JPS5882221A - Optical switching array - Google Patents

Optical switching array

Info

Publication number
JPS5882221A
JPS5882221A JP17959381A JP17959381A JPS5882221A JP S5882221 A JPS5882221 A JP S5882221A JP 17959381 A JP17959381 A JP 17959381A JP 17959381 A JP17959381 A JP 17959381A JP S5882221 A JPS5882221 A JP S5882221A
Authority
JP
Japan
Prior art keywords
substrate
optical switching
switching array
groove
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17959381A
Other languages
Japanese (ja)
Inventor
Hideo Segawa
瀬川 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP17959381A priority Critical patent/JPS5882221A/en
Publication of JPS5882221A publication Critical patent/JPS5882221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes

Abstract

PURPOSE:To form an optical switching array which can be driven with a low voltage and as a high contrast, by forming a common electrode or individual electrodes on a substrate as prescribed. CONSTITUTION:A pair of grooes 14 and 15 having a depth D are formed a proper length apart from each other in parallel on the surface of a substrate 10. A common electrode 12 and individual electrodes 13 are so formed that a pair of wall faces 16a and 16b facing each other of a wall part 16 between grooves 14 and 15 are partial forming faces of these electrodes. In an optical switching array formed in this manner, the effective depth of the electric field generated in the thickness direction of the substrate 10 depends upon the depth D of grooves, and the depth D is set to a proper value to set easily the effective depth of the electric field to a desired value. Thus, the optical switching array which can be driven with a low voltage and has a high contrast is formed.

Description

【発明の詳細な説明】 本発明は電気光学効果全利用した光スイッチンダアレイ
に関し、特に低電圧で駆動可能とし出射光のコントラス
トを高めた光スイツチングアレイに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical switcher array that makes full use of electro-optic effects, and more particularly to an optical switching array that can be driven at low voltage and that enhances the contrast of emitted light.

空間光変調器、光プリンタ等に適用される光スイツチン
グアレイとして、成る種の結晶材料の電気光学効果全利
用したものが公知である。
Optical switching arrays applied to spatial light modulators, optical printers, and the like are known that make full use of the electro-optic effects of various crystalline materials.

これは、例えば1組成# (Pb1−、Laz) (Z
r、−yTi、) 、−,0゜て表わされるペロプスカ
イト結晶構造のセラミック材料(以下、 PLZTと称
す)を使用し、その2次の電気光学効果〔所請、カー(
Kerr )効果〕を利用して元のオン・オフ制御をす
るものでめる(特開昭52−8842)。即ち、平面図
1第1図(b) K 、またそのI−I線による縦断面
図會第1図(a) K示す如<、PLZTからなる基板
1の表面に共通電極2&を形成し、これに対向するよう
に適長離隔させて適長間隔をおいた複数個の個別電極3
at形成し1個別電極3aと共通電極2aとの間に選択
的に直流電圧を印加すると、両者間の基板1の表層部K
iI界が発生し、偏光子により一方向に偏光した入射光
が電界が生成している個別電極3aと共通電極2aとの
間の基板1にその厚み方向に入射した場合に、電気光学
効果により光波の偏波面が90°偏向される。従って。
This is, for example, 1 composition # (Pb1-, Laz) (Z
r, -yTi,), -,0° (hereinafter referred to as PLZT), and its second-order electro-optic effect
(Japanese Patent Application Laid-Open No. 52-8842) uses the Kerr effect to perform the original on/off control. That is, as shown in the plan view 1 (b) K and the vertical cross-sectional view taken along the line I-I in FIG. 1 (a) K, a common electrode 2& is formed on the surface of the substrate 1 made of PLZT, A plurality of individual electrodes 3 are spaced apart by an appropriate length to face this.
When a DC voltage is selectively applied between the 1 individual electrode 3a and the common electrode 2a, the surface layer K of the substrate 1 between the two
When an iI field is generated and incident light polarized in one direction by a polarizer is incident in the thickness direction of the substrate 1 between the individual electrode 3a and the common electrode 2a where an electric field is generated, the electro-optic effect causes The plane of polarization of the light wave is polarized by 90 degrees. Therefore.

