JPS5881719A - Method and apparatus for automatically supplying solution to multistage liquid tank - Google Patents

Method and apparatus for automatically supplying solution to multistage liquid tank

Info

Publication number
JPS5881719A
JPS5881719A JP56180906A JP18090681A JPS5881719A JP S5881719 A JPS5881719 A JP S5881719A JP 56180906 A JP56180906 A JP 56180906A JP 18090681 A JP18090681 A JP 18090681A JP S5881719 A JPS5881719 A JP S5881719A
Authority
JP
Japan
Prior art keywords
solution
liquid tank
tank
liquid
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56180906A
Other languages
Japanese (ja)
Other versions
JPS6230727B2 (en
Inventor
潔 深谷
克敏 細井
宮本 吉久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagome Co Ltd
Original Assignee
Kagome Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagome Co Ltd filed Critical Kagome Co Ltd
Priority to JP56180906A priority Critical patent/JPS5881719A/en
Publication of JPS5881719A publication Critical patent/JPS5881719A/en
Publication of JPS6230727B2 publication Critical patent/JPS6230727B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は溢流手段で関係付けられた多段の液槽への溶液
の自重流下を最下段の前記液槽の液位の影響を受ける調
整手段によ多制御する多段液槽への溶液自動供給方法及
び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a multi-stage system in which the dead weight flow of a solution into multi-stage liquid tanks related by overflow means is controlled by an adjusting means that is influenced by the liquid level of the liquid tank at the lowest stage. The present invention relates to a method and device for automatically supplying a solution to a liquid tank.

生活環境が複雑化した今日、その反作用的に家庭園芸が
広く一般に行われるようになっているが、この種の家庭
園芸には、比較的狭い設置面積を有効に利用する見地か
ら、植物培地が上下方向に多段で形成されているものが
多く利用されている。
Today's living environment has become more complex, and as a reaction to this, home gardening has become more popular.From the standpoint of making effective use of a relatively small footprint, this type of home gardening requires the use of a plant medium. Many are used that are formed in multiple stages in the vertical direction.

そしてこれらには、これに係る人の多忙な生活と園芸に
不慣れなこととを考慮して、種子の発芽や植物の生育に
不可欠の適当な水分や養分等の含む溶液が多段の植物培
地へ自動供給されるような手段が付加されているものも
ある。
Taking into consideration the busy lives of the people involved and the fact that they are unfamiliar with gardening, a solution containing appropriate moisture and nutrients essential for seed germination and plant growth is placed in a multi-tiered plant medium. Some have additional means for automatic supply.

従来、かかる手段として、ポンプ類を利用するものや(
特開昭53−58342、実開昭55−113053)
、電熱による蒸気化を利用するもの(特公昭55−30
325 )等がある。しかし、溶液を多段の植物培地へ
自動供給するに際し、ポンプ類や電熱手段を用いるのは
エネルギの無駄使いである。
Conventionally, such means have used pumps and (
Japanese Patent Application Publication No. 53-58342, Utility Model Publication No. 55-113053)
, which utilizes vaporization using electric heat (Special Publication Publication 1986-30)
325) etc. However, it is a waste of energy to use pumps or electric heating means when automatically supplying solutions to multi-tiered plant culture media.

一方、植物培地へ溶液を自動供給する手段として、毛管
現象を利用するものがある(実開昭55−12342号
、同じ<55−14421号、同じ<55−17836
5号等)。これらはいずれも、植物培地と溶液の液槽と
を毛管作用のある素材で連結することを基本とし、溶液
の自動供給に際し、特には何らの供給エネルギも必要と
しない点及び、一般の使用者が毛管作用のある何らかの
素材、例えば布地類や紙類等、で簡易に利用し得る点で
優れている。しかし、植物培地が上下方向へ多段に形成
されている場合にこの種の手段を適用するには、毛管現
象による溶液の物理的移動を無理なくシ、多段の植物培
地へ均一に溶液を自動供給することを前提とするとき、
多段の植物培地にあたかも並設されるかのごとき多段の
液槽が別に用意され且つ各々の液槽内の溶液量が常時一
定範囲で保持されていて、しかもかかる保持に際して特
には何らのエネルギも加えることのないようなものが要
求される。
On the other hand, as a means for automatically supplying a solution to a plant medium, there are methods that utilize capillary action (Utility Model Application No. 55-12342, same <55-14421, same <55-17836).
No. 5, etc.). All of these systems are based on connecting the plant culture medium and the solution tank with a material that has capillary action, and do not require any particular supply energy when automatically supplying the solution, and are convenient for general users. It is excellent in that it can be easily used with any material that has capillary action, such as fabrics and papers. However, in order to apply this type of means when the plant culture medium is formed in multiple stages in the vertical direction, it is necessary to automatically supply the solution evenly to the multi-stage plant culture medium without forcing the physical movement of the solution by capillary action. When it is assumed that
Multi-tiered liquid tanks are prepared separately, as if they were arranged in parallel with the multi-tiered plant culture medium, and the amount of solution in each tank is always maintained within a certain range, and in particular, no energy is required to maintain the solution. Something is required that cannot be added.

