JPS5882302A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228513A (en) * 1985-04-01 1986-10-11 Sanyo Electric Co Ltd Temperature controller
JPS62198449U (en) * 1986-06-06 1987-12-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228513A (en) * 1985-04-01 1986-10-11 Sanyo Electric Co Ltd Temperature controller
JPS62198449U (en) * 1986-06-06 1987-12-17

Also Published As

Publication number Publication date
JPS6146841B2 (en) 1986-10-16

Similar Documents

Publication Publication Date Title
JPS5816091B2 (en) Device that controls supply side temperature in central heating equipment
JPS5828246Y2 (en) Ondochiyousetsouchi
CA1149042A (en) Combustion system with electronic circuit controls
US4489882A (en) Variable time constant anticipation thermostat
JPS5882302A (en) Temperature control circuit
US4172982A (en) Time proportional control means with a variable time constant
US3317136A (en) Thermostatic gas flow control means
JPS6057083B2 (en) Regulator system
JPS61213437A (en) Control method for water heater
US2932456A (en) Temperature control system and compensated thermostat therefor
US2926297A (en) Temperature compensating means for a generator
JPS5848114A (en) Temperature controller
JPH0322690Y2 (en)
JPS60164807A (en) Temperature controller
JP4344656B2 (en) Method for supplying power to heater for floor heating and current control device for carrying out the method
JPS623447B2 (en)
JPS61289266A (en) Flow amount control of hot-water supplier
JPS6194080A (en) Control device for fixing temperature
JPS6329174B2 (en)
JPH0113816Y2 (en)
JPS58163002A (en) Controller
JPS6154155B2 (en)
SU623194A1 (en) Temperature regulator
JPS61176349A (en) Sauna bath
JPS6235575B2 (en)