JPS5864848A - Data transmitter - Google Patents

Data transmitter

Info

Publication number
JPS5864848A
JPS5864848A JP56163525A JP16352581A JPS5864848A JP S5864848 A JPS5864848 A JP S5864848A JP 56163525 A JP56163525 A JP 56163525A JP 16352581 A JP16352581 A JP 16352581A JP S5864848 A JPS5864848 A JP S5864848A
Authority
JP
Japan
Prior art keywords
signal
circuit
data
terminal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56163525A
Other languages
Japanese (ja)
Inventor
Shuji Abe
安部 周二
Masaru Ozawa
小沢 賢
Yoshihiro Obata
小幡 好宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Works Ltd filed Critical Chino Works Ltd
Priority to JP56163525A priority Critical patent/JPS5864848A/en
Publication of JPS5864848A publication Critical patent/JPS5864848A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4904Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using self-synchronising codes, e.g. split-phase codes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To speed up a titled data transmitter and to make it highly reliable, by phase-modulating transmission data into long and short pulses, transmitting signals corresponding to the pulses with different peaks, and detecting and demodulating the signals at the reception side. CONSTITUTION:Transmission data of H, L is inputted from a terminal 3 at a transmission circuit 1, a modulating circuit 4 outputs pulses of one period corresponding to 1-bit of this data and changes the phase of a pulse signal outputted only at the change to L. This phase-modulated signal becomes a long and short pulse signal on the other hand, and this signal is applied to a driving circuit 5. The circuit 5 converts the signal into a signal with a low and high peak value corresponding to the length of pulses and outputs the signal from a transformer T. A reception circuit 2 detects the presence/absence of a reception data signal inputted from the transformer T at a signal detecting circuit 6, this detecting signal demodulates the reception data into an original data at a demodulation circuit 7 and outputs the data signal from a terminal 8. Since one pulse is enough for one bit, the redundancy is less and high-speed transmission can be attained.

Description

【発明の詳細な説明】 (1)発明の技術分野 この発明は、データを伝送線を通じて送受信するデータ
伝送装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a data transmission device that transmits and receives data through a transmission line.

(2)従来技術 従来1例えば伝送すべきデータの1.0(H,L)に所
定の周波数の発振信号またはその停止(ゼロ)信号を対
応させてデータの伝送を行ってい友。
(2) Prior Art Conventional 1 For example, data is transmitted by associating 1.0 (H, L) of the data to be transmitted with an oscillation signal of a predetermined frequency or its stop (zero) signal.

しかしながら1発振信号を用いると、データの1ビット
当シ、少なくとも数サイクル以上必要とし、それだけ冗
長性が増大し、高速伝送には不向きだった。
However, when a single oscillation signal is used, at least several cycles are required for each bit of data, and redundancy increases accordingly, making it unsuitable for high-speed transmission.

(3)発明の目的 この発明の目的は1以上の点に鑑み、信号を位相変調し
て伝送するようKし、高速、高信頼性化を図っ九データ
伝送装置を提供することである。
(3) Purpose of the Invention In view of the above points, it is an object of the present invention to provide a data transmission device which transmits signals by phase modulating the signals and achieves high speed and high reliability.

(4)発明の実施例 第1図は、この発明に係るデータ伝送装置の構成説明図
である。
(4) Embodiment of the Invention FIG. 1 is an explanatory diagram of the configuration of a data transmission device according to the invention.

