JPS5879360A - Modulation circuit - Google Patents

Modulation circuit

Info

Publication number
JPS5879360A
JPS5879360A JP17819781A JP17819781A JPS5879360A JP S5879360 A JPS5879360 A JP S5879360A JP 17819781 A JP17819781 A JP 17819781A JP 17819781 A JP17819781 A JP 17819781A JP S5879360 A JPS5879360 A JP S5879360A
Authority
JP
Japan
Prior art keywords
terminal
signal
circuit
output
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17819781A
Other languages
Japanese (ja)
Inventor
Shuji Abe
安部 周二
Masaru Ozawa
小沢 賢
Yoshihiro Obata
小幡 好宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Works Ltd filed Critical Chino Works Ltd
Priority to JP17819781A priority Critical patent/JPS5879360A/en
Publication of JPS5879360A publication Critical patent/JPS5879360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To perform the data transmission with high speed and reliability by applying phase-modulation on data with two J-K flip-flops for transmission. CONSTITUTION:A modulation circuit 4 consists of J-K flip-flops (FFs) 41, 42. A transmission data signal is inputted to a CLR terminal of the 1st FF41. EAch terminal of J, K goes to a high level. The CLR terminal of the 2nd FF42 is grounded and each terminal of J, K is connected in common to the inversion Q' terminal of the 1st FF41. In the circuit like this, a data signal from an input terminal 3 is phase-modulated with each FF triggered at the leading of a clock signal from a clock terminal 40, corresponding to the high and low level of data. A modulation signal is transmitted via drive circuit 5. Thus, the high speed data transmitted via a drive circuit 5. Thus, the high speed data transmission with high reliability can be performed.

Description

【発明の詳細な説明】 α)発明の技術分野 この発明は、データを伝送線を通じて伝送する伝送装置
の変調回路Kllする′%Oである。
DETAILED DESCRIPTION OF THE INVENTION α) Technical Field of the Invention The present invention relates to a modulation circuit for a transmission device that transmits data through a transmission line.

(2)従来技術 従来9例えば、伝送すべきデータの1.0(H。(2) Conventional technology Conventionally 9 For example, 1.0 (H) of data to be transmitted.

L)K所定の周波数の発振信号またはその停止(ゼロ)
信号を対応させて伝送を行っていた。
L) K Oscillation signal of a predetermined frequency or its stop (zero)
Transmission was performed by matching signals.

しかしながら1発振信号を用いると、データの1ビツト
mb、少なくとも数サイクル以上必要とし、七tだけ大
長性が増大し、高速伝送Ka不向きだっ九。
However, if one oscillation signal is used, 1 bit MB of data requires at least several cycles, and the length increases by 7t, making it unsuitable for high-speed transmission.

0)発明の目的 この発明の目的は9以上の点k11み、信号を。0) Purpose of the invention The purpose of this invention is to look at 9 or more points k11 and obtain a signal.

位相変調して伝送するようKL、高速を高信頼性化を図
る丸めの変調回路を提供することである。
It is an object of the present invention to provide a round modulation circuit that achieves high speed and high reliability by performing phase modulation for transmission.

(4)発明の実施例 第1図は、この発明に係るデータ伝送装置の構成説明図
である。
(4) Embodiment of the Invention FIG. 1 is an explanatory diagram of the configuration of a data transmission device according to the invention.

