JPS5879426A - Fault noting relay unit - Google Patents

Fault noting relay unit

Info

Publication number
JPS5879426A
JPS5879426A JP17755681A JP17755681A JPS5879426A JP S5879426 A JPS5879426 A JP S5879426A JP 17755681 A JP17755681 A JP 17755681A JP 17755681 A JP17755681 A JP 17755681A JP S5879426 A JPS5879426 A JP S5879426A
Authority
JP
Japan
Prior art keywords
zero
cable
output
phase
phase current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17755681A
Other languages
Japanese (ja)
Inventor
池永 頼央
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP17755681A priority Critical patent/JPS5879426A/en
Publication of JPS5879426A publication Critical patent/JPS5879426A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は高圧配電線の受電点に設置される地絡継電装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ground fault relay device installed at a power receiving point of a high voltage distribution line.

従来、高正妃TLIMの受電点に設置される地絡継電装
置としてはl@O零相変流器に接続された過電流地絡継
電器が広く一般に使用されている。
Conventionally, as a ground fault relay device installed at a power receiving point of a Gaozhenfei TLIM, an overcurrent ground fault relay connected to an l@O zero-phase current transformer has been widely used.

しかるに近年受電点引込方式の改善がなされ、高圧受電
点より引込ケーブルにより引込み負荷配電線をII綬し
先後、この負荷配置mにし中断器を設置し、責任分界点
では自動トリップ式のllI閉器を設備しない場合が増
加する傾向にある。
However, in recent years, improvements have been made to the power receiving point lead-in system, and the load distribution line is drawn in from the high-voltage power receiving point by a lead-in cable, and then an interrupter is installed in this load arrangement, and an automatic trip type III disconnector is installed at the responsibility demarcation point. There is a tendency for the number of cases without equipment to increase.

これに伴い、引込ケーブルにおいて発生する地絡故障を
も需費家の地絡l111111器で検知することが監督
官庁より指示されており、そのために引込ケーブルのシ
ースのm地点を零相変流器より負荷@にとるようにして
いる。
Along with this, the regulatory authority has instructed that ground faults that occur in the drop-in cable be detected by the consumer's ground fault detector, and for this purpose, the point m of the sheath of the drop-in cable is connected to a zero-phase current transformer. I'm trying to make it more of a load.

ところで、配電線の単線区間による対地容量のアンバラ
ンスや自動電圧調節器による等価対地容量アンバランス
等により残留零相電圧が発生し、これによシケーブルシ
ース接地線に残留零相電流が流入する。このケーブルシ
ース接地脚に流入する残雪零相電流を100とすると、
残留零相電圧中00の大きな系統では の関係で与えられ、ケーブル容量C及び※ooK比例す
るため、これらが大きいと残留零相電流10゜が大きく
表る。またケーブル劣化の過程でケーブルシース接地線
に大きな電流が流れたり、ケーブルが絶縁破壊に到らず
とも計jlOIiより異常に大きな充電電流が流入する
こともある。
By the way, residual zero-sequence voltage is generated due to unbalance in ground capacity due to single-wire sections of distribution lines, unbalance in equivalent ground capacity due to automatic voltage regulators, etc., and residual zero-sequence current flows into the cable sheath grounding wire due to this. . If the remaining snow zero-phase current flowing into this cable sheath ground leg is 100, then
In a large system where the residual zero-sequence voltage is 00, it is given by the relationship , and is proportional to the cable capacitance C and *ooK, so if these are large, the residual zero-sequence current of 10° appears large. Further, in the process of cable deterioration, a large current may flow through the cable sheath grounding wire, and even if the cable does not cause dielectric breakdown, a charging current that is abnormally larger than the total jlOIi may flow.

そのため、上記の構成でけこのようなケーブルシース接
地線に流れる残留零相電流によって過電流地絡継電器が
誤動作する場合がある。
Therefore, in the above configuration, the overcurrent ground relay may malfunction due to the residual zero-sequence current flowing through the cable sheath ground wire.