出射光の通過塚に偏光子の偏向方向と直角方向の検光子
を設けておくと、電圧全印加した電極間i伝搬してきた
出射光は検光子を通過し、他の出射光は検光子で遮光さ
れ、印加電圧のオン・オフと対応して検光子通過後の光
波がオン・オフされる光スイツチアレイが構成ちれる。
If an analyzer is installed in the direction perpendicular to the direction of polarization of the polarizer at the pass point of the emitted light, the emitted light that has propagated between the electrodes with the full voltage applied will pass through the analyzer, and the other emitted light will pass through the analyzer. An optical switch array is constructed that is shielded from light and turns on and off light waves after passing through an analyzer in response to on and off of applied voltage.

また、第2図(a)(第2図(b)のn−n線による縦
断面図)及び第2図(b)(平面図)に示す光スイツチ
ングアレイは、基板10表面に、櫛歯状の共通電極2b
″fr形成し、その櫛歯部分間に個別電極3bを形成し
てなるものであり、同様に個別電極3bと共通IE&2
bとの間に!圧を印加して両者間の基板1表層部に発生
する電界により光波の偏波面を偏向させるようにしたも
のである。ところが、これらの光スイツチングアレイに
より光波の偏波面を偏向させ光波を実用上十分なコント
ラスト(光波のオンーオフによる強度差)でオンもオフ
制御するためには、高電界全必要とし、このため高電圧
の駆動電源が必要であるという難点がめった。
Further, the optical switching array shown in FIG. 2(a) (vertical cross-sectional view taken along line nn in FIG. 2(b)) and FIG. 2(b) (plan view) has a comb on the surface of the substrate 10. tooth-shaped common electrode 2b
"fr" is formed, and an individual electrode 3b is formed between the comb tooth portions, and similarly, the individual electrode 3b and the common IE&2
Between b! The plane of polarization of the light wave is deflected by the electric field generated in the surface layer of the substrate 1 between the two by applying pressure. However, in order to use these optical switching arrays to deflect the plane of polarization of light waves and control the light waves on and off with a practically sufficient contrast (difference in intensity between on and off light waves), a high electric field is required. The problem was that a voltage driving power source was required.

本発明は以上の点に鑑みなされたものであって、低電圧
で駆動可能であり、またコントラストが高い光スイツチ
ングアレイ全提供することを目的とする。本発明の光ス
イツチングアレイは、光伝送媒1体からなり表面に少く
とも1本の#Iを形成した基板、該基板の表面に前記溝
の長手方向に延長して形成された共通電極、及び該共通
電極から適長離隔しその長手方向が前記溝の長手方向と
直交するように適長間隔?おいて帯状に並列形成された
複数個の個別電極とを有し、前記共通電極又は個別電極
の少くとも一方は前記溝の壁面全その形成面の少くとも
一部としていることを特徴とするものである。この場合
に1前記基板#′i1対の溝を並設してなり、前記共通
電極は前記1対の溝間の壁部の一方の壁面をその形成面
の少くとも一部とし、前記個別it極は他方の壁面をそ
の形成面の少くとも一部とするように構成するとよい。
The present invention has been made in view of the above points, and it is an object of the present invention to provide an optical switching array that can be driven with low voltage and has high contrast. The optical switching array of the present invention includes a substrate comprising one optical transmission medium and having at least one #I formed on its surface, a common electrode formed on the surface of the substrate extending in the longitudinal direction of the groove, and an appropriate distance apart from the common electrode such that the longitudinal direction thereof is perpendicular to the longitudinal direction of the groove? and a plurality of individual electrodes formed in parallel in a strip shape, and at least one of the common electrode or the individual electrodes forms at least a part of the entire wall surface of the groove. It is. In this case, the substrate #'i has a pair of grooves arranged in parallel, the common electrode has one wall surface between the pair of grooves as at least a part of its forming surface, and the common electrode The pole is preferably configured such that the other wall surface forms at least a part of the surface on which it is formed.

