JPS5880656A - Electrophotographic method - Google Patents

Electrophotographic method

Info

Publication number
JPS5880656A
JPS5880656A JP17949681A JP17949681A JPS5880656A JP S5880656 A JPS5880656 A JP S5880656A JP 17949681 A JP17949681 A JP 17949681A JP 17949681 A JP17949681 A JP 17949681A JP S5880656 A JPS5880656 A JP S5880656A
Authority
JP
Japan
Prior art keywords
photoreceptor
light
layer
laser
electrophotographic method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17949681A
Other languages
Japanese (ja)
Inventor
Koichi Irihara
入原 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP17949681A priority Critical patent/JPS5880656A/en
Publication of JPS5880656A publication Critical patent/JPS5880656A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/06Eliminating residual charges from a reusable imaging member
    • G03G21/08Eliminating residual charges from a reusable imaging member using optical radiation

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)

Abstract

PURPOSE:To obtain an electrophotographic method utilizing a laser printer without dropping charging potential when a photoreceptor is used repeatedly, by irradiating destaticizing light uniformly prior to electrostatic charging of the photoreceptor. CONSTITUTION:The surface of a photoreceptor 10 is electrostatically charged positive by a corona discharger 11 for electrostatic charging and is irradiated with laser light 12 which is modulated according to a printing signal. The latent image is visualized by reversal developing with a developing device 13 and the visualized toner image is transferred on paper 15 by a corona discharger 14 for transfer. A destaticizer 16 irradiates destaticizing light for the purpose of erasing the electric charge remaining on the photoreceptor 10. The residual toner is removed by a cleaning device 17. If a semiconductor laser of 700- 900nm wavelength is used as a laser light source in the stage of forming the latent images, an illuminating device which is cut off >=600nm light is used for the destaticizer 16.

Description

【発明の詳細な説明】 本発明は帯電及び像露光を行うことにより感光体上に静
電潜像を形成する電子写真法にかかり、特に像露光とし
てレーザー光を利用してなるレーザープリンタtこ詔け
る電子写真法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic method of forming an electrostatic latent image on a photoreceptor by performing charging and imagewise exposure, and particularly to a laser printer using laser light for imagewise exposure. Concerning the electrophotographic method that can be taught.

複写機等による電子写真法は、感光体表面を均一に帯電
でせ、その表面に像露光を行い静電潜像を形成した後、
現像及び転写を行い感光体表面に残留するトナー及び電
荷をクリーニング手段及び除電手段にて除去し、感光体
の繰り返木し利用を計っている。このような作像プロセ
スによる電子写真法を利用したものとして複写機以外に
レーザープリンタが−あ−る。
In electrophotography using a copying machine, etc., the surface of a photoreceptor is uniformly charged, image exposure is performed on the surface to form an electrostatic latent image, and then
The toner and charge remaining on the surface of the photoreceptor after development and transfer are removed by cleaning means and static eliminating means, and the photoreceptor can be used repeatedly. In addition to copying machines, there are laser printers that utilize electrophotography using such an image-forming process.

しかしレーザープリンタは、複写機の感光体と同一のも
のをそのまま利用することはできず、例えば第1図に示
す感光体構造を特徴としている。
However, a laser printer cannot use the same photoreceptor as a copying machine as it is, and is characterized by the photoreceptor structure shown in FIG. 1, for example.

図において、導電性の基材/上にSe、5e−Te等か
ら成る多層構造の光導電層コを形成し感光体3が構成さ
れている。上記光導電層コは、層厚が10pm程度のS
e層−7−1と、層厚が6em程度のSe層−一3との
間に層厚が/μm程度の5e−Te層、2−2が介在き
れた三層構造である。
In the figure, a photoreceptor 3 is constructed by forming a multilayered photoconductive layer made of Se, 5e-Te, etc. on a conductive base material. The photoconductive layer has a layer thickness of about 10 pm.
It has a three-layer structure in which a 5e-Te layer 2-2 with a layer thickness of about /μm is interposed between an e layer-7-1 and a Se layer-13 with a layer thickness of about 6em.

第1図のし°−ザープリンタ用の感光体は、各層の役割
がはっきりとしており、Se層、2−3は帯電された電
荷を保持する層、5e−Te層−一2はレーザー光によ
り反応して電荷を発生する層、Se層、2−1は電荷を
輸送するための層である。
In the photoreceptor for a laser printer shown in Fig. 1, the role of each layer is clear. The Se layer 2-1, which is a layer that reacts to generate charges, is a layer for transporting charges.