図において、1は送信回路、2は受信回路、Tは伝送線
LK送信回路1.受信囲路2を接続するトランスである
。送41關路1は、入力端子3よ〉供給される1、0(
H,L)の送信データ信号が入力され、このデータの1
ビツトに対応させて1周期のパルスを出力する囲路で、
LK変化する時のみ、出力するパルス信号の位相を変化
させる変調回路4.およびζO変変調回路4佼 良信号は見方をかえると長短ノ櫂ルス信号と1ゐ九め、
この長短に対応して波高値の低い信号および高い信号と
して出力する駆動回路5よシ構成されている。オ九、受
信回路2は、受信データ信号の有無を検出する信号検出
回路6.およびこの信号検出回路6の検、比信号によ〕
受信データの復調を行い、もとのデータ信号を出力端子
8よ〉出力する復調回路7よ)構成されている。
In the figure, 1 is a transmitting circuit, 2 is a receiving circuit, and T is a transmission line LK transmitting circuit 1. This is a transformer that connects the receiving circuit 2. The feeder 41 link 1 is supplied with 1, 0 (
H, L) transmission data signals are input, and 1 of this data is input.
A circuit that outputs one cycle of pulses corresponding to bits.
4. Modulation circuit that changes the phase of the output pulse signal only when LK changes. If you look at it differently, the ζO variable modulation circuit 4 Kara signal is a long and short paddle signal and 1-9,
The drive circuit 5 is configured to output a signal with a low peak value and a signal with a high peak value in accordance with the length. E9. The receiving circuit 2 includes a signal detection circuit 6. which detects the presence or absence of a received data signal. and the detection of this signal detection circuit 6, based on the ratio signal]
The demodulation circuit 7 demodulates received data and outputs the original data signal to an output terminal 8.

データ信号の伝送形態は第2図で示す通夛である。The data signal transmission format is the same as shown in FIG.

送信データが第2図0)の前半で示すようKH(ハイ)
レベルのときは、伝送信号形態は、第2図←)の前半で
示すように、lピッ)K対応させて1周期のパルスを割
夛合て、その前のパルス信号と同一波形信号とされ、送
信データが第2図0)の後手で示すようKL(a−)レ
ベルのときは、その伝送信号形態は、第2図に)の後手
で示すように、その前のパルス信号の位相を180度反
転させ九波形信号とされる。
The transmitted data is KH (high) as shown in the first half of Figure 2 (0).
As shown in the first half of Figure 2 (←), when the signal is at the level, the transmission signal form is a signal with the same waveform as the previous pulse signal by adding one cycle of pulses in correspondence with lpi)K. , when the transmitted data is at the KL(a-) level as shown in the second part of Fig. 2 (0), the transmission signal form changes the phase of the previous pulse signal as shown in the second part of Fig. 2). The signal is inverted 180 degrees to produce nine waveform signals.

送信する場合は、第2図に)のデータを、第2図←)の
パルス信号に変調し。
When transmitting, the data shown in Figure 2) is modulated into the pulse signal shown in Figure 2 ←).

受信する場合は、第 saiに)0 パルス信号を第2rlA(支)のデータ
に復調す為・ t*、H,Lレベルの信号が温在し良路2図00ような
データの伝送信号は第2rlAに)のようKなる・なお
、Hのと亀位相を反転させるようにしてもよい。
When receiving, the 0 pulse signal is demodulated into the data of the 2nd rlA (branch) in order to demodulate the 0 pulse signal into the data of the 2nd rlA (branch). There are t*, H, and L level signals, and the transmission signal of data such as Ryoji 2 Figure 00 is In the second rlA), K becomes K as shown in (). Note that the phase of H may be reversed.

第31Iは、送償簡路の一実施例を示す構成説明図であ
る。tf魔調關路4について説明する。
No. 31I is a configuration explanatory diagram showing an embodiment of the shipping route. tf magic key link 4 will be explained.

変調回路4は、入力端子3からの送信データ信号がクリ
ア端子CLRK供給され、J、に端子がH(ハイ、)レ
ベルとされ九嬉1のJ−にツリツブフロツブ回路41.
シよびζOO12J−に7リツプツロツプ關路41Dq
l端子の出力がJ、に端子に同時に供給され、クリア端
子はアースで常にゼロレベルとされ、Ql端子よ〕出力
信号が取)出される嬉2のJ−Kyリップ7襲ッグ■回
路2よ)構成され一番7リップフ$!ツブ回路41,4
10各タロツク端子CKKはクロツタ端子4Gよ〕所定
の周期のタロツク信号が供給され、クーツク信号の立ち
上如信号でトリガされるようになっている。
The modulation circuit 4 is supplied with the transmission data signal from the input terminal 3 to the clear terminal CLRK, and the J terminal is set to H (high) level, and the output data signal from the input terminal 3 is set to the H (high) level.
Ship and
The output of the L terminal is simultaneously supplied to the J terminal, the clear terminal is grounded and always at zero level, and the output signal is taken from the Ql terminal. yo) It is composed of 7 lipfs! Tsubu circuit 41, 4
Each clock terminal CKK is supplied with a clock signal of a predetermined period from the clock terminal 4G, and is triggered by the rising edge of the clock signal.