第3図(a)、■)は第1図の従来の光スイツチングア
レイの個別電極3a及び共通電極2aの対向領域近傍を
示し、第3図(b)は平面図、第3図(&)はその■−
■線による縦断面図である。個別電極3aと共通電極2
aとの間に直流電圧を印加すると図中矢印にて電気力線
ヲ示す如く電界が発生する。そして、この電界方向に対
し、45に偏向した直線偏光が1図中、白抜矢印にて示
す如く、個別wL極3aと共通を極2aとの間の基板l
にその厚み方向に入射すると、基板1を構成するPLZ
Tのカー効果により、この光波には光学的位相差が生じ
、この位相差が180°(π)である場合に基板1から
の出射光は偏波面が入射光のそれと直角の直線偏光とな
、る。
3(a), ■) shows the vicinity of the opposing region of the individual electrode 3a and the common electrode 2a of the conventional optical switching array of FIG. 1, and FIG. 3(b) is a plan view, and FIG. ) is its ■−
■It is a vertical cross-sectional view taken along lines. Individual electrode 3a and common electrode 2
When a DC voltage is applied between a and a, an electric field is generated as shown by the lines of electric force indicated by the arrows in the figure. Then, as shown by the white arrow in Figure 1, linearly polarized light polarized in the direction of 45 with respect to this electric field direction is transmitted to the substrate l between the individual wL pole 3a and the common pole 2a.
When incident on the substrate 1 in its thickness direction, the PLZ constituting the substrate 1
Due to the Kerr effect of T, an optical phase difference occurs in this light wave, and when this phase difference is 180° (π), the light emitted from the substrate 1 becomes linearly polarized light whose polarization plane is perpendicular to that of the incident light. ,ru.

而して、光学的位相差の大きさtrとすると。Therefore, let the magnitude of the optical phase difference be tr.

Fは下記(1)式にて表わされる。F is expressed by the following formula (1).

r−、jn  do  ・・・・・・・・・−・・・−
・・・・(1)−2π、−0 但し、λ:jt、波の波長 h:電界方向とこれに直交する方向とのPLZTの屈折
率差 do:第3図C1;JK示す如く、電界が形成される有
効深さ 屈折率差−下記(り式の如く表わされる。
r-, jn do ・・・・・・・・・−・−
...(1) -2π, -0 However, λ: jt, wave wavelength h: refractive index difference of PLZT between the electric field direction and the direction perpendicular to this do: As shown in Fig. 3 C1; JK, the electric field The effective depth refractive index difference formed by - is expressed as the following equation.

jn = ” @ n511 R@ E”  −=−−
−・=−(2)但し、カニ PLZTの屈折率 R:力−(Kerr)定数 E:印加電界強度 そして、入射光の強度t−Ifとし、を界Eにより偏波
面が入射光のそれに対し直角に偏向して検光子を通過す
る出射光の強度?Iとすると、工とIiとの関係は下記
(3)式の如くなる。
jn = ”@n511 R@E” −=−−
-・=-(2) However, the refractive index of crab PLZT R: the force-(Kerr) constant E: the applied electric field strength, and the intensity of the incident light is t-If, and the plane of polarization is changed by the field E to that of the incident light. What is the intensity of the outgoing light that is deflected at right angles and passes through the analyzer? If I, then the relationship between I and Ii will be as shown in equation (3) below.

工=IIIIIi−丁・・・・・・・・・・・・・・・
・−・・・・(3)ところで、この検光子通過後の出射
光の強度Iは、Il界Effより生じる光学的位相差r
が大きい程高くなり、従って印加電圧のオン・オフによ
る出射光のコントラストが高まV、換言すれば、より低
値の電界Eで高強度の出射光が得られる。
Engineering=IIIi-Ding・・・・・・・・・・・・・
...(3) By the way, the intensity I of the emitted light after passing through the analyzer is determined by the optical phase difference r caused by the Il field Eff.
The larger the value, the higher the value, and therefore, the contrast of the emitted light becomes higher depending on whether the applied voltage is turned on or off. In other words, high intensity emitted light can be obtained with a lower value of the electric field E.

而して、光学的位相差rの大きさは有効深さdof依存
するが、第3図に示す如く1個別電極3aと共通電極2
aとの間隔fdとすると、基板1内に実効的な電界が形
成される有効深さdOは略々dK等しい。従って、rを
大にするためには電極間隔dを長寸にする必要があるが
、dの長寸化には実際上限界があり、特に、光スイツチ
ングアレイを高密度化した場合けsll極間隔dは10
0μm以下となる。この事情は第2図に示した光スイツ
チングアレイでも同様であ九結局従来の光スイツチング
アレイにおいては。
The magnitude of the optical phase difference r depends on the effective depth dof, but as shown in FIG.
If the distance from a is fd, the effective depth dO at which an effective electric field is formed within the substrate 1 is approximately equal to dK. Therefore, in order to increase r, it is necessary to increase the electrode spacing d, but there is a practical limit to increasing the length of d, especially when increasing the density of the optical switching array. Pole spacing d is 10
It becomes 0 μm or less. This situation is the same in the optical switching array shown in FIG. 2, as well as in the conventional optical switching array.