本発明は、かかる要求に応える多段液槽−\の溶液自動
供給方法及び装置を提供するもので、その目的は、溢流
手段で関係付けられた多段の液槽への溶液の自重流下を
最下段の前記液槽の液位の影響を受ける調整手段によっ
て制御することにより、特には何らのエネルギも加える
ことなく多段の液槽内の溶液量を自動で常時一定範囲に
保持し得るものとしつつ、従来家庭園芸で多く利用され
ている多段の植物培地に使用者が何らかの毛管作用のあ
る素材で簡易に連結使用し得るものとする点にある。
The present invention provides a method and device for automatically supplying a solution to a multi-stage liquid tank that meets such demands, and its purpose is to minimize the dead weight flow of the solution into the multi-stage liquid tank connected by an overflow means. By controlling with an adjusting means that is affected by the liquid level in the lower liquid tank, the amount of solution in the multi-stage liquid tank can be automatically maintained within a constant range at all times without particularly applying any energy. The purpose of this invention is to enable the user to easily connect and use a multi-tiered plant culture medium, which has conventionally been widely used in home horticulture, with some kind of capillary action material.

以下、図面に基づいて本発明の構成を詳細に説明する。Hereinafter, the configuration of the present invention will be explained in detail based on the drawings.

第1図は本発明に係る方法の実施状態を例示する断面略
視図である。上下方向に液槽11.21.31.41.
51が5段で配設され、これら各々の液槽が溢流管12
.22.32.42で関係付けられている。一方、最上
位には偏平で幅広の溶液供給タンク13が設けられ、こ
の溶液供給タンク13の上部はその一部が開放となって
いて、底部には流下口14が穿設され、この流下口14
から溶液供給タンク13内の溶液15が流下管16を介
し自重で最上段の液槽11へ流下するようになっている
FIG. 1 is a schematic cross-sectional view illustrating the implementation state of the method according to the present invention. Liquid tank 11.21.31.41.
51 are arranged in five stages, and each of these liquid tanks is connected to the overflow pipe 12.
.. 22.32.42. On the other hand, a flat and wide solution supply tank 13 is provided at the top, a part of the upper part of this solution supply tank 13 is open, and a flow outlet 14 is bored at the bottom. 14
The solution 15 in the solution supply tank 13 flows down by its own weight to the uppermost liquid tank 11 via a downflow pipe 16.

本発明に係る方法は、溶液の流れが溢流手段で関係付け
られた上下方向へ多段の液槽に溶液を自動供給する方法
であって、最上段の液槽への溶液の自重流下を最下段の
液槽の液位の影響を受ける調整手段により制御するので
ある。図面の場合、かかる調整手段は、最下段の液槽5
1が断面略凹形状に形成され、この凹形状に形成された
一方が流下口14へ連結管26で接続されている状態に
あり、この連結管26の内側においてその下方に浮子1
7が浮遊されるとともにこの浮子17に連杆27を介し
てその上方に弁37が取付けられていて且つこの弁37
が流下口14に着脱して流下口14の開閉をし得るよう
にされていることからなっている。したがって、最下段
の液槽51の液位によって浮子17が上下動し、かかる
上下動の影響を受けて弁37が流下口14を開閉する。
The method according to the present invention is a method for automatically supplying a solution to multi-stage liquid tanks in the vertical direction in which the flow of the solution is related by an overflow means, and the method minimizes the dead weight flow of the solution to the uppermost liquid tank. It is controlled by an adjustment means that is affected by the liquid level in the lower liquid tank. In the case of the drawing, such adjustment means is the lowest liquid tank 5.
1 is formed to have a substantially concave cross section, and one side formed in this concave shape is connected to the downstream port 14 through a connecting pipe 26, and the float 1 is disposed below the connecting pipe 26 inside the connecting pipe 26.
7 is floated, and a valve 37 is attached above the float 17 via a connecting rod 27, and this valve 37
can be attached to and removed from the flow outlet 14 to open and close the flow outlet 14. Therefore, the float 17 moves up and down depending on the liquid level in the lowermost liquid tank 51, and the valve 37 opens and closes the flow port 14 under the influence of this up and down movement.