第4図を参照して変調回路4の動作を説明する。The operation of the modulation circuit 4 will be explained with reference to FIG.

各7リツプ70ツブ回路41 、42 Kは第4図(支
)のようなりロック信号が供給され、第4図(ロ)で示
すようなH,L、H,L、L、Hのデータ信号が第1の
J−にフリップフaツブ回路41のクリア端子に供給さ
れ九とする。なお、J−にフリ、プフロ。
Each 7-lip 70-tub circuit 41, 42K is supplied with a lock signal as shown in Figure 4 (sub), and receives H, L, H, L, L, H data signals as shown in Figure 4 (b). is supplied to the first J- to the clear terminal of the flip-flip circuit 41, making it 9. In addition, J-nifuri, pufuro.

プ回路は、クリア端子がHレベルのときは、必ずQ端子
はり、Q端子はH,クリア端子がLでtJtK端子がと
もに、Hのときはりロック信号の立ち上夛でQ、Q端子
出力は、各々反転し、ともK。
In the pull circuit, when the clear terminal is at H level, the Q terminal is always high, and when the Q terminal is at H level, the clear terminal is at L level, and both the tJtK terminals are at H level, the Q and Q terminal outputs are set at the rising edge of the lock signal. , each inverted, and K.

Lのときは、′4hとの状態を保持する。(次表参照)
184図0)で示すり關ツク■が入ったとき、第1のJ
−Kyリップ70ツブ回路41のクリア端子にはデータ
Hが供給されている九め、そのQ1端子出力はHとなる
。次にり四ツク■が入ったときも同様H′である。クロ
ック■のときは、データはLで。
When it is L, the state of '4h is maintained. (See table below)
184 When the link shown in Figure 0) is entered, the first J
- When data H is supplied to the clear terminal of the -Ky lip 70 tube circuit 41, its Q1 terminal output becomes H. The next time the four squares ■ are entered, it is also H'. When the clock is ■, the data is L.

これがクリア端子に供給されt Qt端子出力は反転し
てL−となる0クロツク■のときも、データはLの丸め
反転してQl端子出力はHとなる。りpツク■のときは
データはHo九め、Q1端子出力はHとなる。以下同様
にして、第4図f→のような出力が第1の7リツプ70
ツブ回路41のQl端子よ)得られる。
When this is supplied to the clear terminal, the Qt terminal output is inverted and becomes L-. Even at the time of 0 clock (2), the data is rounded from L and inverted, and the Ql terminal output becomes H. When the input signal is set to ■, the data becomes Ho9, and the Q1 terminal output becomes H. In the same way, the output as shown in Fig. 4 f→ is the first 7 lips 70.
Ql terminal of the tube circuit 41) can be obtained.

このQl端子出力は同時に第2の7リツプ70ツブ回路
42のJ、に端子に供給される。クーツク■のときは、
クリア端子はLでJ、に端子はHなのでt Q!端子出
力は反転してHとなる。り四ツク■のときは、J、に端
子はHであるのでt Q!端子出力は反転してLとなる
。クロック■のときは、J。
This Ql terminal output is simultaneously supplied to the terminal J of the second 7-lip 70-tub circuit 42. When it comes to Kutsuku■,
The clear terminal is L and J, and the clear terminal is H, so t Q! The terminal output is inverted and becomes H. When it is four times ■, the terminals J and J are H, so t Q! The terminal output is inverted and becomes L. When the clock is ■, J.

K端子はまだHなのでΦ端子出力は反転してHとなる0
クロツク■のときは、J、に端子は壕だLなのでQ!端
子出力はもとの状態を保持しHである。
Since the K terminal is still H, the Φ terminal output is inverted and becomes H.0
When the clock is ■, the terminal is J, and the terminal is L, so Q! The terminal output maintains its original state and is at H level.

