JPS5881896A - Aircraft plane made of composite material - Google Patents

Aircraft plane made of composite material

Info

Publication number
JPS5881896A
JPS5881896A JP18066081A JP18066081A JPS5881896A JP S5881896 A JPS5881896 A JP S5881896A JP 18066081 A JP18066081 A JP 18066081A JP 18066081 A JP18066081 A JP 18066081A JP S5881896 A JPS5881896 A JP S5881896A
Authority
JP
Japan
Prior art keywords
composite material
strength
wing
laminate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18066081A
Other languages
Japanese (ja)
Inventor
寿一 岡
池田 多門
戸田 信雄
白岩 正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18066081A priority Critical patent/JPS5881896A/en
Publication of JPS5881896A publication Critical patent/JPS5881896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、航空機の空力特性に適した繊維強化複合材料
製航空機翼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an aircraft wing made of fiber-reinforced composite material suitable for the aerodynamic characteristics of an aircraft.

現在、航空機に用いられる複合材料には、その性質上の
違いから、高強度タイプの複合材料と呼ばれるものと、
高弾性タイプの複合材料と゛呼ばれるものがある。
Currently, there are two types of composite materials used in aircraft, which are called high-strength type composite materials due to their different properties.
There is something called a high elasticity type composite material.

0FRPにおけるこれらは主にその炭素繊維の種類を変
えて得られている。第1表は、A社に“よる炭素繊維を
用いたOFI’LPの性質をそのパンフレットから抜粋
したものであるが、炭素繊維B、O,Dt−用いたもの
が高強度タイプ複合材料、引張弾性率の市いEを用いた
ものが高弾性タイプ複合材料と呼ばれている。
These in 0FRP are mainly obtained by changing the type of carbon fiber. Table 1 shows the properties of OFI'LP using carbon fibers extracted from the pamphlet provided by Company A. Materials using the elastic modulus E are called high elasticity type composite materials.

従来、保合材料を用いて航空機の空力翼面を製作する場
合、外板に用いる一方向複合材料は特に強&特性に優れ
た情合材料、 (以下高強度タイプの複合材料という)
あるいは特に弾性特性に優れた複合材料(たとえば1弾
性率が高いなどの性質を満たすもので以下高強度タイプ
の複合材料という)などのうち一種類のみで統一され1
強度・弾性特性の異なった二種以上の複合材料を併用す
る工夫はされていなかった。
Conventionally, when manufacturing aerodynamic wing surfaces of aircraft using bonding materials, the unidirectional composite material used for the outer skin is a bonding material that is particularly strong and has excellent properties (hereinafter referred to as high-strength type composite material).
Alternatively, only one type of composite material with particularly excellent elastic properties (for example, one that satisfies properties such as a high modulus of elasticity and is hereinafter referred to as a high-strength type composite material) is unified.
No efforts have been made to use two or more composite materials with different strength and elastic properties.

従って9例えば、高強度タイ、グの複合材料を翼全体に
使う場合には強度標定となる翼根部は。
Therefore, for example, when using a high-strength composite material for the entire wing, the strength is determined at the wing root.

強度要求を満足する様に、極層数を決定すれば良い。し
かし外翼部は強度標定上りも、空力弾性特性の要求から
剛性標定となり易く、この部分で高強度タイプの複合桐
材を用いて剛性要求を満たすと2強度的に余剰の大きい
構造と“なりかつ、外翼部で高弾性タイプの複合材料を
用いるよりも重量増となわ、空力弾性特性8%にフラッ
タ等に不利と7なる。この為、更に積層数を増やし剛性
を高める必要性が生じ垂蓋、コストの面で無駄となる欠
点があった。
The number of pole layers may be determined so as to satisfy the strength requirements. However, even if the strength of the outer wing is increased, it tends to be rigid due to the requirements for aeroelastic properties, and if high-strength composite paulownia wood is used in this part to meet the rigidity requirements, a structure with a large surplus in terms of strength will result. In addition, compared to using a high-elasticity type composite material in the outer wing section, the weight is increased, and the aeroelastic properties are 8%, which is disadvantageous for flutter, etc. Therefore, there is a need to further increase the number of laminated layers and increase the rigidity. The flap had the disadvantage of being wasteful in terms of cost.

また、同様に高弾性クイズめ複合材料を翼全体に用い2
強゛度標定となる翼根部で強度を満たすと翼根部が剛性
上余剰の大きい構造となり。
In addition, similarly high elasticity composite material is used for the entire wing.
If the strength is satisfied at the blade root, where the strength is oriented, the blade root becomes a structure with a large surplus in terms of rigidity.