本発明は上記に鑑み、残留零相電流で誤動作することを
防止するとともに、他回線事故で動作せず自己の負荷配
電線と引込ケーブルでの事故について動作し、さらに*
荷配’ttim事故と引込ケーブル事故とを確実に判別
する地絡継電装置を提供することを目的とする。
In view of the above, the present invention prevents malfunctions due to residual zero-sequence current, operates in case of failures in the own load distribution line and lead-in cable without being activated due to failures in other lines, and furthermore *
It is an object of the present invention to provide a ground fault relay device that can reliably distinguish between a cargo delivery 'ttim accident and a lead-in cable accident.

以下、本発明の一実施例について図面を参照しながら説
明する。第1図において、高圧配電ll1lに区分開閉
器2及び引込ケーブル3を介して負荷配置に#4が!!
され、この負荷配置[麹4KFiL中断器5が設けられ
、ケーブル30シースKFili地II6が接続されて
いる。ケーブル3が1次側に貫通するようKして貫通形
の零相変流器11がこのケーブル3に取9付けられてい
る。この零相変流器11よシ鵞荷儒に前記ケーブルシー
ス接地116が接続される。負荷配電線4がそO1&1
1に貫通するようにして貫通Yの零相を流器12がこの
負荷配電線4に取り付けられる。さらに1jkljAa
6がその1次側に貫通するようKして貫通形の零相変流
器13がこの接地線6に取り付けられている。
An embodiment of the present invention will be described below with reference to the drawings. In Fig. 1, #4 is placed in the load arrangement via the section switch 2 and the lead-in cable 3 to the high-voltage power distribution ll1l! !
and this load arrangement [Koji 4 KFiL interrupter 5 is provided, cable 30 sheath KFiL ground II 6 is connected. A penetrating zero-phase current transformer 11 is attached to the cable 3 so that the cable 3 passes through the primary side. The cable sheath ground 116 is connected to the zero-phase current transformer 11. Load distribution line 4 is O1&1
A zero-phase flow device 12 having a through-hole Y is attached to this load distribution line 4 so as to pass through the load distribution line 4 . Another 1jkljAa
A through-type zero-phase current transformer 13 is attached to the grounding wire 6 so that the zero-phase current transformer 13 passes through the grounding wire 6 on its primary side.

これら3つの零相変流器11〜13の各出力の相互の位
相関係が判別されるとともに、零相変流器12.13の
出力のレベルが判別される。
The mutual phase relationship between the outputs of these three zero-phase current transformers 11 to 13 is determined, and the level of the output of the zero-phase current transformers 12 and 13 is determined.

すなわち、それぞれ波形整形回路22.23゜25を経
てvE形波に整形され、零相変流器11の出力について
はさもKNOT回路26で反転されて、位相判別回路2
7.28.29に導かれる。この位相判別回路27.2
8.29は入力知形波の重なり部分が大きい(すなわち
位相のずれが小さい)とき10”出力を生じ、重なり部
分が小さく(位相ずれが大きく)なると“l”出力を生
じるもので、これらの出力がAND回路30.33に導
かれている。AND回路30.33には、零相変流器1
2.13の出力レベルの各々が検出レベルL、、L、の
各々より大なるとき出力を生じるレイル検出回路21.
24からの出力も送られてきており、AND条件が満足
されると、ノ臂ワー回路31゜34を介して補助リレー
32.35が駆動されるよう構成されている。
That is, each waveform is shaped into a vE wave through the waveform shaping circuits 22, 23° 25, and the output of the zero-phase current transformer 11 is also inverted by the KNOT circuit 26 and sent to the phase discrimination circuit 2.
Guided to 7.28.29. This phase discrimination circuit 27.2
8.29 produces a 10" output when the overlapping part of the input intelligent wave is large (that is, the phase shift is small), and produces an "l" output when the overlapping part is small (the phase shift is large). The output is led to an AND circuit 30.33.The AND circuit 30.33 includes a zero-phase current transformer 1
2. A rail detection circuit 21 that produces an output when each of the output levels of 13 is greater than each of the detection levels L, , L, .
The output from 24 is also sent, and when the AND condition is satisfied, the auxiliary relays 32 and 35 are driven via the arm arm circuits 31 and 34.