図面の場合には安全を期してさらに、流下口14が開口
状態にあって溶液15が流下口14から自重流下する際
に連結管26方向へ逆流する不都合を防止して流下管1
6方向のみへ流下するように、流下管16の延長部を含
む位置における連結管26の内周面に、連結管26の中
心軸ともいえる連杆27に向って斜上方へ傾斜筒36が
固定されている。
In the case of the drawing, for safety's sake, the flow pipe 1 is designed to prevent the inconvenience of the solution 15 flowing backwards in the direction of the connecting pipe 26 when the flow port 14 is in an open state and the solution 15 flows down from the flow port 14 under its own weight.
A cylinder 36 is fixed to the inner circumferential surface of the connecting pipe 26 at a position including the extension of the downstream pipe 16 so as to flow downward in only six directions. has been done.

溶液の自動供給開始に際し、先ず水分や養分等の含む溶
液15を溶液供給タンク13に充填する。
When starting the automatic solution supply, first, the solution supply tank 13 is filled with the solution 15 containing water, nutrients, etc.

本発明に係る方法の実施に際しての作業はこれだけであ
る。この状態では、最下段の液槽51も含めて前記各液
槽には溶液15が充填されておらず、浮子17は最低位
にあり、流下口14は開口されている。したがって、溶
液供給タンク13から流下口14及び流下管16を介し
て溶液15が最上段の液槽11へ自重で流下する。液槽
11に溶液15が充填されると、余分の溶液15は溢流
管12を介し2段目の液槽21へ自重で流下する。か。
This is all that is required to carry out the method according to the invention. In this state, each of the liquid tanks including the lowest liquid tank 51 is not filled with the solution 15, the float 17 is at the lowest position, and the flow port 14 is open. Therefore, the solution 15 flows down from the solution supply tank 13 through the flow-down port 14 and the flow-down pipe 16 to the uppermost liquid tank 11 under its own weight. When the liquid tank 11 is filled with the solution 15, the excess solution 15 flows down by its own weight to the second stage liquid tank 21 via the overflow pipe 12. mosquito.

くして溶液15は順次溢流して、液槽11.21.31
.41に充填され、最後に溢流管42を介し最下段の液
槽51へ自重で流下する。液槽51内の溶液15の液位
が上昇すると、これに伴い浮子17が上昇し、さらに連
杆27を介して弁37が上昇する。そして、液槽51内
の溶液15の液位が所定位置に達すると、弁37が流下
口14を閉口し、溶液15の供給が停止される。
Thus, the solution 15 sequentially overflows into liquid tanks 11, 21, and 31.
.. 41, and finally flows down by its own weight via the overflow pipe 42 to the lowest liquid tank 51. When the liquid level of the solution 15 in the liquid tank 51 rises, the float 17 rises accordingly, and the valve 37 further rises via the connecting rod 27. When the liquid level of the solution 15 in the liquid tank 51 reaches a predetermined position, the valve 37 closes the flow port 14 and the supply of the solution 15 is stopped.

使用者が別に有する多段の植物培地と叙上の多段の前記
液槽とを適宜に、何らかの毛管作用のある素材で連結す
ると、各液槽の溶液15は、前記素材及び前記植物培地
を介して植物培地に植付けられている例えば植物に吸収
されたり、又は一部が蒸発したシして消費される。そし
て、かかる消費により最下段の液槽51も含めてその液
位が低下すると、浮子17が下降し、この結果連杆27
を介し弁37が下降して流下口14が開口され、再び溶
液15が前記順序で各液槽に充填される。
When the multi-stage plant culture medium that the user separately has and the above-mentioned multi-stage liquid tank are appropriately connected with some kind of material with capillary action, the solution 15 in each liquid tank is transferred through the material and the plant medium. It is absorbed by, for example, plants planted in a plant medium, or a part of it evaporates and is consumed. When the liquid level including the lowest liquid tank 51 decreases due to such consumption, the float 17 descends, and as a result, the connecting rod 27
The valve 37 is lowered to open the flow port 14, and each liquid tank is again filled with the solution 15 in the above order.