図において、1は送信回路、2は受信回路、Tは伝送線
tK送信回路t、受信回路2を接続するトランスである
。送信回路1は、入力端子3よプ供給される1、0(H
,L)の送信データ信号が入力され、このデータの1ビ
ツトに対応させて1周期のパルスを出力する回路で、L
K変化する時の与り出力するパルス信号の位相を変化さ
せる変調回路41およびこの変調回路40位相変調され
良信号は見方をかえると長短パルス信号となるため、こ
の長短に対応して波高値の低い信号および高い信号とし
て出力する駆動回路5よ多構成されている。を九、受信
回路2は、受信データ信号の有無を検出する信号検出回
路6.およびこの信号検出回路6の検出信号によプ受信
データの復調を行い、もとのデータ信号を出力端子8よ
シ出力する復調回路7よ多構成されている・ データ信号の伝送形態は第2図で示す通シであるO 送信データが第2図ビ)の前半で示すようKH(ハイ)
レベルのときは、伝送信号形態は、第2図(ロ)の前半
で示すように、1ピツ)4C対応させて1周期のパルス
を割シ合て、その前のパルス信号と同一波形信号とされ
、送信データが第2図(イ)の後半で示すようKL(ロ
ー)レベルのときは、その伝送信号形態は、第2図←)
の後半て示すように、その前のパルス信号の位相を18
0度反転させ九波形信号とされる。
In the figure, 1 is a transmitting circuit, 2 is a receiving circuit, and T is a transformer connecting the transmission line t, the transmitting circuit t, and the receiving circuit 2. The transmitting circuit 1 receives 1, 0 (H
, L) is input, and outputs one period of pulse corresponding to one bit of this data.
A modulation circuit 41 changes the phase of the output pulse signal when K changes, and this modulation circuit 40. A good signal that has been phase modulated becomes a long and short pulse signal, so the peak value is changed according to the length. The driving circuit 5 is configured to have a plurality of driving circuits 5 that output low signals and high signals. 9. The receiving circuit 2 includes a signal detection circuit 6 for detecting the presence or absence of a received data signal. The demodulation circuit 7 demodulates the received data using the detection signal of the signal detection circuit 6 and outputs the original data signal through the output terminal 8. The transmission data is KH (high) as shown in the first half of Figure 2 (B).
As shown in the first half of Figure 2 (b), when the signal is at the same level, the transmission signal form is divided into 1 cycle pulses corresponding to 4C, and is made into a signal with the same waveform as the previous pulse signal. When the transmitted data is at the KL (low) level as shown in the second half of Figure 2 (A), the transmission signal form is as shown in Figure 2 (←)
As shown in the second half of the figure, the phase of the previous pulse signal is 18
It is inverted by 0 degrees and becomes a nine waveform signal.

送信する場合は、第2図0)のデータを、第2図(ロ)
のパルス信号に変調し、受信する場合は第2図@)のパ
ルス信号を第2図0)のデータに復調する。
When transmitting, the data in Figure 2 (0) should be sent to Figure 2 (B).
When receiving the pulse signal, the pulse signal shown in Fig. 2 @) is demodulated into the data shown in Fig. 2 0).

また、H,Lレベルの信号が混在したts2図(ハ)の
ようなデータの伝送信号は第2図に)のようになる。な
お、Hのとき位相を反転させるようKしてもよい。
Further, a data transmission signal as shown in ts2 (c) in which H and L level signals are mixed is as shown in FIG. 2). Note that K may be used to invert the phase when the signal is H.

第3図は、送信回路の一実施例を示す構成説明図である
。まず変調回路4について説明する。
FIG. 3 is a configuration explanatory diagram showing one embodiment of the transmitting circuit. First, the modulation circuit 4 will be explained.

変調回路4は、入力端子3からの送信データ信号がクリ
ア端子CLRK供給され、J、に端子がH(ハイ)レベ
ルとされた第1のJ−にフリップフロップ回路41.お
よびこの第1のJ−Kyリップグロップ回路41のQ1
端子の出力がJ、に端子に同時に供給され、クリア端子
はアースで常にゼロレベルとされt Q”端子よプ出力
信号が取〕出される第2のJ−にフリップフロップ回路
42よ多構成され、各フリップフロップ回路41 、4
2$各クロツク端子CKKはクロック端子40よシ所定
の周期のクロック信号が供給され、りロック信号の立ち
上シ信号でトリガされるようになっている。
The modulation circuit 4 has a clear terminal CLRK supplied with the transmission data signal from the input terminal 3, and a first flip-flop circuit 41.J- whose terminal is set at H (high) level. and Q1 of this first J-Ky lip flop circuit 41
The output of the terminal J is simultaneously supplied to the terminal J, and the clear terminal is always at zero level by grounding, and the output signal from the terminal Q is taken out. , each flip-flop circuit 41, 4
Each clock terminal CKK is supplied with a clock signal of a predetermined period from the clock terminal 40, and is triggered by the rising edge of the lock signal.