り謬ツク0のときはJ、に端子はまだHで、Q!端子出
力は反転してLとなる。以下同様にして第4図(ハ)で
示すような出力が7g2の7リツプ70ップ囲路42の
Q2端子より得られる。
When the error is 0, the J terminal is still H, and the Q! The terminal output is inverted and becomes L. Similarly, an output as shown in FIG. 4(c) is obtained from the Q2 terminal of the 7g2 7-lip 70-p circuit 42.

この1lN4E(ハ)の信号は、#I4図(ロ)のH,
L信号に対応して1クロツク遅れて、Hレベルに対して
その前の信号と同一波形信号となル、Lレベルに対して
は、その前の信号を180度反転させた信号となる。フ
ォル、大刀されたデータは1位相変調され1次段の駆動
回路5を介して伝送される。
This 1lN4E (c) signal is the H,
It is delayed by one clock in response to the L signal, and for the H level, it becomes a signal with the same waveform as the previous signal, and for the L level, it becomes a signal that is 180 degrees inverted from the previous signal. The output data is one-phase modulated and transmitted via the primary stage drive circuit 5.

なお、J−に7リツプ70ツブ回路41,42の出力端
子は必l!に応じて上記以外のl1l)の端子も使用で
きる。
Note that the output terminals of the 7-rip, 70-tub circuits 41 and 42 must be connected to J-! Terminals other than those listed above can also be used depending on the requirements.

次に駆動回路5について説明する。Next, the drive circuit 5 will be explained.

再び第3図を参照し、駆動回路5は、第4ffiに)の
ように9位相変調され死出力信号は見方をかえるとパル
ス幅が長す信号とパルス幅が短い信号が混在し丸長短パ
ルス信号とみえ、この長短を検出する長短パルス検出回
路51.および長短パルス検出回路51の長短検出信号
によシ駆動される第1のドライバ52. #I2のドラ
イバ53よ多構成されている。第1のドライバ52は、
変調回路4からの送信データを受信し、長短パルス検出
回路51の長パルス検出信号に応じて送信データが長信
号のときのみ波高値E1の低い信号を出力し、第2のド
ライバ53は長短パルス検出回路51の短パルス検出信
号に応じて波高値E2の高い信号を出力するようになっ
ている。
Referring again to FIG. 3, the drive circuit 5 is 9-phase modulated as shown in (4ffi) and the dead output signal is a mixture of long pulse width signals and short pulse width signals, resulting in round short pulses. A long/short pulse detection circuit 51 that looks like a signal and detects its length. and a first driver 52 driven by the long/short pulse detection signal of the long/short pulse detection circuit 51. The driver 53 of #I2 is made up of more than one driver. The first driver 52 is
The second driver 53 receives the transmission data from the modulation circuit 4 and outputs a signal with a low peak value E1 only when the transmission data is a long signal according to the long pulse detection signal of the long and short pulse detection circuit 51. In response to the short pulse detection signal from the detection circuit 51, a signal with a high peak value E2 is output.

長パルス信号の幅が短パルス信号の幅の2倍であるので
、波高値E2はElの2倍とすればよく、第5図0)で
示すような波高値の異なった。任意の一周期分の積分値
e(Dc a +)+がゼロとなるような信号がトラン
スTを介して伝送線AK送出される。
Since the width of the long pulse signal is twice the width of the short pulse signal, the peak value E2 may be twice as large as El, and the peak values are different as shown in FIG. 50). A signal such that the integral value e(Dc a +)+ for one arbitrary period becomes zero is transmitted via the transformer T to the transmission line AK.

つi夛、ゼロ点aからゼロ点clでの積分値はゼロであ
)、ゼロ点すからゼロ点dまでの積分値もゼロであシ、
常に任意の一周期の積分値はゼロである。
Therefore, the integral value from zero point a to zero point cl is zero), and the integral value from zero point to zero point d is also zero,
The integral value of any one period is always zero.

このようKして、伝送線AKはCR分布定数管もつ丸め
、長信号と短信号を同一波高値で伝送すると長信号側で
エネルギー蓄積を起こし、ゼロ点がひきずられて暴れて
しまい、正しい伝送が困難であるが、常に任意の一周期
の積分値をゼロとするようにすれば、エネルギー蓄積は
起こらず、ゼロ点変動は生ぜず、第5図←)で示すよう
に受信波形は暴れの少ない正しい信号となる。
In this way, the transmission line AK has a CR distributed constant tube and is rounded. If a long signal and a short signal are transmitted at the same peak value, energy will accumulate on the long signal side and the zero point will be dragged and become unstable, resulting in correct transmission. However, if you always set the integral value of any one cycle to zero, no energy accumulation will occur, zero point fluctuation will not occur, and the received waveform will not be violent as shown in Figure 5 ←). This results in fewer correct signals.