以下はこの繰り返しで、結局、多段の各液槽には常時一
定範囲の溶液15が保持される。
This process is repeated, and eventually a certain range of solution 15 is always held in each multi-stage liquid tank.

第2図は本発明に係る方法の他の実施状態を例示する中
間部省略の断面略視図である。溶液供給タンク13aの
底面には流下口14aを含む筒状凹部14cが形成され
ていて、この筒状凹部14Cには、流下口14aに連通
し得る位置で貫通孔14bの穿設されている筒状体37
aが摺嵌されている。そして、この筒状体37aには、
流下口14aと貫通孔14bとが連通ずる位置で筒状体
37aを停止させるストッパー37bが取り付けられて
いるとともに、重り17bと、最下段の液槽51aの液
位の影響を受ける浮子17aとが垂下されている。最下
段の液槽51aの液位の影響を受けて浮子17aが上下
動し、これに伴って筒状体37aが回転して流下口14
aと貫通孔14bとが連通の着脱を繰シ返し、結局、図
示しない多段の液槽には常時一定範囲の溶液が保持され
るのである。
FIG. 2 is a schematic cross-sectional view with the intermediate portion omitted, illustrating another implementation state of the method according to the present invention. A cylindrical recess 14c including an outlet 14a is formed in the bottom of the solution supply tank 13a, and a through hole 14b is formed in the cylindrical recess 14C at a position communicating with the outlet 14a. Shape 37
A is slid into place. And, in this cylindrical body 37a,
A stopper 37b is attached to stop the cylindrical body 37a at a position where the flow outlet 14a and the through hole 14b communicate with each other. It is hanging down. The float 17a moves up and down under the influence of the liquid level in the lowermost liquid tank 51a, and accordingly the cylindrical body 37a rotates to open the outlet 14.
A and the through hole 14b are repeatedly connected and disconnected, and as a result, a certain range of solution is always held in the multi-stage liquid tank (not shown).

第3図は本発明に係る方法のさらに他の実施状態を例示
する中間部省略の断面略視図である。溶液供給タンク1
3bの底面には流下口14dが穿設されていて、この流
下口14dに弁37cが着脱し得るようになっている。
FIG. 3 is a schematic cross-sectional view with the intermediate portion omitted, illustrating still another implementation state of the method according to the present invention. Solution supply tank 1
A flow port 14d is bored in the bottom surface of the valve 3b, and a valve 37c can be attached to and removed from the flow port 14d.

この弁37cは、連杆27a及び27bを介し、支点2
7cで最下段の液槽51bの液量(すなわち液位)とあ
る種のバランスが維持された重り17cへと関係づけら
れている。最下段の液槽51bの液位の影響を受けて重
り17cが上下動し、これに伴って連杆27b及び27
aを介して弁37cが流下口14aと着脱を繰り返し、
結局、図示しない多段の液槽には常時一定範囲の溶液が
保持されるのである。
This valve 37c is connected to the fulcrum 2 through the connecting rods 27a and 27b.
7c is associated with a weight 17c that maintains a certain balance with the liquid volume (ie, liquid level) in the lowest liquid tank 51b. The weight 17c moves up and down under the influence of the liquid level in the lowest liquid tank 51b, and accordingly, the connecting rods 27b and 27
The valve 37c is repeatedly attached to and detached from the flow port 14a via a,
After all, a certain range of solution is always held in the multistage liquid tank (not shown).

溶液の自動供給に対する、最下段の液槽の液位の影響を
受ける調整手段にはこの他各種がある。
There are various other types of adjustment means that are affected by the liquid level in the lowest liquid tank for automatic solution supply.

しかし、かかる手段を利用する最も好適なものとして、
前記本発明に係る方法の実施に直接使用される、空気圧
バランスを利用した次に説明する装置がある。
However, the most preferred use of such means is
There is a device described below that utilizes pneumatic balance and is directly used to carry out the method according to the invention.