ここで、正常時(残留分零相電流のみが流れている場合
)、地絡事故点が自回fi!(ケーブル3を除く負荷配
電@4の部分)のとき、他回線(電源@)のとき、ケー
ブル3のとき、の各々の場合について、零相変流器11
.12.13の各々の1次側に流れる零相電流II *
 L e I3の位相関係を調べてみると次の表のよう
Kまとめることができる。
Here, under normal conditions (when only the residual zero-sequence current is flowing), the ground fault point is self-fi! (load distribution @4 part excluding cable 3), other line (power supply @), and cable 3, the zero-phase current transformer 11
.. 12. Zero-sequence current II flowing in the primary side of each of 13 *
Examining the phase relationship of L e I3, it can be summarized as shown in the following table.

そこで次に、上記の表をも参考にしながら、各部の波形
を示して、動作について各場合に分けて説明する。まず
正常時(残留分)の場合、13e11m1gは互に同相
であるから、零相変流器11.12,13の出力は第2
図人、B、Cに示すようkなり、波形整形回路25.2
2゜23の出力は第2図り、B、FK示すような同相の
矩形波となる。矩形波りはNOT回路26で反転される
ため、位相判別回路27.29の出力は“l″になり、
位相判別回路28の出力は@0− Kなる。その*J6
AND回路30.33はいずれも他の入力がどのようK
なりても出力@0#で1)、補助リレー32.35はい
ずれも動作しない、このように残留分で誤動作すること
は決してない。
Next, with reference to the above table, waveforms of each part will be shown and the operation will be explained separately for each case. First, in the normal state (residual portion), since 13e11m1g are in phase with each other, the outputs of zero-phase current transformers 11, 12, and 13 are
As shown in Figures B and C, the waveform shaping circuit 25.2
The output of 2°23 becomes an in-phase rectangular wave as shown in the second diagram, B and FK. Since the rectangular wave is inverted by the NOT circuit 26, the output of the phase discrimination circuit 27.29 becomes "l",
The output of the phase discrimination circuit 28 becomes @0-K. Its*J6
AND circuits 30 and 33 are all
Even if the output @0# is 1), none of the auxiliary relays 32 and 35 will operate, so there will never be a malfunction due to the residual amount.

自回線事故時には11 s Lが同相で2stiこれら
とは逆相となり、零相変流器11.12゜13の出力社
第3図A、B、Cにそれぞれ示すようKなる。そして波
形整形回路25.22゜23の出力社第3図り、E、F
のようになる。
In the event of a fault in the own line, 11sL is in phase and 2sti is in reverse phase, and the outputs of zero-phase current transformers 11, 12, and 13 become K as shown in Figure 3 A, B, and C, respectively. And the third output circuit of the waveform shaping circuit 25.22゜23, E, F
become that way.

そのため位相判別回路27.28.29の各出力は11
” □Jl 、 @0”となる、またこの場合I!は大
きいため、零相賢流器12の出力Bが検出レベルL1を
越えレベル検出回路21から出力11”が生じる。11
は小さいので零相変流器13の出力C祉検出しベルL、
以下でレベル検出回路24の出力は10#である。その
ため、AND回路30から“1″が生じ補助リレー32
が駆動されるが、AND回路33からは@01が生じて
補助リレー35は駆動されない。
Therefore, each output of the phase discrimination circuit 27, 28, 29 is 11
“□Jl, @0”, and in this case I! is large, so the output B of the zero-phase current flow device 12 exceeds the detection level L1, and an output 11'' is generated from the level detection circuit 21.11
Since it is small, the output C of the zero-phase current transformer 13 is detected and the bell L,
Below, the output of the level detection circuit 24 is 10#. Therefore, “1” is generated from the AND circuit 30 and the auxiliary relay 32
is driven, but @01 is generated from the AND circuit 33 and the auxiliary relay 35 is not driven.