上記Se−TeMiiコー2は、照射されるレーザー光
を吸収し電荷を発生するためにTeの含有量が加減され
ている。例えば半導体レーザーは、高指向性の単色光と
いう特徴をも−ており、(GaA))Asでは7θθn
m〜700nmの範囲の波長である。つまり、(GaA
))As半導体レーザーを用いる場合、5e−Te層コ
コ−2、Teの含有量を増加させて700nm〜900
nmに感度を有するように波長増感されている。
In the Se-TeMii Co2, the content of Te is adjusted in order to absorb the irradiated laser light and generate electric charge. For example, semiconductor lasers are characterized by highly directional monochromatic light, and (GaA)) As is 7θθn
The wavelength ranges from m to 700 nm. In other words, (GaA
)) When using an As semiconductor laser, the 5e-Te layer coco-2 has a thickness of 700 nm to 900 nm by increasing the Te content.
It is wavelength sensitized to have sensitivity in nm.

そこで、第1図に示す感光体3を用いた場合の作像プロ
セスを説明すれば、まず、第2図(、)に示す如く感光
体3の表面をコロナ放電装置を用いて正(+)に帯電さ
せる。この時、正の電荷はSe層、2−3に保持され、
負(−)の電荷は導電性の基材/を通してSe層−−l
の界面に誘起される。
Therefore, to explain the image forming process when using the photoreceptor 3 shown in FIG. 1, first, as shown in FIG. to be charged. At this time, positive charges are held in the Se layer, 2-3,
The negative (-) charge is transferred through the conductive substrate/Se layer--l
is induced at the interface of

この状態で、レーザー光を照射するとgJ2図(b)に
示す如< S e −T e jil 、2− zに正
・負の各電荷が発生する。つまり、レーザー光は上部の
Se層−一3を通過し、5e−Te層、2−2で吸収さ
れ夫々の電荷が発生する。そのため5e−Te層、2−
2で発生した正の電荷は、−表面と基材lとの間の帯電
電荷の電界により、電荷輸送層のSe層、2−1を通し
て誘起された負の電荷と結合し、負の電荷は電荷保持層
の5eliJ−3上の正電荷tこ引き寄せられその電荷
と結合する。そのため、レーザー光が照射された領域の
感光体表面の電位が第一図(C)に示す如く大きく減衰
し、感光体上にレーザー光の早射に応じた静電潜像が形
成される。
In this state, when a laser beam is irradiated, positive and negative charges are generated at <S e -T e jil , 2-z, as shown in Fig. 2 (b). That is, the laser beam passes through the upper Se layer-13, is absorbed by the 5e-Te layer and 2-2, and generates respective charges. Therefore, the 5e-Te layer, 2-
The positive charge generated in 2 combines with the negative charge induced through the Se layer of the charge transport layer, 2-1, by the electric field of the charged charge between the surface and the base material l, and the negative charge is The positive charge t on the charge retention layer 5eliJ-3 is attracted and combined with that charge. Therefore, the potential of the surface of the photoreceptor in the region irradiated with the laser beam is greatly attenuated as shown in FIG.

この静電潜像は、現像装置にて可視像化された後に、用
紙に転写される。しかし、上記静電潜像は、一般的な複
写機による静電潜像とは異なり、潜像部の電位が低いた
め、現像装置にて反転現像−が行なわれる。そして、感
光体表面をこ残留するトナー及び電荷は、クリーニング
工程、除電工程を経て、感光体は次の作像tこ備えられ
繰り返えし使用される。上記除電工程は一般的にぽ、白
色光源を用いて感光体を均一1こ照射している。上述の
様tこ、レーザープリンタ用の感光体は、第1図に示す
如き三層構造であることから、次に示す欠点を有してい
る。
This electrostatic latent image is visualized by a developing device and then transferred onto paper. However, unlike the electrostatic latent image produced by a general copying machine, the electrostatic latent image has a low potential at the latent image portion, so that reversal development is performed in a developing device. The toner and charges remaining on the surface of the photoreceptor are then removed through a cleaning process and a charge removal process, and the photoreceptor is prepared for the next image formation and used repeatedly. In the static elimination step, the photoreceptor is generally uniformly irradiated once using a white light source. As mentioned above, since the photoreceptor for laser printers has a three-layer structure as shown in FIG. 1, it has the following drawbacks.

