JPS5879090A - Oxidation accelerator for sulfur dioxide in cracking process - Google Patents

Oxidation accelerator for sulfur dioxide in cracking process

Info

Publication number
JPS5879090A
JPS5879090A JP57147516A JP14751682A JPS5879090A JP S5879090 A JPS5879090 A JP S5879090A JP 57147516 A JP57147516 A JP 57147516A JP 14751682 A JP14751682 A JP 14751682A JP S5879090 A JPS5879090 A JP S5879090A
Authority
JP
Japan
Prior art keywords
metal
sulfur
palladium
particulate
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57147516A
Other languages
Japanese (ja)
Other versions
JPH0469198B2 (en
Inventor
アラン・ダブリユ・クラツセン
リチヤ−ド・デイ−・ベズマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron Research and Technology Co
Chevron Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research and Technology Co, Chevron Research Co filed Critical Chevron Research and Technology Co
Publication of JPS5879090A publication Critical patent/JPS5879090A/en
Publication of JPH0469198B2 publication Critical patent/JPH0469198B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8609Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 流動接触クラッキングの範鴫には、重質炭化水素を触媒
で分解して形質の燃料や石油化学の原料にすることが含
まれる。餞型的な接触クラッキング(FCC)ユニット
は、炭化水素クラッキング帯域と触媒再生帯域とを有し
ている。一般にゼオライトが含まれている微粒状の触媒
を、炭化水素供給原料が分解されるクラッキング帯域と
、クラッキング帯域で触媒上に形成されるコークスを燃
焼除去する再生帯域との間で循環させる。再生帯域で形
成される燃焼ガスには、空気汚染物質と目される有害物
質が常に若干含まれている。例えば、コークスを酸化す
る過程で一酸化炭素が一般に形成される。米国特許第3
,909.392号を参照されたい。さらに、炭化水素
供給原料が硫黄及び(又は)窒素を含んでいれば、燃焼
ガスには通常これらの元素の酸化物が種々のtr含まれ
ることになろう。
DETAILED DESCRIPTION OF THE INVENTION The scope of fluid catalytic cracking involves the catalytic cracking of heavy hydrocarbons into commercial fuels and petrochemical feedstocks. A catalytic cracking (FCC) unit has a hydrocarbon cracking zone and a catalyst regeneration zone. A finely divided catalyst, typically containing zeolite, is circulated between a cracking zone where the hydrocarbon feedstock is cracked and a regeneration zone where coke that forms on the catalyst in the cracking zone is burned off. The combustion gases formed in the regeneration zone always contain some harmful substances, which are considered air pollutants. For example, carbon monoxide is commonly formed during the process of oxidizing coke. US Patent No. 3
, No. 909.392. Furthermore, if the hydrocarbon feedstock contains sulfur and/or nitrogen, the combustion gas will typically contain various tr oxides of these elements.

燃焼ガスに含まれる一酸化炭素は、白金のような一酸化
炭素酸化促進剤を少伊添加することによって制御するこ
とができる。米国特許第4.072.600号を参照さ
れたい。硫黄収着剤(sulfur  5orbent
 ) 、例えばアルミナを循環インベンタリー(cir
culatina  1nventory )に含ませ
る、すなわち、クラッキング用触媒と混ぜ合せることに
よって硫黄酸化物を制御することができる。米国特許第
4,071,436号を参照されたい。また、二酸化硫
黄酸化促進剤を含ませると、硫黄吸収剤による燃焼ガス
からの硫黄の除去が促進されることも認められている。
Carbon monoxide contained in the combustion gas can be controlled by adding a carbon monoxide oxidation promoter such as platinum. See US Pat. No. 4,072,600. sulfur sorbent
), for example, alumina in a circulating inventory (cir
The sulfur oxides can be controlled by including the sulfur oxides in the cracking catalyst, i.e., by mixing them with cracking catalysts. See US Pat. No. 4,071,436. It has also been recognized that the inclusion of a sulfur dioxide oxidation promoter accelerates the removal of sulfur from the combustion gas by the sulfur absorbent.