電界強度E?高値に設定して実甲上必要な光学的位相差
rf得ることとせざるを得なかった。
Electric field strength E? I had no choice but to set it to a high value to obtain the optical phase difference rf necessary for actual armor.

本発明はこのような背景のもとに、印加電圧(従って電
界E)?低値に設定しつつ、実用上十分な光学的位相差
を得るためKは、電輩が形成される有効深さ全長寸にす
る必要があるとの観点に立ってなされたものでおり、以
下、本発明に係る光スイツチングアレイについて具体的
に説明する。第4図(b)はその平面図、第4図(a)
は第4図(b)のIV−IV線による縦断面図、第5図
は本発明の光スイツチングアレイによる光波のオン・オ
フ制御の実施状態の模式図、第6図は本発明の詳細な説
明図である。基板10(第4表わされるPLZTからな
る。なお、x=0゜09゜y=Q、35の場合、即ち、
 Pb/La/Zr/Tiの組成比# 91/9/65
/35−t’ 6 ル場合に、PLZTは2次の電気光
学効果(カー効果)を顕著に示すので。
With this background in mind, the present invention has been developed based on the applied voltage (and therefore the electric field E)? In order to obtain a practically sufficient optical phase difference while setting it to a low value, K was determined from the viewpoint that it is necessary to make the effective depth at which the electric wire is formed the entire length, and the following is shown below. , the optical switching array according to the present invention will be specifically explained. Figure 4(b) is its plan view, Figure 4(a)
is a vertical cross-sectional view taken along line IV-IV in FIG. 4(b), FIG. 5 is a schematic diagram of the implementation state of light wave on/off control by the optical switching array of the present invention, and FIG. 6 is a detailed diagram of the present invention. It is an explanatory diagram. Substrate 10 (composed of PLZT as shown in No. 4. In the case of x=0°09°y=Q, 35, that is,
Composition ratio of Pb/La/Zr/Ti #91/9/65
/35-t' 6 PLZT exhibits a remarkable second-order electro-optic effect (Kerr effect).

この組成比のPLZT ′f使用するのが好ましい。It is preferable to use PLZT'f having this composition ratio.

基板100表面には、深さDの1対の溝14.15を適
長離隔させて相互に平行になるように形成しである。こ
の溝14.15はフォトリソグラフ([よ゛すPLZT
 k HCL等の強酸でエツチングすることによって容
易に形成することができる。
A pair of grooves 14 and 15 having a depth D are formed on the surface of the substrate 100 so as to be parallel to each other and separated by an appropriate length. These grooves 14 and 15 are formed by photolithography ([by PLZT]).
k It can be easily formed by etching with a strong acid such as HCL.

そして、溝14.15間にエツチングされずに残存する
壁部16の1対の対向壁面16a、16bが少くともそ
の形成面の一部となるように夫々共通電極12.個別電
極13?形成する。これら、はいずれもAu等の薄層で
あり、共通電極12け壁面16a、溝14の底面、溝1
4の壁面16a K対向する壁面及び基板10の表面の
一部に溝14の長手方向に沿って形成されている。一方
、個別電極13け平面視で帯状全なし、溝ゾ5の長\ 手方向に適長間隔をおいて複数個並列形成されており、
各個別[t#i13は壁面16b、溝15の底面、溝1
5の壁面16b K対向する壁面及び基板100表面の
一部にその長平方向を溝150長手方向に直交させて形
成逼れている。
The common electrodes 12 and 12 are etched so that a pair of opposing wall surfaces 16a and 16b of the wall portion 16 remaining without being etched between the grooves 14 and 15 become at least a part of the forming surface thereof. Individual electrode 13? Form. These are all thin layers of Au or the like, and include the wall surface 16a of the common electrode 12, the bottom surface of the groove 14, and the groove 1.
4 are formed along the longitudinal direction of the groove 14 on the opposing wall surface and a part of the surface of the substrate 10. On the other hand, 13 individual electrodes are not completely band-shaped when viewed from above, and a plurality of individual electrodes are formed in parallel at appropriate length intervals in the longitudinal direction of the groove 5.
Each individual [t#i13 is the wall surface 16b, the bottom surface of the groove 15, the groove 1
The wall surface 16b of the groove 150 is formed on a portion of the opposing wall surface and the surface of the substrate 100, with its elongated direction perpendicular to the longitudinal direction of the groove 150.