#I4図を参照して変調回路4の動作を説明する〇各7
リツプフロツプ回路41 、42 Kは第4図0)のよ
うなりロック信号が供給され、第4図幹)で示すような
H,L、H,L、L、Hのデータ信号が第1のJ−にフ
リップフロップ回路41のクリア端子に供給されたとす
る。なお、J−にフリップフロップ回路は、クリア端子
がHレベルのときは、必ずQ端子はり、Q端子はH,ク
リア端子がLで、J。
#I4 Explain the operation of the modulation circuit 4 with reference to the diagram 〇Each 7
The lip-flop circuits 41 and 42K are supplied with a lock signal as shown in FIG. 4 (0), and H, L, H, L, L, H data signals as shown in FIG. Suppose that the signal is supplied to the clear terminal of the flip-flop circuit 41. Note that in the J- flip-flop circuit, when the clear terminal is at H level, the Q terminal is always on, the Q terminal is at H, the clear terminal is at L, and J.

K端子がともKHのときはクロック信号の立ち上)でQ
、Q端子出力は、各々反転し、ともKLのときは、もと
の状態を保持する。(次表参照)第4図0)で示すクロ
ックのが入ったとき、第1のJ−にフリップフロ、プ回
路41のクリア端子にはデータHが供給されている丸め
、そのQl端子出力はHとなる。次にり”ツク■が入つ
九ときも同様Hである。クロック■のときは、データは
Lで。
When the K terminal is both KH, Q at the rising edge of the clock signal)
, Q terminal outputs are each inverted, and when both are KL, the original state is maintained. (Refer to the following table) When the clock shown in Figure 4 (0) is input, the first J- is a flip-flop, the clear terminal of the pull circuit 41 is supplied with data H, and the Ql terminal output is H. becomes. The same goes for the 9th time when the next "tsuku■" is entered.When the clock is ■, the data is L.

これがクリア端子に供給され、Q1端子出力は反転して
Lとなる。クロック■のときも、データはLのため反転
してQl端子出力はHとなる。クロック■のときはデー
タはHのため、Ql端子出力はHとなる。以下同様にし
て、第4図を→のような出力が第1のフリップフロップ
回路41のQl端子よシ得られる。
This is supplied to the clear terminal, and the Q1 terminal output is inverted and becomes L. Also at the time of clock ■, since the data is L, it is inverted and the Ql terminal output becomes H. When the clock is ■, the data is H, so the Ql terminal output becomes H. Similarly, an output as shown in FIG. 4 is obtained from the Ql terminal of the first flip-flop circuit 41.

このQl端子出力は同時に第2のフリップフロップ回路
42の、J、に端子に供給される。クロック■のときは
、クリア端子はLでJ、に端子はHなので+ Q2端子
出力は反転してHとなる。クロ、り■のときは、J、に
端子はHであるのでt Q2端子出力は反転してLとな
る。クロック■のときは。
This Ql terminal output is simultaneously supplied to the J terminal of the second flip-flop circuit 42. When the clock is ■, the clear terminal is L and the J and 2 terminals are H, so the +Q2 terminal output is inverted and becomes H. In the case of BLACK or RI, the J and Q2 terminals are at H level, so the output from the tQ2 terminal is inverted and becomes L level. When the clock is ■.

J、に端子はまだHなのでQ2端子出力は反転してHと
なる。クロック■のときは、J、に端子はまだLなので
Q2端子出力はもとの状態を保持しHである。クロック
■のときはJ、に端子はまだHで。
Since the terminal J is still at H, the output from the Q2 terminal is inverted and becomes H. When the clock is ■, the terminal J is still at L, so the output from the Q2 terminal maintains its original state and becomes H. When the clock is ■, the J terminal is still H.