重量、コストの面で無駄となる不具合があった。There were some problems that resulted in waste in terms of weight and cost.

そこで、これらの不具合、欠点を改良するものとして、
従来複合材料の積層方向及び積層枚数を変えて複合材料
の最適化を行なうテーラリング技術と称する施行方法が
あるが、これには特殊電算プログラムを要するなどその
作業が抜く4ν 雑珍不具合があった。
Therefore, in order to improve these defects and shortcomings,
Conventionally, there is a method known as tailoring technology that optimizes composite materials by changing the lamination direction and number of layers, but this method requires a special computer program and has some disadvantages. .

本発明は、前記重量、コストの゛むだをはぶいて強度・
剛性上の要求を効果的に満足し、しかも簡便に最適化が
できる航空機翼を提供すること金目的したものであり+
 nlj記プーラローリング技術と併用すればさらに自
゛効な賃の製作が可能のものである。
The present invention eliminates the waste of weight and cost, and improves strength and
The objective is to provide an aircraft wing that effectively satisfies rigidity requirements and can be easily optimized.
If used in conjunction with the puller rolling technique described in nlj, it is possible to produce even more efficient rolls.

本発明の被合材料製航空機維は強度標定となる翼根部に
高強度タイプの候合材料積層板を。
The aircraft fiber made of the composite material of the present invention has a high-strength type composite material laminate at the wing root, which serves as a strength standard.

剛性標定となる外翼部に関弾性タイプの複合材料積層板
でそれぞれ構成したことを特徴としている。
It is characterized by the fact that the outer wing sections, which provide rigidity, are made of elastic composite material laminates.

以下1図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to one drawing.

第1図は2本発明の一実施例としての複合材料製航空機
翼の積層を示す翼断面の略図であり。
FIG. 1 is a schematic diagram of a wing cross section showing the lamination of two composite material aircraft wings as an embodiment of the present invention.

第2図は第1図の複合材4+積層状態の詳細を示すA部
の拡大図でりる。第3図、第4図、第5図、第6図は、
第2図°における複合材料の積層状態について複合材料
を構成する繊維の並び方を示した真平面略図である。こ
こで00方向とは。
FIG. 2 is an enlarged view of section A showing details of the composite material 4+ stacked state in FIG. 1. Figures 3, 4, 5, and 6 are
FIG. 2 is a schematic true plan view showing the arrangement of fibers constituting the composite material in the laminated state of the composite material in FIG. 2. What is the 00 direction here?

翼のに翼弦での翼根部7から外翼部8への方向であり、
角度については翼前方を正、翼後刃を負とする。第3図
、第4図は、繊維方向が0°方向の高強度タイプ3.高
弾性クイズ4の複合材料の積層板を示したもので、翼に
曲げが加わで。
is the direction from the wing root 7 to the outer wing 8 at the chord of the wing,
Regarding the angle, the front of the wing is positive and the rear edge of the wing is negative. Figures 3 and 4 show high-strength type 3 in which the fiber direction is 0°. This shows a composite material laminate from High Elasticity Quiz 4, with bending applied to the wing.

た時に翼全面に生ずる引張や圧縮の応力(軸力)に対抗
できるように翼の途中で繊維の連続性を保つだめのもの
である。
This is to maintain the continuity of the fibers in the middle of the wing so that it can resist the tensile and compressive stress (axial force) that occurs across the entire surface of the wing.

第5図は、繊維方向が+α0の複合材料の積層板5を示
したもので2強度標定となる翼根部7に高強度タイ・ブ
複合材料1を、剛性標定となる外翼部8に高弾性タイプ
複合材料2を配している。同様に第6図は繊維方向が−
α0の複合材半斗の積層板6を示したもので、翼根部7
に高強度タイプ複合材料1を、外翼部に高弾性クイズ”
複合材料2を配している。
Figure 5 shows a laminate 5 made of a composite material with a fiber direction of +α0, in which the high-strength tie-blade composite material 1 is applied to the blade root part 7, which has two strength orientations, and the high-strength tie-bu composite material 1 is applied to the outer blade part 8, which has rigidity orientation. An elastic type composite material 2 is arranged. Similarly, in Figure 6, the fiber direction is -
This shows the composite material Hanto laminate 6 with α0, and the blade root 7
High-strength type composite material 1 is applied to the outer wing, and high-elasticity quiz is applied to the outer wing.
Composite material 2 is arranged.