而して、上述の如く構成された光スイツチングアレイに
おいて、共通電極12と個別l!極13との間VC!圧
全圧加印加と、第6図に示す如く、壁部16にはその壁
面16a K形成された共通電極12から、壁面16b
 K形成された個別電極13に向う電界(或はこの逆方
向の電界)が発生する。従って1図中、白抜矢印にて示
す如く、壁部16に対し、共通電極12と個別電極13
との間を通過するように光波全入射させるとこの光波は
電気光学効果を受けてその偏波面が偏向される。従って
、この光スイツチングアレイにより光波のオン・オフ制
御をする場合は、第5図に示す如く、壁部16の表面を
光5波の進行方向(図中、矢印にて示す)に対向させて
、光波が壁部16の表面から基板10の厚み方向に伝搬
するように−jQスイッチングアレイを設置する。
In the optical switching array constructed as described above, the common electrode 12 and the individual l! VC between Kiwami 13! When the total pressure is applied, as shown in FIG.
An electric field (or an electric field in the opposite direction) is generated toward the individual electrode 13 formed with K. Therefore, as shown by the white arrow in Figure 1, the common electrode 12 and the individual electrodes 13
When all of the light waves are made incident so as to pass between them, the light waves are subjected to the electro-optic effect and their plane of polarization is deflected. Therefore, when controlling the light waves on and off using this optical switching array, as shown in FIG. Then, the -jQ switching array is installed so that the light waves propagate from the surface of the wall portion 16 in the thickness direction of the substrate 10.

即ち、ランプ光源21からの光波はスリット23により
絞られて基板lOの壁部16の長手方向に延長する薄厚
O平行ビームとなって壁部16の表面に入射するように
なっており、ランプ光源21とスリット23との間の光
路には偏光子22を設けてあって、ランプ光源21から
の光波全光スイッチングアレイに形成されるべき電界方
向、即ち、基板10の溝14から溝15へ向う方向に対
し、45偏光せしめて基板10の壁部16に入射させる
ようにしである。そして、元スイッチングアレイからの
出射光の通過域には、偏光子22の偏波方向と直交する
偏波方向を通す検光子24を設けてあり、この検光子2
4を通過した光波は集束性の光ファイバアレイ25によ
り、照射面26に照射されるようになっている。
That is, the light wave from the lamp light source 21 is condensed by the slit 23 and becomes a thin parallel beam extending in the longitudinal direction of the wall 16 of the substrate 10, and is incident on the surface of the wall 16, and the lamp light source A polarizer 22 is provided on the optical path between the lamp light source 21 and the slit 23 to direct the light waves from the lamp light source 21 in the direction of the electric field to be formed in the all-optical switching array, that is, from the groove 14 of the substrate 10 to the groove 15. The light is polarized by 45 degrees with respect to the direction and is made to be incident on the wall 16 of the substrate 10. An analyzer 24 is provided in the passband of the light emitted from the original switching array, and the analyzer 24 passes through the polarization direction perpendicular to the polarization direction of the polarizer 22.
The light waves that have passed through the optical fiber array 25 are irradiated onto an irradiation surface 26 by a focusing optical fiber array 25.

ところで、襟数個の個別電極13のうち、電圧が印加さ
れた個別電極13と共通を極12との間の壁部16ff
は第6図に示す如く両電極間Kt界が発生しているから
、偏光子22により電界方向に対し45°傾斜するよう
に細光せしめられた入射光は、この電界発生域を通過し
て電気光学効果により光学的位相差が生じ、偏光子22
と偏波方向が直交する検光子24を通過して光フアイバ
アレイ25により、前記電界発生域に対応する位置の照
射面26に照射される。
By the way, among the several individual electrodes 13, the wall 16ff between the individual electrode 13 to which a voltage is applied and the common pole 12
Since a Kt field is generated between both electrodes as shown in FIG. 6, the incident light that is narrowed by the polarizer 22 so as to be inclined at 45 degrees with respect to the electric field direction passes through this electric field generation region. An optical phase difference occurs due to the electro-optic effect, and the polarizer 22
The light passes through an analyzer 24 whose polarization direction is perpendicular to the direction of polarization, and is irradiated by an optical fiber array 25 onto an irradiation surface 26 at a position corresponding to the electric field generation area.