Q2端子出力は反転してLとなる。以下同様にして第4
図に)で示すような出力が第2のフリップフロップ回路
42のQ2端子よシ得られる。
The Q2 terminal output is inverted and becomes L. Similarly, the fourth
An output as shown in ) is obtained from the Q2 terminal of the second flip-flop circuit 42.

この第4図←)の信号は、第4図(ロ)のH,L信号に
対応して1クロツク遅れて、Hレベルに対してその前の
信号と同一波形信号となシ、Lレベルに対しては、その
前の信号を180度反転させた信号なお、J−にフリッ
プフロップ回路41.42の出力端子は必要に応じて上
記以外の残夛の端子も使用できる。
The signal shown in Fig. 4 (←) is delayed by one clock in response to the H and L signals shown in Fig. 4 (b), and has the same waveform as the previous signal with respect to the H level. On the other hand, a signal obtained by inverting the previous signal by 180 degrees is used.For the output terminals of the flip-flop circuits 41 and 42 for J-, residual terminals other than those described above can be used as necessary.

次に駆動回路5について説明する。Next, the drive circuit 5 will be explained.

再び第3図を参照し、駆動回路5は、第4図に)のよう
に2位相変調され先出力信号は、見方をかえるとパルス
幅が長い信号とパルス幅が短い信号が混在した長短パル
ス信号とみえ、この長短を検出する長短パルス検出回路
51.および長短パルス検出回路51の長短検出信号に
よ〕駆動される第1のドライバ52.第2のドライバ5
3よ〉構成されている。第1のドライバ52は、変調回
路4からの送信データを受信し、長短パルス検出回路5
1の長パルス検出信号に応じて送信データが長信号のと
きのみ波高値Erの低い信号を出力し、#I2のドライ
に応じて波高値E2の高い信号を出力するようになって
いる。
Referring again to FIG. 3, the drive circuit 5 performs two-phase modulation as shown in FIG. A long/short pulse detection circuit 51 that looks like a signal and detects its length. and a first driver 52 driven by the long/short pulse detection signal of the long/short pulse detection circuit 51. second driver 5
3. It is structured. The first driver 52 receives the transmission data from the modulation circuit 4 and the long/short pulse detection circuit 5
In response to the long pulse detection signal #1, a signal with a low peak value Er is output only when the transmitted data is a long signal, and in response to the dry signal #I2, a signal with a high peak value E2 is output.

長パルス信号の幅が短パルス信号の幅の2倍で1 あるので、波高値E+は8番の2倍とすればよく、第5
図(イ)で示すような波高値の異なった。任意の一周期
分の積分値(DC成分)がゼロとなるような信号がトラ
ンスTを介して伝送線tK送出される。
The width of the long pulse signal is twice the width of the short pulse signal, which is 1, so the peak value E+ should be twice the number 8, and the 5th
The wave height values were different as shown in Figure (a). A signal whose integral value (DC component) for any one cycle is zero is transmitted via the transformer T to the transmission line tK.

りt6.ゼロ点aからゼロ点Cまでの積分値はゼロであ
シ、ゼロ点すからゼロ点dまでの積分値もゼロであシ、
常に任意の一周期の積分値はゼロである。
Rit6. The integral value from zero point a to zero point C is zero, and the integral value from zero point A to zero point d is also zero,
The integral value of any one period is always zero.

このようKして、伝送1ijtKはCR分布定数をもつ
ため、長信号と煙信号を同一波高値で伝送すると長信号
側でエネルギー蓄積を起こし、ゼロ点がひきずられて暴
れ°てしまい、正しい伝送が困難であるが、常に任意の
一周期の積分値をゼロとするようにすれば、エネルギー
蓄積は起こらず、ゼロ点変動は生ぜず、第5図←)で示
すように受信波形は暴れの少ない正しい信号となる。
In this way, the transmission 1ijtK has a CR distribution constant, so if a long signal and a smoke signal are transmitted at the same peak value, energy will accumulate on the long signal side, the zero point will be dragged, and the transmission will be unstable. However, if you always set the integral value of any one cycle to zero, no energy accumulation will occur, zero point fluctuation will not occur, and the received waveform will not be violent as shown in Figure 5 ←). This results in fewer correct signals.