レーザー光のような例えば1100n以上の波長による
光源を用い、帯電、露光を繰り返した(マルチコピーの
)場合、5e−Te層、2−2のTeの含有差を増加δ
せたため、その層内での暗電流の増加(暗減衰)がはげ
しくなる。そのため帯電工程にて帯電を行っても、暗電
流のため帯電電荷が少なくなる。これは、像露光tこよ
るレーザー光にて5e−Te層、2−2内に生じた正又
は負の電荷は、全て帯電工程による帯電電荷と結合する
ことなく、一部の電荷が5e−Te層、2−2内にトラ
ップされる。このトラップされる電荷がし株 一ザー光の繰り返し使用により俸々に増加する。
When charging and exposure are repeated (multi-copying) using a light source with a wavelength of 1100 nm or more, such as a laser beam, the difference in Te content in the 5e-Te layer and 2-2 increases δ
As a result, the increase in dark current (dark decay) within that layer becomes significant. Therefore, even if charging is performed in the charging step, the amount of charge will be reduced due to dark current. This is because all the positive or negative charges generated in the 5e-Te layer 2-2 by the laser beam due to image exposure do not combine with the charges caused by the charging process, and some of the charges are 5e-Te. Trapped within the Te layer 2-2. This trapped charge increases rapidly as the light is repeatedly used.

上記5e−TeiiJ−2でトラップされた電荷は、次
の均一帯電による高電界に励起され、トラップ状1−が
解かれ帯電電荷と結合する(暗電流の)ために、帯電電
位(帯電能)が低下する。
The charges trapped in the above 5e-TeiiJ-2 are excited by a high electric field due to the next uniform charging, and the trap 1- is released and combines with the charged charges (dark current), so that the charging potential (charging ability) decreases.

帯電電位が低下すれば、露光を行1てもレーザー光が照
射された部分の電位もあまり低下せず、コントラストが
小さくなり、像のカブリ等が生じ鮮明な像が得られなく
なる。除電工程において白色光を照射するため、5e−
Te層、2−2へも光が照射して電荷が発生することで
、残留電荷と結合することで感光体の除電を行っている
。しかしながら、5e−T’e層、2−2内にトラップ
されるせていく訳である。
If the charged potential decreases, the potential of the portion irradiated with the laser beam will not decrease much even after the first exposure, and the contrast will decrease, causing image fogging and the like, making it impossible to obtain a clear image. In order to irradiate white light in the static elimination process, 5e-
The Te layer 2-2 is also irradiated with light to generate charges, which are combined with residual charges to eliminate static from the photoreceptor. However, it is trapped in the 5e-T'e layer, 2-2.

本発明は上述の如く感光体を繰り返し使用した場合、暗
電流をできるだけ少なくし、帯電電位を低下させること
のないレーザープリンタによる電子写真法を提供するも
のである。
The present invention provides an electrophotographic method using a laser printer in which the dark current is minimized and the charging potential does not decrease when the photoreceptor is repeatedly used as described above.

本発明は特に感光体を帯電、露光、現像、転写、クリー
ニング及び除電の各工程を備え、感光体の除電に特徴を
有した電子写真法であって、この除電工程にて感光体を
再使用する際に、光導電層の暗電流を押え、次の帯電電
位の低下を防止するものである。
In particular, the present invention is an electrophotographic method that includes steps of charging, exposing, developing, transferring, cleaning, and eliminating static electricity from a photoconductor, and is characterized in that it eliminates static electricity from the photoconductor, and the photoconductor is reused in this static elimination process. In this case, the dark current in the photoconductive layer is suppressed to prevent the subsequent charging potential from decreasing.