一方、を圧が印加されていない個別電極13と共通電極
12との間の壁部16に入射した光波は、光学的位相差
が生じる仁となく入射光と同一方向の偏波方向含有して
基板10から出射するので、検光子24を通過せず、従
って、この非電界発生域に対応する位置の照射面26に
は光波が照射されない。このようにして1個別電極13
に対して選択的KIl圧を印加することにより、照射面
26に照射される光波のオン・オフ制御管することがで
きる。
On the other hand, the light waves incident on the wall 16 between the individual electrodes 13 and the common electrode 12 to which no pressure is applied contain the polarization direction in the same direction as the incident light without causing an optical phase difference. Since the light waves are emitted from the substrate 10, they do not pass through the analyzer 24, and therefore, the light waves are not irradiated onto the irradiation surface 26 at the position corresponding to this non-electric field generation area. In this way, one individual electrode 13
By applying a selective KIl pressure to the irradiation surface 26, the light waves irradiated onto the irradiation surface 26 can be turned on and off.

而して1本発明に係る光スイツチングアレイにおいてげ
%#c6図に示す如く、光波の進行方向、即ち基板10
の厚み方向に形成される電界′の有効深さDo#t、溝
14.15の深さD(第4図(IL)参照)に依存し、
溝深さDを適宜設定することにより、電界の有効深さl
)o ?所望の値に容易に設定することができる。従っ
て、高密度の光スイツチングアレイにおいて1個別電極
13と共通W11極12との間隔が小さい場合であって
も1)oは長寸に設定し得るから前記(1)、 (2)
式から明らかな如く、低電力で(即ち、低電界で)極め
て強い光学的位相差r?得ることができ、前記(3)弐
r示す如く、検光子通過後の出射光の強度I#i極めて
高い。このため、光波のオン・オフの際のコントラスト
が高く、また、低電圧で駆動可能である。ちなみに、1
80°の最大位相差(r=π)を生じさせて入射光と直
角な偏波面を有する直線偏向?得るのに必要な印加電圧
Vけ、従来の光スイツチングアレイ(第1図及び第2図
参照)においては1wL極間隔dが80錦光波の波長λ
が0.55μ露とすると、PLZTKついてはR=3−
8 X 10−” (m”/V” ) s n =2−
3であるので、これらの数値と、r−π及びE=v/d
ノ関係を前記(1)、(21式に代入t、テV=98(
iルト)と求められる。一方、本発明に係る光スイツチ
ングアレイ(第4図及び第6図参照)においては、溝の
深場Dt−250μ露とし、電界の有効深さDoがDに
等しいと仮定すると()≧D)。
In the optical switching array according to the present invention, as shown in FIG.
The effective depth Do#t of the electric field ' formed in the thickness direction of the groove 14.15 depends on the depth D of the groove 14.15 (see FIG. 4 (IL)),
By appropriately setting the groove depth D, the effective depth l of the electric field can be increased.
)o? It can be easily set to a desired value. Therefore, even if the distance between one individual electrode 13 and the common W11 pole 12 is small in a high-density optical switching array, 1) o can be set to a long dimension, so (1), (2)
As is clear from the equation, an extremely strong optical phase difference r? at low power (i.e., low electric field) As shown in (3) above, the intensity I#i of the emitted light after passing through the analyzer is extremely high. Therefore, the contrast when the light waves are turned on and off is high, and it can be driven with low voltage. By the way, 1
Linear polarization with a plane of polarization perpendicular to the incident light, giving rise to a maximum phase difference of 80° (r=π)? In conventional optical switching arrays (see Figures 1 and 2), the applied voltage V required to obtain
is 0.55μ, R=3− for PLZTK.
8 X 10-” (m”/V”) s n =2-
3, so these numbers, r-π and E=v/d
(1), (Substituting the relationship t into equation 21, teV=98(
i lt) is required. On the other hand, in the optical switching array according to the present invention (see FIGS. 4 and 6), assuming that the depth field of the groove is Dt-250μ and the effective depth Do of the electric field is equal to D, ()≧D ).