第6図は、受信回路2の一実施例を示す構成説明図であ
る。
FIG. 6 is a configuration explanatory diagram showing one embodiment of the receiving circuit 2. As shown in FIG.

図において、伝送IItを伝送してきたデータ信号は、
トランスTを介して信号検出回路6.復調回路7に供給
される。信号検出回路6は、第7図員で示すようなH,
H,H,L、H,L、L、Hのデータ信号の有無、キャ
リアを検出する丸めのレベルコンパレータ61.このレ
ベルコンパレータ第2図(→のように2ビツト遅延した
出力を発生すどJ る遅延回路特よシなシ、出力端子60からキャリア信号
が取〕出せる。復調回路7は、第7図(へ)のようなデ
ータ信号の波形整形を行うヒステリシスコンパレータの
ような波形整形回路71.波形整形回路71のエツジを
検出してエツジパルスを発生する微分回路のようなエツ
ジ検出回路72.エツジ検出回路72のトリガがかかる
毎に所定時間遅延し、所定の幅のパルス信号を発生する
ディレィのかかった単安定マルチバイブレータの機能を
もつグログラムカウンタ73.プログラムカウンタ73
の出力がD1端子に供給されるD形の第1の7リツプフ
ロツプ回路74.およびD形の第1の7リツプ70ツブ
回路74の出力がD2端子およびクリア端子CLR2に
供給されるD形の第2の7リツプ70ツブ回路75よシ
構成されている。なお、遅延回路63により。
In the figure, the data signal that has transmitted the transmission IIt is
6. Signal detection circuit via transformer T. The signal is supplied to the demodulation circuit 7. The signal detection circuit 6 includes H, as shown in FIG.
A rounding level comparator 61 that detects the presence or absence of H, H, L, H, L, L, H data signals and carriers. This level comparator generates a 2-bit delayed output as shown in Figure 2 (→), and a carrier signal can be extracted from the output terminal 60. A waveform shaping circuit 71 such as a hysteresis comparator that shapes the waveform of a data signal such as 71. An edge detection circuit 72 such as a differentiating circuit that detects the edge of the waveform shaping circuit 71 and generates an edge pulse. A glogram counter 73 that has the function of a monostable multivibrator with a delay that generates a pulse signal of a predetermined width with a predetermined time delay every time the trigger is applied.Program counter 73
A D-type first 7 lip-flop circuit 74. whose output is supplied to the D1 terminal. and a D-type second 7-lip 70-tub circuit 75 to which the output of the D-type first 7-lip 70-tub circuit 74 is supplied to the D2 terminal and the clear terminal CLR2. Note that due to the delay circuit 63.

エツジ検出回路72.プログラムカウンタ73は1ピツ
ト遅延され、第1.第2の7リツプ70ッグ回路74 
、75は2ビツト遅延されて動作するようKならている
。なお遅延回路63は信号検出回路6と別構成要素と考
えてもよい。
Edge detection circuit 72. The program counter 73 is delayed by one pit and the first . Second 7-lip 70-g circuit 74
, 75 are aligned with K so that they operate with a delay of 2 bits. Note that the delay circuit 63 may be considered as a separate component from the signal detection circuit 6.

第7図を参照して受信回路2の動作を説明する。The operation of the receiving circuit 2 will be explained with reference to FIG.