以下図面に従って本発明による電子写真法を詳細に説明
する。第3図は本発明による電子写真法の作像プロセス
を示す図である。図中10は第1図に示す如き構造の感
光体、//は感光体10の表面を均一に正に帯電するた
めの帯電用コロナ放電装置、7.2はプリント信号に応
じて変調され感光体を照射するレーザー光、/3は静電
潜像を可視化するために反転現像を行う現像装置、/グ
は用紙/jに可視化されたトナニ像を転写するための転
写用コロナ放電装置、/Zは本発明における除電装置で
あ−て、感光体ioに残留する電荷を除電するため除電
光を照射する。又、/2は残留トナーを除去するクリー
ニング装置である。この図eこは示していないが、用紙
15は転写工程後に感光体より剥離され定着部を通して
トナー像が定着されプリントアウトされる。
The electrophotographic method according to the present invention will be explained in detail below with reference to the drawings. FIG. 3 is a diagram showing the image forming process of the electrophotographic method according to the present invention. In the figure, reference numeral 10 denotes a photoreceptor having a structure as shown in FIG. Laser light irradiates the body, /3 is a developing device that performs reversal development to visualize the electrostatic latent image, /g is a transfer corona discharge device for transferring the visualized image onto paper /j, / Reference numeral Z denotes a static eliminating device in the present invention, which irradiates static eliminating light to eliminate charges remaining on the photoreceptor io. Further, /2 is a cleaning device for removing residual toner. Although not shown in this figure, the paper 15 is peeled off from the photoreceptor after the transfer process, passes through a fixing section, the toner image is fixed, and the paper is printed out.

この第3図の作像プロセスに右いて、レーザー光源とし
て、700nm〜りθOn mの範囲の波長である半導
体レーザーを用いた場合、特に除電装置/2は、110
0n以上の波長の光をカットした照明装置を用いている
。例えば白色光源にブルーフィルタを用いて、1100
n以上をカットし、感光体10を転写工程後に照射する
。除電装置/lは、上記の如き1100n以上をカット
tた光を感光体10に照射しており、この光は光導電層
コの電荷保持層、2−3で光吸収されこの層で電荷を発
生させる。これにより感光体表面に残留する電荷(正)
は、電荷保持層−一3で発生した電荷(負)を結合し、
除電さむることになる。
In the image forming process shown in FIG. 3, when a semiconductor laser having a wavelength in the range of 700 nm to θOn m is used as the laser light source, the static eliminator/2 has a wavelength of 110 nm.
A lighting device that cuts off light with wavelengths of 0n or longer is used. For example, if you use a blue filter as a white light source,
n or more is cut, and the photoreceptor 10 is irradiated after the transfer process. The static eliminator irradiates the photoreceptor 10 with light cut at 1100 nm or more as described above, and this light is absorbed by the charge retention layer 2-3 of the photoconductive layer, and the charge is stored in this layer. generate. This leaves a charge (positive) on the surface of the photoreceptor.
combines the charges (negative) generated in the charge retention layer-13,
It will take a while to remove the static electricity.

上述の様に、上、記除電装置t/Jの光照射により感光
体ioの残留電荷が除電され、次のクリーニング装置/
7にて感光体10の表面がクリーニングされ次の像形成
に備えられる。ここで、光導電層コの5e−Te層−一
2は、除電光の照射によりその光を吸収することなく電
荷発生は生じず、暗電流の増加が押えられる。即ち、従
来では感光体IOの残留を除去するために、除電光とし
て白色光源がそのまま利用され、感光体/θを照射して
いた。そのため、5e−Te層、2−2にも電荷が発生
し、レーザー光の繰り返し使用をこより暗電流を増加さ
せることになる。しかし、本発明の如く、Se層、2−
3内で電荷を発生させ除電させることで、5e−Te層
、2−2での暗電流の増加を押えており、次の帯電工程
での帯電能の低下を押えることができる。上記Se層コ
コ−は、5e−Te層、2−2に比ベレーザー光又は除
電光等を照射し帯電、露光を繰り返し行っても暗電流の
増加は非常に少なく、安定した特性を示す。従−て、除
電光を照射し感光体IOの電荷を除電させ、帯電。
As mentioned above, the residual charge on the photoreceptor io is removed by the light irradiation from the above-mentioned static eliminator t/J, and the remaining charge is removed by the next cleaning device/J.
At step 7, the surface of the photoreceptor 10 is cleaned and prepared for the next image formation. Here, the 5e-Te layer 1-2 of the photoconductive layer does not absorb the light when irradiated with the neutralizing light, so no charge is generated, and an increase in dark current is suppressed. That is, conventionally, in order to remove the residue on the photoreceptor IO, a white light source was used as it is as static elimination light to irradiate the photoreceptor /θ. Therefore, charges are generated in the 5e-Te layer 2-2, and dark current increases due to repeated use of laser light. However, as in the present invention, the Se layer, 2-
By generating and removing charges in 3, an increase in dark current in the 5e-Te layer 2-2 is suppressed, and a decrease in charging ability in the next charging process can be suppressed. Compared to the 5e-Te layer and 2-2, the Se layer here exhibits stable characteristics with very little increase in dark current even when charging and exposure are repeated by irradiating laser light or neutralizing light. Therefore, the charge on the photoreceptor IO is removed by irradiating the charge removal light, thereby charging the photoreceptor IO.