米国特許第4,115.250号を参照されたい。現在
までのところ、最も有効な二酸化硫黄酸化促進剤の一つ
は白金であった。この促進剤は有効ではあるが、煙道ガ
スに含まれる窒素酸化物の量を増大させるという欠点が
ある。前記のとおり、白金は一酸化炭素酸化促進剤とし
ても作用する。−酸化炭素及び二酸化硫黄の酸化促進に
おける白金の有効性を保持し、しかも窒素酸化物を形成
しないような酸化促進剤を再生工程に用いることができ
れば望ましいことであろう。
See US Pat. No. 4,115.250. To date, one of the most effective sulfur dioxide oxidation promoters has been platinum. Although effective, this promoter has the disadvantage of increasing the amount of nitrogen oxides contained in the flue gas. As mentioned above, platinum also acts as a carbon monoxide oxidation promoter. - It would be desirable to be able to use an oxidation promoter in the regeneration process that retains the effectiveness of platinum in promoting the oxidation of carbon oxides and sulfur dioxide, yet does not form nitrogen oxides.

パラジウムと、白金、オスミウム、イリジウム、ロジ゛
ウム及びレニウムからなる群から選ばれる少なくとも1
種の別の金属とを含むある種の金属混合物が、−酸化炭
素及び二酸化硫黄の酸化促進剤として役立ち、しかも窒
素の酸化物の形成を最低に抑えつるということが見いだ
された。さらに驚くべきことには、これらの混合物が小
す二酸化硫黄の酸化促進効果が、混合物の形成に用いら
れる個々の金属による効果よりも常に人であるというこ
とが発見された。二酸化硫黄の酸化を促進する能力が高
められると共に、白金を単独で使用するのに較べて窒素
酸化物の形成される量が著るしく低減されることを発見
したことも特筆すべきことである。
Palladium and at least one member selected from the group consisting of platinum, osmium, iridium, rhodium, and rhenium.
It has been discovered that certain metal mixtures containing other metals serve as oxidation promoters for carbon oxide and sulfur dioxide while minimizing the formation of oxides of nitrogen. Even more surprisingly, it has been discovered that the pro-oxidation effect of sulfur dioxide in these mixtures is always greater than the effect of the individual metals used to form the mixture. It is also noteworthy that we have found that the ability to promote the oxidation of sulfur dioxide is enhanced and the amount of nitrogen oxides formed is significantly reduced compared to using platinum alone. .

従って、本発明は、微粒状クラッキング用触媒が含まれ
ている循環触媒集団を、炭化水素クランキング帯域と触
媒再生帯域との間で循環させ、かつ、循環触媒集団内に
硫黄酸化物吸収剤を含ませることにより、再生帯域を出
るガスの硫黄含有量を制御する改良された流動接触クラ
ッキング法において、パラジウム又はパラジウム化合物
と、白金、オスミウム、イリジウム、レニウム及びロジ
ウムからなる群から選ばれる少なくとも1種の別の金属
又はその化合物とを緊密に連合させて形成した二酸化硫
黄酸化促進剤を、無機酸化物支持体と連合させて再生帯
域内に含ませることを特徴とする方法に関するものであ
る。
Accordingly, the present invention provides for circulating a circulating catalyst population containing particulate cracking catalyst between a hydrocarbon cranking zone and a catalyst regeneration zone, and providing a sulfur oxide absorbent within the circulating catalyst population. In an improved fluid catalytic cracking process for controlling the sulfur content of the gas exiting the regeneration zone by including palladium or a palladium compound and at least one member selected from the group consisting of platinum, osmium, iridium, rhenium and rhodium. A sulfur dioxide oxidation promoter formed in intimate association with another metal or a compound thereof is included in the regeneration zone in association with an inorganic oxide support.