第4図は本発明に係る装置の一実施例を示す断面略視図
である。密閉可能な溶液供給タンク23が最上位に設け
られ、この溶液供給タンク23の下方において、4段の
液槽61.71.81.91が溢流管52.62.72
で関係付けられつつ上下方向へ配設されている。そして
、本実施例では調節コック19を有する流下管46が、
その先端開口部18が最上段の前記液槽61へ位置決め
されつつ他端開口部28が前記溶液供給タンク23の底
側方向に連結され、また制御管56が、その先端開口部
38が最下段の前記液槽91の底部内面よりやや上方に
位置決めされつつ他端開口部48が前記溶液供給タンク
23の上側方向に連結されている〇 本実施例における溶液25の各液槽への溢流状態は前記
第1図の場合と同様である。但し本実施例は、溶液25
の自動供給に対する調整手段として空気圧バランスを利
用している。
FIG. 4 is a schematic cross-sectional view showing one embodiment of the device according to the present invention. A sealable solution supply tank 23 is provided at the top, and below this solution supply tank 23, four stages of liquid tanks 61.71.81.91 are connected to overflow pipes 52.62.72.
They are arranged in the vertical direction while being related to each other. In this embodiment, the downstream pipe 46 having the adjustment cock 19 is
The tip opening 18 of the control tube 56 is positioned to the liquid tank 61 on the uppermost stage, and the other end opening 28 is connected to the bottom side of the solution supply tank 23. The solution 25 is positioned slightly above the inner surface of the bottom of the liquid tank 91 and the other end opening 48 is connected to the upper side of the solution supply tank 23. Overflow state of the solution 25 into each liquid tank in this embodiment is the same as in the case of FIG. 1 above. However, in this example, solution 25
Pneumatic balance is used as a means of regulation for the automatic supply of air.

第5図の(1)〜(3)は溶液の自動供給に対する本実
右側の作用状態を例示する東部略視図である。同図(1
)に例示するように、溶液25の自動供給開始の際には
、溶液25が各液槽に順次充填された後、最後に溢流管
72を介し最下段の液槽91へ自重で流下する。この段
階では、先端開口部38が液槽91内の溶液25の液位
の影響を受けず、空気が先端開口部38から制御管56
を介し前記溶液供給タンク23に吸入され、したがって
溶液供給タン、り23内は減圧状態とならず、溶液25
は自重で流下し続ける。
(1) to (3) of FIG. 5 are schematic views from the east illustrating the operating state of the right side of the main body for automatic supply of solution. The same figure (1
), when starting the automatic supply of the solution 25, the solution 25 is sequentially filled into each liquid tank, and then finally flows down by its own weight to the lowest liquid tank 91 via the overflow pipe 72. . At this stage, the tip opening 38 is not affected by the liquid level of the solution 25 in the liquid tank 91, and air flows from the tip opening 38 to the control tube 56.
The solution 25 is sucked into the solution supply tank 23 through the
continues to flow down due to its own weight.

しかし同図(2)に例示するように、溶液25の流下が
進んで液槽91内の液位が上昇し続けると、先端開口部
38が溶液25内に埋没し、この結果前記空気の吸入が
されなくなると、その後は次第に制御管56内に溶液2
5が吸上げられてその液位が上昇する一方で、前記溶液
供給タンク23内の減圧程度が高くなり、ついには溶液
供給タンク23からの溶液25の自重流下刃と溶液供給
タンク23内の減圧程度がバランスされ、溶液25の流
下が停止される。
However, as illustrated in FIG. 2 (2), as the solution 25 continues to flow down and the liquid level in the liquid tank 91 continues to rise, the tip opening 38 becomes buried in the solution 25, and as a result, the air is sucked in. After that, the solution 2 gradually enters the control tube 56.
5 is sucked up and its liquid level rises, while the degree of depressurization in the solution supply tank 23 increases, and finally the dead weight of the solution 25 from the solution supply tank 23 reaches the lower blade and the depressurization in the solution supply tank 23. The levels are balanced and the flow of solution 25 is stopped.