第6図は、受信回路2の一実施例を示す構成説明図であ
る。
FIG. 6 is a configuration explanatory diagram showing one embodiment of the receiving circuit 2. As shown in FIG.

図において、伝送線tを伝送してきたデータ信号は、ト
ランスTを介して信号検出回路6.復調軸路7に供給さ
れる。信号検出回路6は、第7図(イ)で示すようなH
,H,H,L、H,L、L、Hのデータ信号の有無、キ
ャリアを検出する丸めのレベルコンパレータ61.この
レベルコンパレータ61の出力を整流して所定のレベル
とする整流回路62、および整流回路62の出力を1ビ
ツトあるいは第2図幹)のように2ビツト遅延し死出力
を発生する遅延回路63よシな夛、出力端子60からキ
ャリア信号が取シ出せる。復調回路7は、第7図0)の
ようなデータ信号の波形整形を行うヒステリシスコンパ
レータのような波形整形回路71.波形整形回路71の
エツジを検出してエツジパルスを発生する微分回路のよ
うなエツジ検出回路72.エツジ検出回路72のトリガ
がかかる毎に所定時間遅延し、所定の幅のパルス信号を
発生するディレィのかかつ九単安定マルチバイブレータ
の機能をもつプログラムカウンタ73.プログラムカウ
ンタ73の出力がDI端子に供給されるD形の第1の7
リツプ7ayプ回路74.およびD形の第1の7リツグ
フロツグ回路74の出力がD2端子およびクリア端子C
LR2に供給されるD形の第2の7リツプ7aッグ回路
75よシ構成されている。なお、遅延回路63によシ。
In the figure, a data signal transmitted through a transmission line t is passed through a transformer T to a signal detection circuit 6. The signal is supplied to the demodulation shaft path 7. The signal detection circuit 6 has an H signal as shown in FIG. 7(A).
, H, H, L, H, L, L, H data signal presence/absence and carrier detection rounding level comparator 61. A rectifier circuit 62 rectifies the output of the level comparator 61 to a predetermined level, and a delay circuit 63 delays the output of the rectifier circuit 62 by 1 bit or 2 bits as shown in Figure 2 to generate a dead output. Furthermore, a carrier signal can be taken out from the output terminal 60. The demodulation circuit 7 includes a waveform shaping circuit 71. such as a hysteresis comparator that shapes the waveform of a data signal as shown in FIG. 7(0). An edge detection circuit 72 such as a differentiator circuit that detects edges of the waveform shaping circuit 71 and generates edge pulses. A program counter 73 that has a delay function and functions as a single-stable multivibrator that generates a pulse signal of a predetermined width with a predetermined time delay each time the edge detection circuit 72 is triggered. The output of the program counter 73 is supplied to the DI terminal.
Lip 7ay pump circuit 74. The output of the D-type first 7-rig frog circuit 74 is connected to the D2 terminal and the clear terminal C.
It is also configured with a D-type second 7-lip 7a tag circuit 75 which is supplied to LR2. Note that the delay circuit 63 is also used.

エツジ検出回路72.プログラムカウンタ73は1ビツ
ト遅延され、第1.第2の7リツグ7aッグ回路74.
75は2ビツト遅嬌されて動作するようKなっている。
Edge detection circuit 72. The program counter 73 is delayed by one bit and the first . Second 7-rig circuit 74.
75 is designed to operate with a 2-bit delay.

なお遅延回路63は信号検出回路6と別構成要素と考え
てもよい。
Note that the delay circuit 63 may be considered as a separate component from the signal detection circuit 6.

第7図を参照して受信回路2の動作を説明する。The operation of the receiving circuit 2 will be explained with reference to FIG.