さらに本発明は、 <a >  水素の不存在下において炭化水素をクラッ
キングするための微粒状クラッキング用触媒、 (b)  三酸化硫黄を吸収しつる硫黄吸収剤からなる
、該微粒状クラッキング用触媒とは異なる第1の微粒状
固体、及び (C)  パラジウム又はパラジウム化合物と、白金、
オスミウム、イリジウム、レニウム及びロジウムからな
る群から選ばれる少なくとも1種の別の金属又はその化
合物とが含まれる金属混合物と連合した無機酸化物支持
体からなる、該微粒状クラッキング用触媒とは異なる第
2の微粒状固体を含むことを特徴とする、添加水素の不
存在下において硫黄含有炭化水素をクラッキングするの
に有用な組成物に関するものである。
The present invention further provides a particulate cracking catalyst comprising: (a) a particulate cracking catalyst for cracking hydrocarbons in the absence of hydrogen; (b) a sulfur absorbent capable of absorbing sulfur trioxide; is a different first particulate solid, and (C) palladium or a palladium compound, and platinum,
A catalyst different from the particulate cracking catalyst, comprising an inorganic oxide support in association with a metal mixture containing at least one other metal selected from the group consisting of osmium, iridium, rhenium and rhodium, or a compound thereof. The present invention relates to a composition useful for cracking sulfur-containing hydrocarbons in the absence of added hydrogen, characterized in that it comprises particulate solids of 2.

さらに本発明は、 (a )  硫黄酸化物を吸収しうるアルミニウム化合
物で含浸処理したシリカ含有クララ4ング用触媒から本
質的に構成される微粒状クラッキング用触媒、及び (b)  パラジウム又はパラジウム化合物と、白金、
オスミウム、イリジウム、レニウム及び11ジウムから
なる群から選ばれる少なくとも1種の別の金属又はその
化合物とに連合している無機酸化物支持体からなる、該
微粒状クララ:1ング用触媒とは異なる第2の微粒状固
体を含むことを特徴とする、添加水素の不存在下におい
て硫黄含有炭化水素をクラッキングするのに有用な組成
物に関するものである。
The present invention further provides a particulate cracking catalyst consisting essentially of (a) a silica-containing Clara catalyst impregnated with an aluminum compound capable of absorbing sulfur oxides, and (b) palladium or a palladium compound. ,platinum,
Different from the finely divided Clara catalyst, the catalyst comprises an inorganic oxide support associated with at least one other metal or compound thereof selected from the group consisting of osmium, iridium, rhenium and 11dium. The present invention relates to a composition useful for cracking sulfur-containing hydrocarbons in the absence of added hydrogen, the composition comprising a second particulate solid.

1循環触媒集団」という狛旬は、クラッキング帯域と再
生帯域との間で循環させる微粒状の固体のことである。
The "one-cycle catalyst mass" refers to the fine-grained solids that are circulated between the cracking zone and the regeneration zone.

従って、このBH旬にはクラツニヤング用触媒、微粒状
の硫黄吸収剤及び促進剤粒子が包含されるが、それらに
限定されるものではない。
Accordingly, this BH material includes, but is not limited to, a Klutney Young catalyst, a particulate sulfur absorbent, and accelerator particles.

ここで用いた「硫黄吸収剤」という語句は、FCCユニ
ットの再生all内で三酸化硫黄との間に安定な連合体
を形成することが可能であり、かつ、炭化水素クラッキ
ング帯域において分離しうる物質のことをいう。この連
合体は吸収、吸−又は化学反応によって形成されてよい
。このような硫黄吸収剤にはアルミナ及びマグネシアが
包含される。硫黄吸収剤として特に好ましいものは「陵
応性アルミナ」であり、このものは例えばγ−又はη−
アルミナのように少なくとも5012/(1の表面積を
有するアルミナとして定義することができる。好適な反
応性アルミナは、約40%以上のシリカと緊密に組合さ
れることはなく、シリカと実質的には混合していないの
が望ましい。反応性アルミナについての詳しい説明は、
本川aSの一部として参照すべき米国特許第 4.071.436号に記載されている。
As used herein, the term "sulfur absorbent" refers to a sulfur absorbent that is capable of forming a stable association with sulfur trioxide in the regeneration all of the FCC unit and that is capable of separating in the hydrocarbon cracking zone. Refers to matter. This association may be formed by absorption, adsorption or chemical reaction. Such sulfur absorbers include alumina and magnesia. Particularly preferred as a sulfur absorbent is "responsive alumina", which is e.g. γ- or η-
Alumina may be defined as an alumina having a surface area of at least 5012/(1). Preferred reactive aluminas are not closely associated with more than about 40% silica and are substantially free of silica. Preferably, they are not mixed.For more information on reactive alumina, please see
No. 4,071,436, which is incorporated by reference as part of Honkawa aS.