細目縁故障時にはIl * Il * 11社同相であ
り、11*11のレベルが大きくなって零相変流器11
.12.13の各出力祉第4図A、B、Cに第4図り、
B、Fのようになる。仁のときレベル検出回路21の出
力が111になるが、位相判別回路27.29の出力が
″″1m11位相判別回路28の出力が一0’になゐた
めAND回路30゜33の出力はいずれも@O#となり
補助リレー32.35はいずれも動作しない。
At the time of a narrow edge fault, Il * Il * 11 companies are in phase, and the level of 11 * 11 becomes large and zero phase current transformer 11
.. 12.13 each output welfare Figure 4 A, B, C, the fourth diagram,
It will look like B and F. The output of the level detection circuit 21 becomes 111 when it is true, but the output of the phase discrimination circuit 27. also becomes @O#, and neither of the auxiliary relays 32 and 35 operates.

ケーブル3で事故が生じたときには、11s11が同相
、!!がこれらとは逆相になル、各レベルは皆大きくな
り、零相変流器11.12.13の各出力は第5図A、
B、Cに示すようになって、レベル検出回路21.24
の出力が“l#になる。
When an accident occurs in cable 3, 11s11 are in phase, ! ! are in opposite phase to these, each level becomes large, and the outputs of zero-phase current transformers 11, 12, and 13 are as shown in Fig. 5A,
As shown in B and C, the level detection circuit 21.24
The output of becomes “l#”.

波形整形回路25.22.23の各出力は第5図り、1
a、FのようKなり、その結果位相判別回路27の出力
が@01、位相判別回路28.29の出力が″l#とな
る。その九め人ND回路30の出力は°0″で補助リレ
ー32は動作しないが、ANDI回路33の出力が11
”となって補助リレー35が動作する。
Each output of the waveform shaping circuit 25, 22, and 23 is
a, F, and as a result, the output of the phase discrimination circuit 27 becomes @01, and the output of the phase discrimination circuit 28.29 becomes "l#".The output of the ninth ND circuit 30 is auxiliary at °0". The relay 32 does not operate, but the output of the ANDI circuit 33 is 11.
” and the auxiliary relay 35 operates.

補助リレー32はしゃ断器5のトリ、プ用に用いられ、
自回線事故時にトリップされる。m助すレー35はし中
断器5のトリップ用あるいは警報用に用いられ、ケーブ
ル3で事故が生じたとき前者の場合にはトリップがなさ
れ、後者の場合KFi警報が発せられる。いずれにして
も補助リレー32.35の動作によりケーブル3での事
故かケーブル3以外の自回線の事故かを検出できる。
The auxiliary relay 32 is used for tripping the breaker 5,
Trips when own line accident occurs. The assist relay 35 is used for tripping or warning the interrupter 5, and when an accident occurs in the cable 3, a trip is made in the former case, and a KFi alarm is issued in the latter case. In any case, by operating the auxiliary relays 32 and 35, it is possible to detect whether the accident is in the cable 3 or in the own line other than the cable 3.