このような、各複合材料の積層板3,4,5゜6は、第
2図のように積層されるわけである75;。
The laminated plates 3, 4, and 5°6 of each composite material are laminated as shown in FIG. 2 (75).

積層の中心層には繊維方向O0の高強度タイプ俵合材料
の積層板3を配し、これを中心として鏡面対称となるパ
よう各積層板3.4.5.6を積17する。積層の回数
はうすいところで10〜20回、厚いところで50〜6
0回必要となる。
A laminate plate 3 made of a high-strength type bales material in the fiber direction O0 is placed in the center layer of the stack, and each laminate plate 3, 4, 5, and 6 is stacked 17 in mirror symmetry around this laminate plate. The number of times of lamination is 10-20 times in thin places and 50-6 times in thick places.
Required 0 times.

このようにして、翼面を作製すると1強度標定部の翼根
部には高強度クイズの複合材料の績l−板が、又、剛性
標定部の外翼部には高弾性タイプの複合材料の積層板が
多く用いられてそれぞれ強[1!求、剛性要求を満たす
ため1強度上あるいは剛性上の余剰を憧力小さくできる
In this way, when the wing surface is made, the blade root of the strength locating part is made of a high-strength quiz composite material, and the outer wing part of the rigidity locating part is made of a high-modulus composite material. Many laminates are used, each with a strong [1! In order to meet the demands and rigidity requirements, the surplus in strength or rigidity can be reduced by one.

すなわち1強度標定となる翼根部に高強度タイプの複合
材料積層板を多く用いるため、剛性の無駄をはぶきなが
ら強度を上けられしかも積層数が少なくすむ。また、剛
性標定となる外翼部に高弾性タイプの複合材料積層板を
多く用いるため強度上の無駄を省き剛性をあげることが
できしかも不要な積層数が省ける。特に±αO層に高弾
性タイプの複合材料積層板を用いているので、捩り剛性
が大となり、フラッタ、、クイズ(−ジェンス等の空力
弾性特性を同上させることができる。
In other words, since many high-strength composite material laminates are used in the blade root, which has one strength orientation, the strength can be increased while eliminating wasted rigidity, and the number of laminated layers can be reduced. Furthermore, since a large number of high-modulus composite material laminates are used in the outer wing section, which is used to determine the rigidity, waste in terms of strength can be eliminated, rigidity can be increased, and the number of unnecessary laminated layers can be eliminated. In particular, since a high-elasticity composite material laminate is used for the ±αO layer, torsional rigidity is increased, and aeroelastic properties such as flutter and quizzence can be improved.

なお1本発明の収金材料製航空機翼では必らずしも1枚
の積層板において翼の途中で複合材料を変える必要はな
い。
In addition, in the aircraft wing made of a gold-receiving material according to the present invention, it is not necessarily necessary to change the composite material in the middle of a single laminated plate.

第7図、第8図、第9図、第10図、第11図に示され
る本発明の第二実施例をもって、以下説明する。
A second embodiment of the present invention shown in FIGS. 7, 8, 9, 10, and 11 will be described below.

第7図、第8図、第9図、第10図は1種類のタイプか
らなる複合材料の積層板の真平面略図であり、それぞれ
9は繊維方向が+α0の高強就タイプの複合材料の積層
板、10は繊維□方向が一αOの高強度タイプの複合材
料の積層板、11は繊維方向が+α0の高弾性タイプの
複合材料の積層板、12は繊維方向が−α0の高弾性タ
イプの複合材料の積層板を示している。第11図は。
Figures 7, 8, 9, and 10 are true plane diagrams of laminates made of composite materials of one type, and 9 is a laminate of high-strength type composite materials with a fiber direction of +α0. The board, 10 is a laminate of a high-strength type composite material with a fiber direction of 1αO, 11 is a laminate of a high-elasticity type composite material with a fiber direction of +α0, and 12 is a high-elasticity type laminate with a fiber direction of −α0. A composite laminate is shown. Figure 11 is.

本発明の第二実施例としての複合材料製翼を00方向に
切断したときの断面略図であるが、該図のように、翼根
部7と外翼部8との積層数の違いを利用して外翼部8の
翼端まで層が長く続いている積層の中心層に近い部分に
は高弾性タイプの複合材料積層板4,11.12を多く
用い。
This is a schematic cross-sectional view of a composite material wing according to a second embodiment of the present invention when cut in the 00 direction. High elasticity composite material laminates 4, 11, 12 are used in large numbers in the portion near the center layer of the laminated layer, where the layers continue for a long time up to the blade tip of the outer wing portion 8.