第7図0)のようなデータは波形整形回路71を介して
エツジ検出回路72に供給され、信号検出回路6の第7
図に)のようなキャリア検出信号により1ビツト遅延し
て動作を開始し、第7図を→のような最少間隔が出力デ
ータの半ビットのエツジパルスを発生する。このエツジ
パルスは、プログ2ムカクイタ73にロードされるとと
もに、第1.第2のフリップフロップ回路74 、75
のクロック端子CKK供給され、動作を行なわせる。
The data shown in FIG. 7 0) is supplied to the edge detection circuit 72 via the waveform shaping circuit 71, and
The operation is started with a delay of one bit by a carrier detection signal as shown in the figure), and the minimum interval as shown in FIG. 7 generates an edge pulse of half a bit of output data. This edge pulse is loaded into the program 2 controller 73, and the 1st edge pulse is loaded into the program 2 controller 73. Second flip-flop circuits 74, 75
The clock terminal CKK is supplied to perform the operation.

プログラムカウンタ73の出力は、エツジ検出回路72
の第7図Cつ、のエツジパルスの立ち上ヤ信号が来るご
とく2次のエツジパルスが来る前に立ち上ることができ
る時間t1遅延し1次のエツジパルスの立ち下シによシ
リセットされる時間幅1gのパルス信号を発生する。従
ってエツジパルス■で所定の時間t:L遅延してパルス
信号が発生し、 t2時間・以内で次のエツジパルス■
の立ち下シでリセットされるとともに、このエツジパル
ス0の立ち上シ5で再び次のパルス幅信号を発生させ、
同様なパルス信号がQo端子よシ得られる。エツジパル
ス■によるパルス幅信号は9次のエツジパルス■までの
間隔が広く、自動的に立ち下りてしまう。以下同様にし
て、第7−(→のようなQO端子出力が第1のフリップ
フロップ回路74のD1端子に供給される。
The output of the program counter 73 is output from the edge detection circuit 72.
As shown in Fig. 7C, the rising edge signal of the edge pulse is delayed by the time t1 that it can rise before the secondary edge pulse arrives, and the time width is 1 g, which is reset by the falling edge of the primary edge pulse. Generates a pulse signal. Therefore, a pulse signal is generated after a predetermined time t:L delay with the edge pulse ■, and the next edge pulse ■ is generated within t2 hours.
It is reset at the falling edge of edge pulse 0, and the next pulse width signal is generated again at the rising edge of edge pulse 0,
A similar pulse signal is obtained from the Qo terminal. The pulse width signal caused by the edge pulse (2) has a wide interval up to the 9th edge pulse (2), and automatically falls. Similarly, a QO terminal output such as the 7th -(→ is supplied to the D1 terminal of the first flip-flop circuit 74.

第1のフリップフロップ回路74は2ビツト遅延して動
作を開始し、エツジパルス■によ”) e Qo端子出
力はHなのでそのQl端子出力はH,エツジパルス■で
もQO端子出力がHなのでそのQl端子出力はH,エツ
ジパルスCでQO端子出力がLなので。
The first flip-flop circuit 74 starts operating with a delay of 2 bits, and due to the edge pulse ■) e Qo terminal output is H, so its Ql terminal output is H. Even with the edge pulse ■, the QO terminal output is H, so its Ql terminal The output is H, edge pulse C and the QO terminal output is L.

そのQl端子出力はり、エツジパルス■でQo端子出力
はHなのでt Ql端子出力はH,エツジパルスCでQ
O端子出力はHなのでQ1端子出力はHというように、
以下同様にして第7図(ホ)のような出力が第1のフリ
ップフロップ回路74のQ1端子よシ得られ。
The Ql terminal output is high, and the Qo terminal output is H at edge pulse ■, so t.The Ql terminal output is H, and Q at edge pulse C.
Since the O terminal output is H, the Q1 terminal output is H, and so on.
Thereafter, in the same manner, an output as shown in FIG. 7(E) is obtained from the Q1 terminal of the first flip-flop circuit 74.

第2のフリップフロップ回路65のD2端子、クリア端
子に供給される。
It is supplied to the D2 terminal and clear terminal of the second flip-flop circuit 65.