第7図0)のようなデータは波形整形回路71を介して
エツジ検出回路72に供給され、信号検出回路6の第7
図(ロ)のようなキャリア検出信号にょシ1ビット遅延
して動作を開始し、第7図(ハ)のような最少間隔が出
力データの半ビットのエツジパルスを発生する0このエ
ツジパルスは、グログラムカウンタ73にロードされる
とともに、第1.第2の7リツプ70ツブ回路74 、
75のクロック端子CKに供給され、動作を行なわせる
The data shown in FIG. 7 0) is supplied to the edge detection circuit 72 via the waveform shaping circuit 71, and
The carrier detection signal shown in Figure (B) starts operation with a 1-bit delay, and generates an edge pulse whose minimum interval is half a bit of the output data as shown in Figure 7 (C). The first gram counter 73 is loaded, and the first . a second 7-lip 70-tub circuit 74;
It is supplied to the clock terminal CK of 75 to cause the operation to take place.

プログラムカウンタ73の出力は、エツジ検出回路72
の第7図(→のエツジパルスの立ち上シ信号が来ゐごと
に1次のエツジパルスが来る前に立ち上ることができる
時間t1遅延し9次のエラジノくルスの立ち下J)Kよ
りリセットされる時間幅を鵞のノくルス信号を発生する
。従ってエラジノ(ルス■で所定の時間t1遅嬌してパ
ルス信号が発生し、 tz時間以内で次のエツジパルス
0の立ち下シでリセットされるとともに、このエラジノ
(ルス■の立ち上シで再び次のパルス幅信号を発生させ
、同様な〕(ルス徊号がQO端子よシ得られる。エラジ
ノくルス■によるパルス幅信号は1次のエラジノくルス
■までの間隔が広く、自動的に立ち下ってしまう。以下
同様にして、第7図に)のようなQO端子出力が第1の
7リツプ70ツブ囲路74のD1端子に供給される。
The output of the program counter 73 is output from the edge detection circuit 72.
(The time t1 that the rising edge pulse of → can rise before the arrival of the first edge pulse is delayed by t1, and the falling edge of the 9th order edge pulse J) is reset from K. Generates a time span signal. Therefore, a pulse signal is generated after a predetermined time t1 delay in the erazino (Rus), and is reset at the falling edge of the next edge pulse 0 within the time tz, and the next pulse signal is generated again at the rising edge of this erazino (Rus). A similar pulse-width signal is generated from the QO terminal.The pulse width signal from the Eraginokurus has a wide interval to the primary Eraginokurus, and it automatically falls. In the same manner, the QO terminal output as shown in FIG.

第1のフリップフロップ回路74は2ビツト遅延ス■で
もQO端子出力がH&のでそのQ1端子出力はH,エツ
ジパルス■でQo端子出力がLなので、そのQ1端子出
力はり、エツジパルス■でQo端子出力はHなので+ 
Q”端子出力はH,エツジパルス■でQO端子出力はH
なのでQ1m子出力出力というように、以下同様にして
第7図に)のような出力が第1のフリップフロップ回路
74のQl端子より得られ。
In the first flip-flop circuit 74, even with a 2-bit delay time, the QO terminal output is H &, so its Q1 terminal output is H. Since the Qo terminal output is L with an edge pulse ■, the Q1 terminal output is high, and the Qo terminal output is high with an edge pulse ■. Because it is H+
Q” terminal output is H, edge pulse ■QO terminal output is H
Therefore, an output such as the Q1m output (in the same way as shown in FIG. 7) is obtained from the Ql terminal of the first flip-flop circuit 74.

第2のフリップフロップ回路65のD2端子、クリア端
子に供給される。
It is supplied to the D2 terminal and clear terminal of the second flip-flop circuit 65.

第2のフリップフロップ回路75も2ビツト遅延して動
作を開始し、エツジパルス■、■ではQ1端子出力はH
なので、そのQ2端子出力もHである。
The second flip-flop circuit 75 also starts operating with a 2-bit delay, and at edge pulses ■ and ■, the Q1 terminal output is high.
Therefore, the Q2 terminal output is also H.

エツジパルス■ではt Q1端子出力はLとなシ、クリ
°アされてQ2端子出力はり、エツジパルス■でQl端
子出力はI(C立ち上るが、まだLであったのでクリア
が働きQ2端子出力はり、エツジパルス■ではQl端子
出力はH表のでQ2端子出力はHとなシ。
At edge pulse ■, the Q1 terminal output is not L, it is cleared and the Q2 terminal output is increased, and at edge pulse ■, the Ql terminal output is I (C rises, but since it was still L, the clear is activated and the Q2 terminal output is increased. In Edge Pulse ■, the Ql terminal output is H table, so the Q2 terminal output is H.