V=55 (/ルト)と求められ、従来に比して極めて
低電圧で同、−の位相差を得ることができる。換言する
と、本発明においては、従来と同一の印加電圧で、従来
に比して極めて大きな位相差が得られ1元スイッチング
の際のコントラストが高い等1本発明の光スイツ゛チン
グアレイは極めて効率が高い〇 以上詳説した如く、本発明によれば、低電圧で駆動可能
であり、コントラストが高い光スイツチングアレイが実
現される。なお1本発明は上記特定の実施例に限定され
るべきものではなく1本発明の技術的範囲内において種
々の変形が可能であることは勿論である。例えば、前記
溝14,15の深さと、前記壁部16の高さとvr1上
記実施例の如く一致させることは必ずしも必要でない。
It is determined that V=55 (/lt), and the same - phase difference can be obtained with an extremely low voltage compared to the conventional method. In other words, in the present invention, with the same applied voltage as in the past, an extremely large phase difference can be obtained compared to the conventional one, and the contrast during one-element switching is high.1 The optical switching array of the present invention is extremely efficient. As described in detail, according to the present invention, an optical switching array that can be driven at low voltage and has high contrast is realized. Note that the present invention is not limited to the above-described specific embodiments, and it goes without saying that various modifications can be made within the technical scope of the present invention. For example, the depth of the grooves 14 and 15 and the height of the wall portion 16 do not necessarily have to match vr1 as in the above embodiment.

また、溝14,15の断面形状は上記実施例の如く矩形
とせず、湾曲させたものであってもよい。更に1溝の数
は上記実施例の如く2本(1対)とすることな(,1本
の溝でも十分効果を奏する。この場合の電極形成は、第
7図に示す如く、共通11E極又は個別電極の少くとも
一方を溝17の壁面18#c形成すればよい。
Further, the cross-sectional shape of the grooves 14 and 15 may not be rectangular as in the above embodiment, but may be curved. Furthermore, the number of grooves in one groove is not two (one pair) as in the above embodiment (although even one groove can have a sufficient effect. In this case, electrode formation is performed using common 11E electrodes as shown in FIG. Alternatively, at least one of the individual electrodes may be formed on the wall surface 18#c of the groove 17.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(m:J及び伽)、第2図(a)及び伽)は従来
の光スイツチングアレイの夫々縦断面図及び平面図。 第3図(a)及び(ロ)は電気光学効果の説明図、第4
図(a)及び(6)は不発明の光スイツチングアレイの
夫々縦断面図及び平面図、第5図は元スイッチングアレ
イによる光波のオン拳オフ制御の実施状態の模式図、第
6図−杜本発明の詳細な説明図。 第7図は本発明の他の実施例を示す模式図である〇 (符号の説明) 1、10−・基 板    21L、 2b、 12 
””共通電極3a、 3b、 13−個別電極  14
.15.17−・・溝16 ・・・壁 部     1
6a、 16b、 18 ・=壁面特許出願人  株式
会社 リ コ − 第1図 第2図
FIG. 1 (m: J and A) and FIG. 2 (A) and A) are a longitudinal sectional view and a plan view, respectively, of a conventional optical switching array. Figures 3 (a) and (b) are explanatory diagrams of the electro-optic effect;
Figures (a) and (6) are a vertical cross-sectional view and a plan view, respectively, of the optical switching array according to the invention, Figure 5 is a schematic diagram of the state in which light wave on-off control is implemented by the original switching array, and Figure 6- Detailed explanatory diagram of Morimoto's invention. FIG. 7 is a schematic diagram showing another embodiment of the present invention.〇(Explanation of symbols) 1, 10-・Substrate 21L, 2b, 12
""Common electrodes 3a, 3b, 13-individual electrodes 14
.. 15.17-...Groove 16...Wall part 1
6a, 16b, 18 = wall patent applicant Rico Co., Ltd. - Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、光伝送媒体からなり表面に少くとも1本の溝を形成
した基板、該基板の表面に前記溝の長手方向に延長して
形成された共通電極、及び該共通[#から適長離隔しそ
の長手方向が前記溝の長手方向と直交するように適長間
隔をおいて帯状に並列形成された複数個の個別電極を有
し、前記共通電極又は個別電極の少くとも一方は前記溝
の壁面tその形成面の少くとも一部としていることYt
@徴とする光スイツチングアレイ・ 2、上記第1項において、前記基板は1対の溝を並般し
てなり、前記共通電極は前記1対の溝間の壁部の一方の
壁面管その形成面の少くとも一部とし、前記個別電極は
他方の壁面をその形成面の少くとも一部としていること
全特徴とする光スイツチングアレイ。
[Claims] 1. A substrate made of an optical transmission medium and having at least one groove formed on its surface, a common electrode formed on the surface of the substrate extending in the longitudinal direction of the groove, and the common electrode [ # has a plurality of individual electrodes formed in parallel in a strip shape at appropriate length intervals so that the longitudinal direction thereof is perpendicular to the longitudinal direction of the groove, and at least one of the common electrodes or the individual electrodes is provided. One side shall be at least a part of the wall surface t of the groove where it is formed.
2. In the above item 1, the substrate has a pair of grooves in parallel, and the common electrode is connected to one of the wall tubes of the wall between the pair of grooves. An optical switching array characterized in that the individual electrodes have the other wall surface as at least a part of the forming surface.
JP17959381A 1981-11-11 1981-11-11 Optical switching array Pending JPS5882221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17959381A JPS5882221A (en) 1981-11-11 1981-11-11 Optical switching array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17959381A JPS5882221A (en) 1981-11-11 1981-11-11 Optical switching array