翼の途中までしか必要のない、複合材料の表層部に高強
度タイプの複合材料積層板3,9.10を多く用いても
結果的に同様の効果が得られる。
Even if a large number of high-strength type composite material laminates 3, 9, and 10 are used in the surface layer of the composite material, which is only necessary up to the middle of the wing, the same effect can be obtained as a result.

以上9本発明の複′合材料製の航空機翼を用いることに
より、簡単に強度要求および、フラッタ、ダイバージェ
ンスなどの空力弾性特性に対する剛性要求を満足させる
ことができ; しかも方法は、航空機の空力翼面の他、
複合材料を強/    ・ jr 度、剛性部材として用いるレジャー、スポーツ用品にも
適用可能である。
By using the aircraft wing made of composite material of the present invention, strength requirements and rigidity requirements for aeroelastic properties such as flutter and divergence can be easily satisfied; In addition to the surface,
It can also be applied to leisure and sporting goods that use composite materials as strong and rigid members.

第1表 A社炭素繊維一方向強化複合材の特性Table 1 Characteristics of Company A carbon fiber unidirectionally reinforced composite material

【図面の簡単な説明】[Brief explanation of drawings]

第1図は複合材料製航空機翼面の翼弦方向の縦断面略図
、第2図は2本発明の第一実施例の複合材料の積層状態
を示す第1図の翼断面拡大図、第3図、第4図、第5図
、第6図、第7図。 第8図、第9図、第10図は本発明の実施例の翼を構成
+る繊維強化複合材料の繊維方向及び繊維の種類を示し
た翼積層材の平面略図、第11図は本発明の第二実施例
の翼面の複合材料の積層状態を示す翼幅方向縦断面略図
である。 l:高強度タイプの複合材料積層板(一部)。 2:高弾性タイプの複合材料積層板(一部)。 3:繊維方向が00の高強度タイプ複合材料の積層板、
4:繊維方向が00の高弾性タイプ複合材料の積層板、
5:繊維方向が+α0で高弾性タイプと高強度タイプを
併用した複合材料積層板。 6:繊維方向が−α0で高弾性タイプと高強度。 タイプを併用した複合材料積層板、7:翼根部。 8:外翼部、9:繊維方向が+α0の高強度タイプ複合
材料の積層板、10:繊維方向が−α0の高強度タイプ
複合材料の積層板、11:繊維方向が+α0の高弾性タ
イプ複合材料の積層板。 12:繊維方向が−a0の高弾性タイプ複合材料の積層
板。 萬3図        84閃 萬5図     萬6閉 萬7囚    属8閃
Fig. 1 is a schematic longitudinal cross-sectional view in the chord direction of an aircraft wing surface made of composite material, Fig. 2 is an enlarged cross-sectional view of the wing of Fig. 1 showing the laminated state of composite materials of the first embodiment of the present invention, and Fig. 3 Figures 4, 5, 6, and 7. Figures 8, 9, and 10 are schematic plan views of a wing laminate material showing the fiber direction and type of fiber of the fiber reinforced composite material constituting the wing of the embodiment of the present invention, and Figure 11 is a plan view of the wing laminate material of the present invention. FIG. 3 is a schematic vertical cross-sectional view in the spanwise direction showing the laminated state of composite materials on the blade surface of the second embodiment of the present invention. l: High-strength type composite material laminate (partial). 2: High elasticity type composite material laminate (partial). 3: Laminated board of high strength type composite material with fiber direction 00,
4: Laminated board of high elasticity type composite material with fiber direction 00,
5: Composite material laminate with a fiber direction of +α0 and a combination of high elasticity type and high strength type. 6: Fiber direction is -α0, high elasticity type and high strength. Composite material laminate using both types, 7: Blade root. 8: Outer wing part, 9: Laminate of high-strength type composite material with fiber direction +α0, 10: Laminate of high-strength type composite material with fiber direction -α0, 11: High elasticity type composite with fiber direction +α0 Material laminate. 12: Laminated board of high elasticity type composite material with fiber direction -a0. Man 3 Figure 84 Sen Man 5 Figure Man 6 Close Man 7 Prisoner Gen 8 Sen

Claims (1)