そして同図(3)に例示するように、前記第1図の場合
と同様、使用者が多段の植物培地へ本実施例を適用し、
最下段の液槽91を含み溶液25が消費されてその液位
が下降すると、先端開口部38と液槽91内の溶液25
の液面とがほぼ同位置になり、空気が吸入され、この結
果溶液供給タンク23内の減圧程度が低くなって、再び
溶液25が流下される。以下はこの繰り返しで、結局、
多段の各液槽には常時一定範囲の溶液25が保持される
0 多段の各液槽に常時一定範囲の溶液が保持されているた
め、使用者が別に有する多段の植物培地と前記各液槽と
を何らかの毛管作用のある素材で連結使用する場合、こ
の際の毛管現象による溶液の物理的移動を無理なくシ、
多段の植物培地へできるだけ均一に溶液を自動供給する
ことができ、しかも各液槽における溶液保持及び各液槽
から多段の植物培地への溶液の供給を全て一貫して特に
は何らのエネルギも加えることなくなし得るのである。
As illustrated in FIG. 1 (3), the user applies this example to a multi-tiered plant culture medium, as in the case of FIG.
When the solution 25 including the lowest liquid tank 91 is consumed and its liquid level decreases, the solution 25 in the tip opening 38 and the liquid tank 91
The liquid level becomes approximately the same as the liquid level, air is sucked in, and as a result, the degree of vacuum in the solution supply tank 23 becomes low, and the solution 25 flows down again. The following is a repetition of this process, and in the end,
Each multi-stage liquid tank always holds a certain range of solution 25. Since each multi-stage liquid tank always holds a certain range of solution 25, the user has a separate multi-stage plant culture medium and each of the liquid tanks. When using a material that has capillary action to connect the two, it is possible to easily prevent the physical movement of the solution due to capillary action.
The solution can be automatically supplied to the multi-tiered plant culture medium as uniformly as possible, and the solution retention in each liquid tank and the supply of the solution from each tank to the multi-tiered plant culture medium are all done consistently without any energy being applied. It can be done without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明に係る方法の各別の実施状態を
例示する断面略視図、第4図は本発明に係る装置の一実
施例を示す断面略視図、第5図(1)〜(3)は第4図
に示す一実施例の作用状態を例示する要部略視図である
。 11.21、・・−191,51a、 51b −液槽
、12.22、・・・、72・・・・溢流管、13.1
3a、 13b、 23 ・−・溶液供給タンク、15
.25・・・・溶液、16.46・・・・流下管、26
・・・・連結管、56・・・・制御管、17.17a 
−浮子、  17b、 17c −重り、27.27a
、 27b ・−連杆、 37.37 c −弁、37
a・・・・筒状体、38・・・・先端開口部、特許出願
人    カゴメ株式会社 代理人 弁理士  入 山 宏 正 第1図     第2図 第3図      第4図 −99=
1 to 3 are schematic cross-sectional views illustrating different implementation states of the method according to the present invention, FIG. 4 is a schematic cross-sectional view showing one embodiment of the apparatus according to the present invention, and FIG. (1) to (3) are schematic views of essential parts illustrating the operating state of the embodiment shown in FIG. 4. 11.21,...-191,51a, 51b -Liquid tank, 12.22,...,72...Overflow pipe, 13.1
3a, 13b, 23 ---solution supply tank, 15
.. 25...solution, 16.46...downflow tube, 26
...Connecting pipe, 56...Control pipe, 17.17a
- Float, 17b, 17c - Weight, 27.27a
, 27b - connecting rod, 37.37 c - valve, 37
a...Cylindrical body, 38...Tip opening, Patent applicant: Kagome Co., Ltd. Agent, Patent attorney Hiroshi Iriyama Figure 1 Figure 2 Figure 3 Figure 4-99=

Claims (1)

【特許請求の範囲】 1 溶液の流れが溢流手段で関係付けられた上下方向へ
多段の液槽に溶液を自動供給する方法にして、最上段の
液槽への溶液の自重流下を最下段の液槽の液位の影響を
受ける調整手段により制御する多段液槽への溶液自動供
給方法。 2最上位に設けられた密閉可能な溶液供給タンクと、 該溶液供給タンクの下方において、上下方向へ配設され
且つ各々が溢流管で関係付けられた多段の液槽と、 先端開口部が最上段の前記液槽へ位置決めされ、他端開
口部が前記溶液供給タンクの底側方向に連結された流下
管と、 先端開口部が最下段の前記液槽の底部内面よりやや上方
に位置決めされ、他端開口部が前記溶液供給タンクの上
側方向に連結された制御管とを供える多段液槽への溶液
自動供給装置。
[Claims] 1. A method in which the solution is automatically supplied to multi-stage liquid tanks in the vertical direction connected by an overflow means, so that the self-weight flow of the solution to the uppermost liquid tank is reduced to the lowermost liquid tank. A method for automatically supplying a solution to a multi-stage liquid tank controlled by an adjustment means that is influenced by the liquid level in the liquid tank. 2. A sealable solution supply tank provided at the top, a multi-stage liquid tank arranged vertically below the solution supply tank and each connected by an overflow pipe, and a tip opening. a down-flow pipe positioned in the liquid tank at the top level and having its other end opening connected to the bottom side of the solution supply tank; and a control pipe whose other end opening is connected to the upper side of the solution supply tank.
JP56180906A 1981-11-11 1981-11-11 Method and apparatus for automatically supplying solution to multistage liquid tank Granted JPS5881719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56180906A JPS5881719A (en) 1981-11-11 1981-11-11 Method and apparatus for automatically supplying solution to multistage liquid tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56180906A JPS5881719A (en) 1981-11-11 1981-11-11 Method and apparatus for automatically supplying solution to multistage liquid tank