Publications (1)

Publication Number Publication Date
JPS5882221A true JPS5882221A (en) 1983-05-17

Family

ID=16068435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17959381A Pending JPS5882221A (en) 1981-11-11 1981-11-11 Optical switching array

Country Status (1)

Country Link
JP (1) JPS5882221A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170828A (en) * 1984-02-16 1985-09-04 Matsushita Electric Ind Co Ltd Optical shutter array element
WO1987002149A1 (en) * 1985-09-27 1987-04-09 Eastman Kodak Company Linear light valve arrays having transversely driven electro-optic gates and method of making such arrays
JPS63163814A (en) * 1986-12-26 1988-07-07 Minolta Camera Co Ltd Optical shutter array
JPH01155316A (en) * 1987-12-11 1989-06-19 Minolta Camera Co Ltd Optical shutter array
JPH01229225A (en) * 1988-03-08 1989-09-12 Minolta Camera Co Ltd Optical shutter array
JPH03215823A (en) * 1990-01-20 1991-09-20 Fujitsu General Ltd Manufacture of plzt display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170828A (en) * 1984-02-16 1985-09-04 Matsushita Electric Ind Co Ltd Optical shutter array element
WO1987002149A1 (en) * 1985-09-27 1987-04-09 Eastman Kodak Company Linear light valve arrays having transversely driven electro-optic gates and method of making such arrays
JPS62502783A (en) * 1985-09-27 1987-10-22 イ−ストマン・コダック・カンパニ− Linear light valve array with laterally driven electro-optical gates and method of manufacturing the same
EP0244442B1 (en) * 1985-09-27 1991-08-28 EASTMAN KODAK COMPANY (a New Jersey corporation) Linear light valve arrays having transversely driven electro-optic gates and method of making such arrays
JPS63163814A (en) * 1986-12-26 1988-07-07 Minolta Camera Co Ltd Optical shutter array
JPH01155316A (en) * 1987-12-11 1989-06-19 Minolta Camera Co Ltd Optical shutter array
JPH01229225A (en) * 1988-03-08 1989-09-12 Minolta Camera Co Ltd Optical shutter array
JPH03215823A (en) * 1990-01-20 1991-09-20 Fujitsu General Ltd Manufacture of plzt display device

Similar Documents

Publication Publication Date Title
Yamada et al. Electric‐field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals
TW390965B (en) Electric field controllable beam-directing structures
US5615041A (en) Fabrication of patterned poled dielectric structures and devices
US7839565B2 (en) Optical deflector
JPS62500123A (en) Electro-optical device for scanning multiple light beams and modulating information
JPH10507281A (en) How to manipulate optical energy using polarized structures
US5786926A (en) Electro-optical device having inverted domains formed inside a ferro-electric substrate and electro-optical unit utilizing thereof
Shibaguchi et al. Lead-lanthanum zirconate-titanate (PLZT) electrooptic variable focal-length lens with stripe electrodes
JPS5882221A (en) Optical switching array
US3516727A (en) Multipass interferometric optical modulator
US5291566A (en) Total internal reflection electro-optic modulator for multiple axis and asymmetric beam profile modulation
US5521750A (en) Process for forming proton exchange layer and wavelength converting element
US6470105B2 (en) Bistable light path device
US5748361A (en) Ferroelectric crystal having inverted domain structure
JP5249008B2 (en) Light modulator
JP2603086B2 (en) Optical waveguide device
JPS61118724A (en) Optical shutter array element
JPS60170828A (en) Optical shutter array element
KR20010012874A (en) Electro-optical element, and method of driving and method of manufacturing the same
JPH01161323A (en) Light deflecting means
JPS6035653B2 (en) light modulator
JPH02931A (en) Optical scanning recorder
JP3883613B2 (en) Electro-optic element
JPS6347736A (en) Optical deflecting element
JPS5895321A (en) Optical switching array