【特許請求の範囲】[Claims] 航空機の翼構造において1強度標定となる翼根部には高
強度タイプの複合材料積層板で、剛性標定となる外翼部
には高弾性タイプの複合材料積層板でそ゛れ埴れ構成し
た゛ことを特徴とする複合材料製航空機翼   ゛
In the aircraft wing structure, the wing root, which is one strength location, is made of a high-strength composite material laminate, and the outer wing, which is a rigidity location, is made of a high-modulus composite material laminate. A composite material aircraft wing featuring
JP18066081A 1981-11-11 1981-11-11 Aircraft plane made of composite material Pending JPS5881896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18066081A JPS5881896A (en) 1981-11-11 1981-11-11 Aircraft plane made of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18066081A JPS5881896A (en) 1981-11-11 1981-11-11 Aircraft plane made of composite material

Publications (1)

Publication Number Publication Date
JPS5881896A true JPS5881896A (en) 1983-05-17

Family

ID=16087082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18066081A Pending JPS5881896A (en) 1981-11-11 1981-11-11 Aircraft plane made of composite material

Country Status (1)

Country Link
JP (1) JPS5881896A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119496A (en) * 1984-11-09 1986-06-06 富士重工業株式会社 Aircraft wing
JPS62157894A (en) * 1985-12-30 1987-07-13 ザ・ボ−イング・カンパニ− Aerodynamic structure by composite structure
JPH0666244A (en) * 1992-08-21 1994-03-08 Mitsubishi Heavy Ind Ltd Windmill vane
US5783174A (en) * 1992-08-13 1998-07-21 The Procter & Gamble Company Photostable sunscreen compositions
WO2019073730A1 (en) * 2017-10-10 2019-04-18 三菱重工業株式会社 Wing and wing design method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119496A (en) * 1984-11-09 1986-06-06 富士重工業株式会社 Aircraft wing
JPS62157894A (en) * 1985-12-30 1987-07-13 ザ・ボ−イング・カンパニ− Aerodynamic structure by composite structure
US5783174A (en) * 1992-08-13 1998-07-21 The Procter & Gamble Company Photostable sunscreen compositions
JPH0666244A (en) * 1992-08-21 1994-03-08 Mitsubishi Heavy Ind Ltd Windmill vane
WO2019073730A1 (en) * 2017-10-10 2019-04-18 三菱重工業株式会社 Wing and wing design method
JP2019069684A (en) * 2017-10-10 2019-05-09 三菱重工業株式会社 Wing, and design method of wing
US11364989B2 (en) 2017-10-10 2022-06-21 Mitsubishi Heavy Industries, Ltd. Wing and wing design method

Similar Documents

Publication Publication Date Title
CN103661918B (en) The composite airplane wings of bonding
JP2538424Y2 (en) Rotary wing aircraft blade
RU2657619C2 (en) Composite laminated panel with reduced angle of cross plies
US10066491B2 (en) Fibre composite component for the rotor blade of a wind turbine
KR101513845B1 (en) Composite structure comprising a stringer with a pad embedded in the recess of a panel and method of transmitting forces
US4108572A (en) Composite rotor blade
US8844872B2 (en) Composite structure
CN105636773B (en) Cohesive and adjustable composite component
US8870120B2 (en) Composite structure
JP5808111B2 (en) Composite structure for aircraft, aircraft main wing and aircraft fuselage provided with the same
JPH08210102A (en) Combined blade
RU2354557C2 (en) Aircraft body (versions)
JPS63317322A (en) Two-stage composite material joint
WO1985001489A1 (en) High strength to weight horizontal and vertical aircraft stabilizer
JPWO2011043346A1 (en) Composite structure, aircraft main wing and aircraft fuselage provided with the same
CN210479007U (en) Light wing of small unmanned aerial vehicle
CN108661945A (en) A kind of fan blade
JPS5881896A (en) Aircraft plane made of composite material
EP2895389B1 (en) Passive load alleviation for aerodynamic lift structures
Librescu et al. General formulation for the aeroelastic divergence of composite swept-forward wing structures
EP3705274A1 (en) Interleaved layer construction and a plank for stiffening a panel
CN110486325A (en) A kind of design method of composite shaft stream blade girder
JPH04215599A (en) Super-lightweight sandwich panel
Stanford et al. Aeroelastic tailoring via tow steered composites
Herencia et al. Local optimisation of long anisotropic laminated fibre composite panels with T shape stiffeners