第2のフリップフロップ回路75も2ビツト遅延して動
作を開始し、エツジパルス■、■ではQ1端子出力はH
なので、そのQ2出力もHである。エツジパルス■では
t Qt端子出力はLとなシ、クリア嬶れてQ2端子出
力はり、エツジパルス0でQ1端子。
The second flip-flop circuit 75 also starts operating with a 2-bit delay, and at edge pulses ■ and ■, the Q1 terminal output is high.
Therefore, its Q2 output is also H. When the edge pulse is ■, the Qt terminal output is not L, and the Q2 terminal output is cleared and the Q2 terminal output is high, and when the edge pulse is 0, the Q1 terminal becomes low.

出力はHE立ち上るが、tffLでありたのでクリアが
働きQ2端子出力はり、エツジパルス0ではり端子出力
はHなのでQ2端子出力はHとなシ、以下同様にして第
7図(へ)のような出力がQ2端子よシ得られ、出力端
子70よ)取シ出せる。
The output HE rises, but since it is tffL, the clear works and the Q2 terminal output goes up.Since the edge pulse is 0 and the output of the beam terminal goes H, the Q2 terminal output does not go up. The output can be obtained from the Q2 terminal, and the output can be obtained from the output terminal 70.

これは、第7図(4の最初の2ビツトを除外してH,L
、H,L、L、・・・と正しく復調された信号となる。
This is shown in Figure 7 (excluding the first two bits of 4, H, L
, H, L, L, and so on, resulting in a correctly demodulated signal.

なお信号検出回路6の整流回路62の代シにバンドパス
フィルターや、PLL(7エーズロツクトループ)を用
い、必要とする周波数の受信信号のみを取シ出し、キャ
リア検出信号を得るようにしてもよい。又、信号検出回
路5のレベルコンバータロ1を省略し、復調回路70波
形回路71の出力を共通に用いるようKしてもよい。
Note that a band pass filter or a PLL (7-axis lock loop) may be used in place of the rectifier circuit 62 of the signal detection circuit 6 to extract only the received signal of the required frequency and obtain the carrier detection signal. good. Alternatively, the level converter 1 of the signal detection circuit 5 may be omitted, and the outputs of the demodulation circuit 70 and the waveform circuit 71 may be used in common.

(5)発明の要約 以上述べたように、この発明は2個のJ−にフリップフ
ロップ回路を用い、送信データのノ・イレベルを九はロ
ーレベルに対応してその出力信号の前のパルス信号と同
一波形信号または180度位相が反転した信号として出
力するようKした変調回路である。
(5) Summary of the Invention As described above, this invention uses a flip-flop circuit for two J-, and the pulse signal before the output signal is set to 9, which corresponds to the low level of the transmission data. This is a modulation circuit designed to output a signal with the same waveform as or a signal whose phase is reversed by 180 degrees.

(6)発明の効果 従って2個のフリップフロップ回路を用いるというきわ
めて簡単な構成により、送信データを位相−調すること
ができ、安価、高速、高信頼性のものとなる。
(6) Effects of the Invention Accordingly, with an extremely simple configuration using two flip-flop circuits, it is possible to phase-adjust transmission data, resulting in low cost, high speed, and high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