以下同様にして第7図(へ)のような出力がQ2端子よ
シ得られ、出力端子7より取シ出せる。
Thereafter, in the same manner, an output as shown in FIG.

これは、第7図ωの最初の2ピツトを除外してH,L、
 H,L、 L、・・・と正しく復調された信号となる
This excludes the first two pits of ω in Figure 7, H, L,
The signal is correctly demodulated as H, L, L, etc.

なお信号検出回路6の整流回路620代りK/<ンドパ
スフィルターや、PLL(フェーズロックドループ)を
用い、必要とする周波数の受信信号のり61を省略し、
復調回路70波形整形回路71の出力を共通に用いるよ
うにしてもよい。
Note that the rectifier circuit 620 of the signal detection circuit 6 is replaced by a K/< pass filter or a PLL (phase-locked loop), and the reception signal paste 61 of the required frequency is omitted.
The outputs of the demodulation circuit 70 and the waveform shaping circuit 71 may be used in common.

@)発明の要約 以上述べ丸ように、この発明は、送信データを位相変調
する変調回路と、この位相変調された信号の見方を変え
ると長短パルス信号となるこの長短パルス信号に対応し
て波高値を異にして送出する駆動回路を含む送信回路と
、受信データの有無を検出する信号検出回路、復調回路
を含む受信回路を備えたデータ伝送装置である。
@) Summary of the Invention As stated above, the present invention consists of a modulation circuit that phase modulates transmission data, and a waveform that corresponds to the long and short pulse signal, which becomes a long and short pulse signal if you look at the phase modulated signal differently. This data transmission device includes a transmitter circuit including a drive circuit that transmits data with different high values, a signal detection circuit that detects the presence or absence of received data, and a receiver circuit that includes a demodulation circuit.

(6)発明の効果 従って、伝送データを長短パルス信号′として伝送を行
っているので、1ビツト当#)1ノ(ルス(サイクル)
で済み、それだけ冗長性が少なく、又。
(6) Effects of the invention Therefore, since the transmission data is transmitted as long and short pulse signals, 1 bit per #) 1 pulse (cycle)
, there is less redundancy, and also.

位相変調され良信号の見方を変えると長短ノくルス信号
となる長短パルス信号に対応して波高値を異にして伝送
しているので、受信波形の歪みも少なく、高速で、しか
も高信頼性の伝送装置とすることができる。
If you change the way you look at a good signal that is phase modulated, it becomes a long and short pulse signal.Since the wave height values are different and are transmitted according to the long and short pulse signals, there is little distortion in the received waveform, and it is fast and highly reliable. It can be used as a transmission device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る伝送装置の一実施例を示す構成
説明図、第2図は伝送信号形態の説明図。 第3図は送信回路の一実施例を示す構成説明図。 第4図は変調回路の動作説明用波形図、第5図嬬駆動回
路の動作説明用波形図、第6図は受信回路の一実施例を
示す構成説明図、第7図は受信回路の動作説明用波形図
である。 1・・・送信回路、j・・・受信回路、4・・・変調回
路。 5・・・駆動回路、6・・・信号検出回路、7・・・復
調回路41 、42・・・J−にフリ、プフロップ回路
、51・・・長短パルス検出回路、 52.53・・・
ド2イパ、63・・・遅延回路、71・・・波形整形回
路、72・・・エツジ検出回路、73・・・プログラム
カウンタ、74,75・・・フリップフロップ回路 特許出願人 株式会社 千野製作所
FIG. 1 is a configuration explanatory diagram showing an embodiment of a transmission device according to the present invention, and FIG. 2 is an explanatory diagram of a transmission signal format. FIG. 3 is a configuration explanatory diagram showing one embodiment of a transmitting circuit. Fig. 4 is a waveform diagram for explaining the operation of the modulation circuit, Fig. 5 is a waveform diagram for explaining the operation of the driving circuit, Fig. 6 is a configuration explanatory diagram showing one embodiment of the receiving circuit, and Fig. 7 is the operation of the receiving circuit. It is a waveform diagram for explanation. 1... Transmission circuit, j... Receiving circuit, 4... Modulation circuit. 5... Drive circuit, 6... Signal detection circuit, 7... Demodulation circuit 41, 42... J-Flip flop circuit, 51... Long/short pulse detection circuit, 52.53...
63... Delay circuit, 71... Waveform shaping circuit, 72... Edge detection circuit, 73... Program counter, 74, 75... Flip-flop circuit Patent applicant Chino Seisakusho Co., Ltd.