なお、位相判別回路は具体的にはたとえば第6図のよう
に、排他的OR回路61と、トランジスタ63と、抵抗
62.64.66と、コンデンサ65と、7−ミ、ト回
路68と、モノマルチバイブレータ69と、NOT回路
70とで構成することができる。この回路でA−43の
6漬の波炉は第7図または第8図に示すようになる。入
力人、Bの位相ずれが少ないときは第7図のようKなシ
、0点の/#ルス幅が短くなってトランジスタ63がオ
ンになっている期間が短い丸めコンデンサ65は充分に
充電されてD点の電位がシM−ξットトリ方レベルL、
を越えるので8点に″1′出力が間欠的に生じる。その
結果モノマルチパイシレータロ9の出力は連続的に@l
”と1にりNOTロ路70の出力は10′となる。これ
に対し、第8fI!lK示すように入力A。
The phase discrimination circuit specifically includes an exclusive OR circuit 61, a transistor 63, a resistor 62, 64, 66, a capacitor 65, a 7-mi, 7-mi circuit 68, It can be configured with a mono multivibrator 69 and a NOT circuit 70. With this circuit, the A-43 six-hole wave furnace becomes as shown in FIG. 7 or FIG. 8. When the phase shift of the input signal B is small, as shown in Fig. 7, the /# pulse width at the 0 point becomes short, and the period during which the transistor 63 is on is short, and the rounding capacitor 65 is sufficiently charged. The potential at point D is level L,
, so ``1'' output is intermittently generated at 8 points.As a result, the output of monomultipolar 9 is continuously @l
”, the output of the NOT low path 70 becomes 10'. On the other hand, as shown in the 8th fI!lK, the input A.

Bの位相のずれが所定値より大きくなると、0点のパル
ス幅が長くなるのでトランジスタ63がオンになってい
る期間が長くD点の電位は上昇しない、そのためシ#ミ
、ト回路の出力8社″mO”とな9、モノマルチバイブ
レータ69の出力は101、NOT回路70の出力は1
1#となる。
When the phase shift of B becomes larger than a predetermined value, the pulse width at point 0 becomes longer, so the period during which the transistor 63 is on is longer and the potential at point D does not rise. The output of the mono multivibrator 69 is 101, and the output of the NOT circuit 70 is 1.
It becomes 1#.

以上、実施例について説明したように本発明によれば、
残留分に影響されることなく自回線の故障を検出でき、
しかも自回線内の引込ケーブルの事故と他の負荷配置1
llIの事故とを確実に区別できる。
As described above with respect to the embodiments, according to the present invention,
It is possible to detect failures in the own line without being affected by residuals,
Moreover, the accident of the lead-in cable within the own line and other load placement 1
It is possible to reliably distinguish this from the llI accident.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図、第3
図・第4図及び第5図は第1図の各部の信号を示すタイ
ムチャート、第6図は@1図の位相判別回路の一例を示
すブロック図、第7図及び第8図は第6図の各部の信号
を示すタイムチャートである。 1・−高圧配電IIj2・・・区分開閉器3・・・引込
ケーブル  4・・・9荷配置11!5・・・しゃ断器
  6・・・ケーブルシース接地線11.12.13・
・・零相変流器 21.24・・・レベル検出回路 22.23.25・・・波形整形回路 27.28.29・・・位相判別回路 26・・・NOT回路  30.33・・・AND回路
31.34・・・パワー回路 32.35・・・補助リ
レー出願人 立石電機株式会社 蟇1回 答?前 筈:3目 算q回 F 箋、!5圓
FIG. 1 is a block diagram of one embodiment of the present invention, FIG.
Figures 4 and 5 are time charts showing the signals of each part in Figure 1, Figure 6 is a block diagram showing an example of the phase discrimination circuit in Figure @1, and Figures 7 and 8 are the time charts showing the signals of each part in Figure 1. 5 is a time chart showing signals of each part in the figure. 1.-High voltage distribution IIj2...Division switch 3...Leading cable 4...9 Load arrangement 11!5...Breaker 6...Cable sheath grounding wire 11.12.13.
...Zero-phase current transformer 21.24...Level detection circuit 22.23.25...Waveform shaping circuit 27.28.29...Phase discrimination circuit 26...NOT circuit 30.33... AND circuit 31. 34... Power circuit 32. 35... Auxiliary relay applicant Tateishi Electric Co., Ltd. Toad 1 Answer? Prelude: 3 times q times F paper,! 5 circles