露光を繰り返し行−ても、Se層、2−3での暗電流に
よる帯電能の低下はほとんど生じず、5e−Te層、2
−2の光疲労を押え、感光体10の繰り返し使用を可能
にできる。
Even if exposure is repeated, there is almost no decrease in charging ability due to dark current in the Se layer, 2-3, and the 5e-Te layer, 2
-2 optical fatigue can be suppressed and the photoreceptor 10 can be used repeatedly.

上記除電光、tAは、−例として白色光源をブル−フイ
ルターを用いて1100n以上の光をカットしたものに
ついて述べたが、要は56−Te層ココ−2こ吸収され
る光を照射しないようにす柑ばよく、少なくとも110
0n〜11000nの波長をカットした光を用いればよ
い。又、除電装置/lは、第3図に示す位置に配置する
ことに限定されるものではなく、少なくとも帯電工程/
/にて感光体IOを均一帯電する以前に配置すればよい
The above static elimination light, tA, was described using a white light source with a blue filter to cut out light of 1100 nm or more, but the point is to avoid irradiating light that is absorbed by the 56-Te layer. Nisukan is good, at least 110
It is sufficient to use light whose wavelength is cut from 0n to 11000n. Furthermore, the static eliminator/l is not limited to being placed at the position shown in FIG.
It is sufficient to place the photoreceptor IO before it is uniformly charged at /.

次に実施例について記載する。Next, examples will be described.

・実施例/ 作像プロセスとしては第3図に示すものを用い、除電装
置/gの光源に、/コV、200mAの東芝ヒユーズタ
イプの電球10個を使用し、−個直列に接続したものを
、j組並列に接続しこれに−F(V)の電圧を印加する
。そして、この光源による光を東芝色ガラスフィルター
、単色シリーズフィルター(v−y、z>又は(B −
yl)を通した除電光を用い、マルチコピーを行った。
・Example/ The image forming process shown in Fig. 3 was used, and the light source of the static eliminator/g was 10 Toshiba fuse type light bulbs of /coV and 200 mA, which were connected in series. are connected in parallel in j sets and a voltage of -F(V) is applied to them. Then, the light from this light source is filtered through a Toshiba colored glass filter, monochromatic series filter (v-y, z> or (B-
Multi-copying was performed using static eliminating light that passed through the yl).

上記の除電光を用いることで、コロナ放電装置//によ
る感光体′10へ帯電電位の変動が押えられ、常に鮮明
な画像を得るどとができた。
By using the above-mentioned neutralizing light, fluctuations in the potential charged on the photoreceptor '10 by the corona discharge device// were suppressed, making it possible to always obtain clear images.

実施例コ 作像プロセスとしては実施例/と同様第3図のものを用
いる。そして、除電光の光源としては、ピーク波長が4
1 / 、f n mの青色発光である東芝冷陰極螢光
ランプ(F、L、2G−T)を用いる。このランプを第
7図に示す如<h、c、10ov電源を、昇圧トランス
コθを通して5oovに昇圧した後、410にΩ−。5
0にΩ/Wのパリストコ/を介して点燈させる。この螢
光ランプを感光体70表面より約/畑〜/θ1の距離を
隔てて配置し、マルチコピーを行った。
Example 3 As the image forming process, the one shown in FIG. 3 is used as in Example. As a light source for static elimination light, the peak wavelength is 4.
A Toshiba cold cathode fluorescent lamp (F, L, 2G-T), which emits blue light of 1/, f nm, is used. This lamp is as shown in FIG. 5
The light is turned on via the Ω/W Pariscoder at 0. This fluorescent lamp was placed at a distance of approximately /field to /θ1 from the surface of the photoreceptor 70, and multi-copying was performed.

この場合、コロナ放電装置//による帯電後の表面電位
は、はとんど変動せず安定していた。
In this case, the surface potential after charging by the corona discharge device was stable with almost no fluctuation.

そして、常にカブリの:′ない鮮明な画像を得ることが
できた。
And I was always able to obtain clear images with no fog.