#I1図は、この発f14に係る伝送装置の一実施例を
示す構成説明図、第2図は伝送信号形態の説明は駆動回
路の動作説明用波形図、第6図は受信回路の一実施例を
示す構成説明図、第7図は受信回路の動作説明用波形図
である。 1・・・送信回路、2・・・受信回路、4・・・変調回
路。 5・・・駆動回路、6・・・信号検出回路、7・・・復
調回路。 41.42・・・J−にフリップフロップ回路、51・
・・長短パルス検出回路、 52.53・・・ドライバ
、63・・・遅蝙回路、71・・・波形整形回路、72
・・・エツジ検出回路。 73・・・プログラムカウンタ、 ’14.7rs・・
・フリップフロップ回路 特許出願人 株式会社 千野製作所
#I1 is a configuration explanatory diagram showing one embodiment of the transmission device according to this f14, FIG. 2 is a waveform diagram for explaining the operation of the drive circuit, and FIG. 6 is a waveform diagram for explaining the operation of the drive circuit. FIG. 7 is a waveform diagram for explaining the operation of the receiving circuit. 1... Transmission circuit, 2... Receiving circuit, 4... Modulation circuit. 5... Drive circuit, 6... Signal detection circuit, 7... Demodulation circuit. 41.42...Flip-flop circuit at J-, 51.
... Long and short pulse detection circuit, 52.53 ... Driver, 63 ... Delay circuit, 71 ... Waveform shaping circuit, 72
...Edge detection circuit. 73...Program counter, '14.7rs...
・Flip-flop circuit patent applicant Chino Seisakusho Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、送信データがクリア端子に供給され、J、に端子が
ハイレベ、ルとされ良路1のJ−にフリップ7四ツブ回
路と、この第1OJ−に7リツプフロツプ回路出力が同
時KJ、に端子に供給される第2のJ−Ky9ツブ7a
ツブ回路とを備え、送信データのハイレベル1九はロー
レベルに対応してその出力信号の前のパルス信号と同−
波形信号壕九は180度反転した信号に位相変調して出
力するようにしたことを特徴とする変調回路。
1. Transmission data is supplied to the clear terminal, and the J terminal is set to high level, and the flip 7 four-tub circuit goes to the J- of the good path 1, and the 7 lip-flop circuit outputs to the 1st OJ- at the same time to the KJ terminal. The second J-Ky9 tube 7a supplied to
The high level 19 of the transmission data corresponds to the low level and is the same as the pulse signal before the output signal.
The waveform signal converter is a modulation circuit that outputs a 180-degree inverted signal after phase modulation.
JP17819781A 1981-11-05 1981-11-05 Modulation circuit Pending JPS5879360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17819781A JPS5879360A (en) 1981-11-05 1981-11-05 Modulation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17819781A JPS5879360A (en) 1981-11-05 1981-11-05 Modulation circuit

Publications (1)

Publication Number Publication Date
JPS5879360A true JPS5879360A (en) 1983-05-13

Family

ID=16044275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17819781A Pending JPS5879360A (en) 1981-11-05 1981-11-05 Modulation circuit

Country Status (1)

Country Link
JP (1) JPS5879360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594365A (en) * 1982-06-30 1984-01-11 Mitsubishi Electric Corp Single line synchronism type transmitter
JPS6037857A (en) * 1983-08-10 1985-02-27 Nec Corp Fm transmission system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319706A (en) * 1976-08-07 1978-02-23 Hitachi Ltd Data communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319706A (en) * 1976-08-07 1978-02-23 Hitachi Ltd Data communication system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594365A (en) * 1982-06-30 1984-01-11 Mitsubishi Electric Corp Single line synchronism type transmitter
JPS6037857A (en) * 1983-08-10 1985-02-27 Nec Corp Fm transmission system
JPH0352699B2 (en) * 1983-08-10 1991-08-12 Nippon Electric Co

Similar Documents

Publication Publication Date Title
US3128343A (en) Data communication system
US4045796A (en) Correlation system for pseudo-random noise signals
CA2002783A1 (en) Alternate pulse inversion encoding scheme for serial data transmission
US3361978A (en) Split-phase code modulation synchonizer and translator
JPH05327788A (en) Data demodulating circuit
JPS5879360A (en) Modulation circuit
US4634987A (en) Frequency multiplier
US4346353A (en) Modulator and demodulator circuits for modified delay modulation method
JPS58502030A (en) Device that aligns the phase of the oscillator with the input signal
US4514840A (en) Data transmission systems for full duplex communication
US3739289A (en) Apparatus for demodulation of phase difference modulated data
US4266198A (en) Sampling system for decoding biphase-coded data messages
JPS5843653A (en) Pulse modulating circuit
SU881809A1 (en) Device for synchronizing telemechanics system
JPS5864849A (en) Code transmitter
JPS5864848A (en) Data transmitter
JPS5879359A (en) Drive circuit
JPS61135250A (en) Phase locking circuit
JPH0338115A (en) Data transmission equipment
JPS58184855A (en) Fsk transmitter
JPS60227540A (en) Timing regenerating circuit
SU866771A1 (en) Device for discrete phase locking
JPH0143489B2 (en)
JPS6250009B2 (en)
JPH0311140B2 (en)