Claims (1)

【特許請求の範囲】[Claims] (1)  高圧配置1線より引込ケーブルを介して負荷
配電線を接続する配電系統の受電点に設置される地絡継
電装置において、前記引込ケーブルと負荷配電線とに第
1.第2の零相変流器をそれぞれ取り付けるとともに、
この第1の零相肇流器のや荷%において前記引込ケーブ
ルのシースを接地し、このケーブルシース接地1MKM
3の零相変流器を取り付け、前記第1.第2.第3の零
相変流器の各出力の相互の位相を判別するとと4に%前
記第2.第3の零相変流器の各出力のレベルを検出する
ようにしたことをellとする地−継電装置。
(1) In a ground fault relay device installed at a power receiving point of a power distribution system in which a load distribution line is connected to a load distribution line from one high-voltage line via a drop-in cable, a ground-fault relay device that connects the drop-in cable and the load distribution line with a ground-fault relay. While installing the second zero-phase current transformer,
The sheath of the lead-in cable is grounded at this first zero-phase current flow device, and this cable sheath ground 1MKM
3 zero-phase current transformer is installed, and the 1st. Second. When the mutual phase of each output of the third zero-phase current transformer is determined, it becomes 4%. An earth-to-ground relay device configured to detect the level of each output of the third zero-phase current transformer.
JP17755681A 1981-11-04 1981-11-04 Fault noting relay unit Pending JPS5879426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17755681A JPS5879426A (en) 1981-11-04 1981-11-04 Fault noting relay unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17755681A JPS5879426A (en) 1981-11-04 1981-11-04 Fault noting relay unit

Publications (1)

Publication Number Publication Date
JPS5879426A true JPS5879426A (en) 1983-05-13

Family

ID=16033018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17755681A Pending JPS5879426A (en) 1981-11-04 1981-11-04 Fault noting relay unit

Country Status (1)

Country Link
JP (1) JPS5879426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177821A (en) * 1988-01-06 1989-07-14 Hitachi Ltd Ground-fault circuit selector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177821A (en) * 1988-01-06 1989-07-14 Hitachi Ltd Ground-fault circuit selector

Similar Documents

Publication Publication Date Title
US4466071A (en) High impedance fault detection apparatus and method
US4356443A (en) Detection of arcing faults in polyphase electric machines
US3308345A (en) Electrical-fault detector for detecting fault currents having an appreciable harmonic content
KR950009773A (en) Ground fault and sputtering arc trip device of self-test circuit breaker
EP0098721A2 (en) Differential protection relay device
US5103365A (en) Downed conductor automatic detecting device
US6377055B1 (en) Arc fault detector device with two stage arc sensing
US3895263A (en) Grounded neutral detector drive circuit for two pole ground fault interrupter
JPS60255012A (en) Protecting relay
US4296450A (en) Discriminating circuit breaker protection system direct current power distribution systems
JPS60500397A (en) Failure prevention system for power supply using ferro-resonant transformer
JPS5879426A (en) Fault noting relay unit
US3591831A (en) Harmonic filter protection means
JP3691147B2 (en) Insulation monitoring method for ungrounded circuit
JP3378418B2 (en) Leakage protection method
US2162531A (en) Ground-fault protection
Chu et al. High impedance fault tests on the Taipower primary distribution system
JPS5879427A (en) Ground-fault relay unit
JPS5910127A (en) Ground-fault protecting repeating device for generator
JPS5879425A (en) Ground-fault relay unit
Goff et al. Pilot wire relay applications in industrial plants utilizing a new static pilot wire relay
JPH025627Y2 (en)
SU1192015A1 (en) Device for protection against electric current affection in three-phase isolated neutral system
JPS5879424A (en) Ground-fault relay unit
JPS63186522A (en) Grounding protective relay