本発明は、二酸化硫黄を三酸化硫黄に変換するのにきわ
めて有効な改良された部類の酸化促進剤に関するもので
る。また大抵の場合、この酸化促進剤は一酸化炭素を二
酸化炭素に変換するための酸化促進剤としても役立つ。
The present invention is directed to an improved class of oxidation promoters that are highly effective in converting sulfur dioxide to sulfur trioxide. In most cases, the prooxidant also serves as a prooxidant for converting carbon monoxide to carbon dioxide.

本川細繊に開示される促進剤は、二酸化硫黄を三酸化硫
黄に変換する促進効果に対して選択性を有し、しかも窒
素の酸化物が形成されるのを最低に抑えつるので、この
部類の促進剤は特に有利である。別の金属に対するパラ
ジウムの相対的比率は、用いられる金属及び選択された
操作方法に応じて広範囲に変動する。
The accelerator disclosed by Honkawa Seisen has selectivity for the accelerating effect of converting sulfur dioxide into sulfur trioxide, and also minimizes the formation of nitrogen oxides, so that it can achieve this effect. This class of accelerators is particularly advantageous. The relative proportions of palladium to other metals vary widely depending on the metal used and the operating method selected.

一般に、1種類のみの別の金属がパラジウムと連合して
含まれるときには、これらの一つの金属間の相対的重量
比率は約100:1〜1:100、好ましくは約10:
1〜1:10の範囲内である。
Generally, when only one other metal is included in association with palladium, the relative weight ratio between these one metals will be about 100:1 to 1:100, preferably about 10:1.
It is within the range of 1 to 1:10.

パラジウムとイリジウム(10:1)及びパラジウムと
白金(10:1)を含む促進剤が、二酸化硫黄の酸化を
促進するのに特に好ましい。金属の混合物として支持体
■、にこれらの金属を配@づることが重要である。異種
の金属が互に別個の粒子Jに配置された場合には、二酸
化硫品の酸化を促進する金属の能力が著るしく低下する
ことが見いだされた。
Promoters containing palladium and iridium (10:1) and palladium and platinum (10:1) are particularly preferred for promoting the oxidation of sulfur dioxide. It is important to deposit these metals on the support as a mixture of metals. It has been found that when dissimilar metals are placed in separate particles J, the ability of the metals to promote oxidation of the sulfur dioxide product is significantly reduced.

促進剤と連合して用いる支持体は、促進剤の活性度又は
FCCユニットの操作に悪影響を与えるものでな番プれ
ば、任意の無機酸化物であってよい。
The support used in conjunction with the promoter may be any inorganic oxide that does not adversely affect the activity of the promoter or the operation of the FCC unit.

支持体は、クラッキング用触媒及び硫黄吸収剤と物理的
に混合することができて、−緒に循環させうるような微
粒状の固体であるのが望ましい。このような物質には多
孔質の無機酸化物、例えばアルミナ及びシリカ、又は2
種又はそれ以1の無機酸化物の混合体、例えばシリカ−
アルミナ、天然及び合成りレー等、結晶性のアルミノ珪
酸塩ゼオライト、その他が包含される。好ましい支持体
は、FCCユニット内における良好な摩耗抵抗性を示し
、促進剤の系外への損失を防ぐ多孔質のクラッキング用
触媒である。1ンゲルハ一ド社(E ngelhard
)から供給される触媒ベースのHE Z −55は、促
進剤用の支持体として用いるのに適している。
Preferably, the support is a finely divided solid that can be physically mixed with and recycled with the cracking catalyst and sulfur absorbent. Such materials include porous inorganic oxides such as alumina and silica;
species or mixtures of one or more inorganic oxides, e.g. silica
Included are crystalline aluminosilicate zeolites, such as alumina, natural and synthetic silanes, and the like. Preferred supports are porous cracking catalysts that exhibit good attrition resistance within the FCC unit and prevent loss of promoter outside the system. 1 Engelhard
) is suitable for use as a support for the promoter.