以上説明した様に本発明の電子写真法tこよれば除電工
程において、レーザー光の波長をカットした除電光を用
いて行うことにより、レーザー光の照射により発生した
電荷のトラップによる暗電流の増加を押えることができ
、感光体表面を常に均一に安定した帯電を行うことがで
き、カブリ等のない鮮明な画像を得ることができる。
As explained above, in the electrophotographic method of the present invention, in the static elimination step, by using static elimination light whose wavelength is cut from laser light, dark current increases due to trapping of charges generated by laser light irradiation. The surface of the photoreceptor can be uniformly and stably charged at all times, and clear images without fog can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレーザープリンタによる感光体構造の一興体例
を示す断面図、第一図(、) (b) (c)はレーザ
ープリンタの感光体による像形成を説明するために供す
る図、・第3図は本発明の電子写真法による作像プロセ
スを示す図、第7図は本発明にかかる除電光用のランプ
駆動の一例を示す駆動回路図である。 /:導電性基材、−二元導電層、 2−1:Se層(電荷輸送層)、 M! 2:5e−Te層(電荷発生層)1.2−3:S
e層(電荷保持層)、/θ:感光体、//:帯電用コロ
ナ放電装置、/、2:レーザー光、/3:現像装置、/
り:転写用コロナ放電装置、7g:除電装置、/2:ク
リーニング装置。 茹 I 閥 42 図 jQ−を 績4 図 第 3 図
Figure 1 is a cross-sectional view showing an example of a photoreceptor structure using a laser printer, Figures 1 (,) (b) and (c) are diagrams provided to explain image formation by the photoreceptor of a laser printer, and Figure 3. The figure shows an image forming process by the electrophotographic method of the present invention, and FIG. 7 is a drive circuit diagram showing an example of driving a lamp for static elimination light according to the present invention. /: Conductive base material, - binary conductive layer, 2-1: Se layer (charge transport layer), M! 2:5e-Te layer (charge generation layer) 1.2-3:S
e layer (charge retention layer), /θ: photoreceptor, //: charging corona discharge device, /, 2: laser light, /3: developing device, /
ri: corona discharge device for transfer, 7g: static eliminator, /2: cleaning device. Boiling I 42 Figure jQ- 4 Figure 3

Claims (1)

【特許請求の範囲】 1、 感光体に対し、帯電、レーザー光による露光を行
い、感光体上に静電潜像を形成するレーザープリンタに
よる電子写真法において、上記感光体を帯電する点前に
レーザー光の波長より短い波長を有した除電光を感光体
に均一照射し、上記帯電、レーザー光による露光を行い
、感光体の繰り返し使用を行うことを特徴とする電子写
真法。 2、感光体は電荷保持層、電荷発生層、電荷輸送層を順
に積層してなる構造を特徴とする特許請求の範囲第1項
記載の電子写真法。 3、除電光は感光体の電荷保持層に吸収される波長の光
であることを特徴とする特許請求の範囲第2項記載の電
子写真法。 4、除電光は白色光源を用いレーザー光と同等の波長を
カットするフィルターを通してなる特許請求の範囲第1
項又は第2項又はgJ3項記載の電子写真法。
[Claims] 1. In an electrophotographic method using a laser printer in which a photoreceptor is charged and exposed to laser light to form an electrostatic latent image on the photoreceptor, before the photoreceptor is charged. An electrophotographic method characterized in that a photoreceptor is uniformly irradiated with static eliminating light having a wavelength shorter than that of a laser beam, and the photoreceptor is charged and exposed to laser light, and the photoreceptor is repeatedly used. 2. The electrophotographic method according to claim 1, wherein the photoreceptor has a structure in which a charge retention layer, a charge generation layer, and a charge transport layer are laminated in this order. 3. The electrophotographic method according to claim 2, wherein the static eliminating light has a wavelength that is absorbed by the charge retention layer of the photoreceptor. 4. The static elimination light is a white light source and is passed through a filter that cuts wavelengths equivalent to laser light.
The electrophotographic method described in Section 2 or Section 2 or Section gJ3.
JP17949681A 1981-11-06 1981-11-06 Electrophotographic method Pending JPS5880656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17949681A JPS5880656A (en) 1981-11-06 1981-11-06 Electrophotographic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17949681A JPS5880656A (en) 1981-11-06 1981-11-06 Electrophotographic method