Claims (1)

【特許請求の範囲】 1、 伝送線に接続して信号の授受を行うデータ伝送装
置において、送信データを位相変調する変調回路および
この位相変調され、見方をかえると長短パルス信号とな
る信号に対応して波高値を異にして信号を送出する駆動
回路を含む送信回路と。 受信データの有無を検出する信号検出回路およびこの信
号検出回路の検出信号によシ受信データの復調を行う復
調回路を含む受信回路とを備え九ことt−特徴とするデ
ータ伝送装置。
[Claims] 1. In a data transmission device that connects to a transmission line and sends and receives signals, a modulation circuit that phase modulates transmitted data and a signal that is phase modulated and becomes a long and short pulse signal when viewed from a different perspective. and a transmitter circuit including a drive circuit that transmits signals with different peak values. 9. A data transmission device comprising: a signal detection circuit for detecting the presence or absence of received data; and a receiving circuit including a demodulation circuit for demodulating the received data using a detection signal of the signal detection circuit.
JP56163525A 1981-10-15 1981-10-15 Data transmitter Pending JPS5864848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56163525A JPS5864848A (en) 1981-10-15 1981-10-15 Data transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56163525A JPS5864848A (en) 1981-10-15 1981-10-15 Data transmitter

Publications (1)

Publication Number Publication Date
JPS5864848A true JPS5864848A (en) 1983-04-18

Family

ID=15775520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56163525A Pending JPS5864848A (en) 1981-10-15 1981-10-15 Data transmitter

Country Status (1)

Country Link
JP (1) JPS5864848A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319706A (en) * 1976-08-07 1978-02-23 Hitachi Ltd Data communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319706A (en) * 1976-08-07 1978-02-23 Hitachi Ltd Data communication system

Similar Documents

Publication Publication Date Title
EP0040632B1 (en) Data processing system with serial data transmission between subsystems
GB1408937A (en) Pilot signal transmission systems
IE45458B1 (en) Miller-encoded message decoder
JPS6471326A (en) Method of demodulating bi-phase signal
GB1445163A (en) Variable-rate data-signal receiver
US4052558A (en) Data transmission system
US3614639A (en) Fsk digital demodulator with majority decision filtering
JPS6117381B2 (en)
US4752942A (en) Method and circuitry for extracting clock signal from received biphase modulated signal
JPH05236031A (en) Data transmission system
US4232387A (en) Data-transmission system using binary split-phase code
US4004162A (en) Clock signal reproducing network for PCM signal reception
US3779321A (en) Data transmitting systems
US4153814A (en) Transition coding method for synchronous binary information and encoder and decoder employing the method
GB1479028A (en) Data transmission systems
US4346353A (en) Modulator and demodulator circuits for modified delay modulation method
JPS5864848A (en) Data transmitter
JP2580211B2 (en) Communication device
US3624528A (en) Digital demodulator
US4229823A (en) Digital clock phase recovery circuits for data receiver
US3302114A (en) Frequency shift signaling system with auxiliary control of pulse regenerator in the absence of data signals
GB1507638A (en) Receiver for synchronous data signals
JPS6037857A (en) Fm transmission system
GB1470547A (en) System for transition-coding binary information
JPS5915429B2 (en) receiving device