Publications (2)

Publication Number Publication Date
JPS5881719A true JPS5881719A (en) 1983-05-17
JPS6230727B2 JPS6230727B2 (en) 1987-07-03

Family

ID=16091366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56180906A Granted JPS5881719A (en) 1981-11-11 1981-11-11 Method and apparatus for automatically supplying solution to multistage liquid tank

Country Status (1)

Country Link
JP (1) JPS5881719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002550A (en) * 1992-01-20 1999-12-14 Fujitsu, Ltd. Magnetic head assembly with ball member for electrically connecting the slider member and the suspension member
JP2009162636A (en) * 2008-01-08 2009-07-23 Nippon Telegr & Teleph Corp <Ntt> Automatic solution feeder
US8452136B2 (en) 2009-10-16 2013-05-28 Nitto Denko Corporation Suspension board with circuit and producing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011140U (en) * 1973-05-25 1975-02-05
JPS5358340A (en) * 1976-11-04 1978-05-26 Kubota Ltd Hydroponic device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011140U (en) * 1973-05-25 1975-02-05
JPS5358340A (en) * 1976-11-04 1978-05-26 Kubota Ltd Hydroponic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002550A (en) * 1992-01-20 1999-12-14 Fujitsu, Ltd. Magnetic head assembly with ball member for electrically connecting the slider member and the suspension member
US6141182A (en) * 1992-01-20 2000-10-31 Fujitsu Limited Magnetic head assembly with contact-type head chip mounting and electrically connecting arrangements
US6229673B1 (en) 1992-01-20 2001-05-08 Fujitsu Limited Magnetic head assembly with contact-type head chip mounting and electrically connecting arrangements
JP2009162636A (en) * 2008-01-08 2009-07-23 Nippon Telegr & Teleph Corp <Ntt> Automatic solution feeder
US8452136B2 (en) 2009-10-16 2013-05-28 Nitto Denko Corporation Suspension board with circuit and producing method thereof

Also Published As

Publication number Publication date
JPS6230727B2 (en) 1987-07-03

Similar Documents

Publication Publication Date Title
US2084005A (en) Auto irrigation system
US3925926A (en) Method and apparatus for water and air culture of plants
JP2003525577A (en) Liquid transfer device and use of said device for water distribution
US3192665A (en) Self-regulatory flower pot
CA2446415C (en) Plant-growing system having an aerator
CN206165374U (en) System for permanent burden pressure irrigation water
US4819375A (en) Aquapot
JPS5881719A (en) Method and apparatus for automatically supplying solution to multistage liquid tank
CN106416964A (en) Constant negative pressure irrigation system
CN206165347U (en) Maintain device of permanent burden pressure irrigation water
CN106332734B (en) Device for maintaining constant negative pressure irrigation
JP2003259735A (en) Water supply apparatus for bottom water supply type planting pot
JPS5881720A (en) Method and apparatus for automatically supplying solution to multistage plant culture medium
JP2000106770A (en) Negative pressure difference irrigation system
US3013950A (en) Culture apparatus
CN108353762A (en) A kind of device for the control irrigation taps that absorbed water using soil negative pressure
CN211122404U (en) Constant-temperature desorption and gas collection device for coal bed gas
CN219323033U (en) Seedling raising tray with nutrient solution conveying mechanism
WO1980002357A1 (en) Method of infiltration irrigation and apparatus therefor
JP2002360072A (en) Apparatus and method for culturing plant
JP4896189B2 (en) Hydroponics equipment
AU669526B2 (en) Liquid drip regulator
JPH0313167Y2 (en)
WO1992006587A1 (en) Watering method and apparatus for plants
RU202644U9 (en) Watering device for potted plants