Publications (1)

Publication Number Publication Date
JPS5880656A true JPS5880656A (en) 1983-05-14

Family

ID=16066833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17949681A Pending JPS5880656A (en) 1981-11-06 1981-11-06 Electrophotographic method

Country Status (1)

Country Link
JP (1) JPS5880656A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467609A2 (en) * 1990-07-16 1992-01-22 Minnesota Mining And Manufacturing Company Method for repeated electrical charging of a photoconductor layer and corresponding apparatus
US8323862B2 (en) 2008-07-25 2012-12-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8440377B2 (en) 2009-11-26 2013-05-14 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8445168B2 (en) 2009-11-26 2013-05-21 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8455163B2 (en) 2009-11-27 2013-06-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8465891B2 (en) 2009-11-17 2013-06-18 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8507170B2 (en) 2008-07-25 2013-08-13 Canon Kabushiki Kaisha Image-forming method and image-forming apparatus
US8630558B2 (en) 2009-11-25 2014-01-14 Canon Kabushiki Kaisha Electrophotographic apparatus having an electrophotgraphic photosensitive member with an amorphous silicon carbide surface layer
US8758971B2 (en) 2008-12-26 2014-06-24 Canon Kabushiki Kaisha Image-forming method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248324A (en) * 1975-10-14 1977-04-18 Eastman Kodak Co Control device for electrophotographic duplicator
JPS54138333A (en) * 1978-04-20 1979-10-26 Sony Corp Processing circuit for carrier chrominance signal
JPS55100588A (en) * 1979-01-26 1980-07-31 Ricoh Co Ltd Fatigue preventive method of electrophotographic receptor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248324A (en) * 1975-10-14 1977-04-18 Eastman Kodak Co Control device for electrophotographic duplicator
JPS54138333A (en) * 1978-04-20 1979-10-26 Sony Corp Processing circuit for carrier chrominance signal
JPS55100588A (en) * 1979-01-26 1980-07-31 Ricoh Co Ltd Fatigue preventive method of electrophotographic receptor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467609A2 (en) * 1990-07-16 1992-01-22 Minnesota Mining And Manufacturing Company Method for repeated electrical charging of a photoconductor layer and corresponding apparatus
US8323862B2 (en) 2008-07-25 2012-12-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8507170B2 (en) 2008-07-25 2013-08-13 Canon Kabushiki Kaisha Image-forming method and image-forming apparatus
US8685611B2 (en) 2008-07-25 2014-04-01 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8758971B2 (en) 2008-12-26 2014-06-24 Canon Kabushiki Kaisha Image-forming method
US8465891B2 (en) 2009-11-17 2013-06-18 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8630558B2 (en) 2009-11-25 2014-01-14 Canon Kabushiki Kaisha Electrophotographic apparatus having an electrophotgraphic photosensitive member with an amorphous silicon carbide surface layer
US8440377B2 (en) 2009-11-26 2013-05-14 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8445168B2 (en) 2009-11-26 2013-05-21 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
US8455163B2 (en) 2009-11-27 2013-06-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus

Similar Documents

Publication Publication Date Title
JPS5880656A (en) Electrophotographic method
JPS63314579A (en) Image forming device
JPS5890651A (en) Electrophotographic method
JPS59222871A (en) Electrophotographic process
JPS6064364A (en) Method and device for image formation
JPH0473658A (en) Electrophotographic copier
JPH01298376A (en) Image forming device
JPS61284788A (en) Information recorder
JPS59195677A (en) Electrophotographic method
JPS6230286A (en) Destaticizing method for photosensitive body
JP2005035027A (en) Image forming apparatus
JPS62138864A (en) Image forming device
JPH01274183A (en) Electrophotographic method
JPS60241068A (en) Electrophotographic device
JPS6363061A (en) Color electrophotographic method
JPS6285282A (en) Electrophotographic device
JPH0816052A (en) Electrophotographic printer
JPS59100469A (en) Picture forming method
JPS61183681A (en) Electrophotographic device
JPS62196679A (en) Electrophotographic copying method using memory photosensitive body
JPS60154279A (en) Electrophotographic device
JPH05297785A (en) Method for destaticizing photosensitive body for electrophotography
JPH01191177A (en) Image forming device
JPS58114048A (en) Controlling device of picture density
JPH0792870A (en) Method and device for forming image