金属は、含浸もしくはイオン交換のようなff息の適当
な方法で支持体に加えることができるし、あるいはまた
無機酸化物の前駆体と共に水性溶液から共沈殿させるな
どして、あらかじめ選択された固形支持体の前駆体に加
えることもできる。微粒状の促進剤−支持体の場合には
、例えばスプレー乾燥により、又は大きな粒子を所望の
寸法に粉砕したり、又はそれ以外の常用手段によってF
CC系で用いるのに好適な寸法の粒子−とじて微粒状の
固体を形成することかできる。
The metal can be added to the support by any suitable method such as impregnation or ion exchange, or alternatively by co-precipitation from an aqueous solution with an inorganic oxide precursor. It can also be added to the precursor of the support. In the case of finely divided accelerator-supports, the F is applied, for example by spray drying, or by grinding large particles to the desired size, or by other conventional means.
Particles of suitable dimensions for use in CC systems can be fused to form finely divided solids.

FCCユニットの循環触媒集団に促進剤を混入するに当
っては、二酸化硫黄から一酸化硫黄への酸化を促進する
のに充分な鎗の促進剤を含ませるべきである。さらに、
酸化促進剤が一酸化炭素を二酸化炭素に変換するための
促進剤としても役立つことが所望されるならば、この反
応を助けるのに充分な量の促進剤を′含ませる必要があ
る。一般的には、−酸化炭素を酸化さLるのに必要な促
進剤の―は、二酸化硫黄の酸素に必要とされる緻よりも
少ないので、−酸化炭素の酸化に必要な促進剤のlは普
通考慮しなくてもよい。一般に、促進剤の全金属含有量
は、促進剤−支持体連合体の約0.01ないし約2重鏝
%であり、全循環触媒集団の約0.01ないし約100
i4’鯵1)I)mを占める。
In incorporating the promoter into the circulating catalyst population of the FCC unit, sufficient promoter should be included to promote the oxidation of sulfur dioxide to sulfur monoxide. moreover,
If it is desired that the prooxidant also serve as a promoter for the conversion of carbon monoxide to carbon dioxide, a sufficient amount of the promoter must be included to assist in this reaction. In general, the amount of promoter required to oxidize carbon oxide is less than that required for oxygen in sulfur dioxide, so the amount of promoter required to oxidize carbon oxide is less than that required for oxygen in sulfur dioxide. normally does not need to be considered. Generally, the total metal content of the promoter is from about 0.01 to about 2% of the promoter-support association and from about 0.01 to about 100% of the total circulating catalyst population.
i4' occupies 1) I) m.

循環触媒集団に含ませる硫黄吸収剤は、反応性アルミナ
であるのが望ましい。しかしながら、他の硫黄吸収剤も
文献に記載されとおり、それらを本発明に用いることが
できる。一般に、好適な硫黄吸収剤は、再生帯域に存在
する硫黄酸化物の少なくとも約50φ―%を吸収する能
力壱有していなくてはならない。反応性アルミナの場合
、硫黄吸収剤の粒子は通常少なくとも60重量%のアル
ミナを含んでいる。このアルミナは、少なくとも501
2/(lの表面積を有し、約0.1〜100重饅%の反
応性アルミナを含有する。通常硫黄吸収剤は、全循環触
媒集団に対して約0.1ないし約25重量%となるのに
充分な量で触媒と共に含まれる。一般に硫黄吸収剤は、
触媒粒子及び促進剤粒子と物理的に混合された微粒状固
体として含まれる。しかし、米国特許第4,115.2
49号に記載されているように、硫黄吸収剤を触IJA
粒子上に存在させてもよい。
Preferably, the sulfur absorbent included in the circulating catalyst population is reactive alumina. However, other sulfur absorbers are also described in the literature and can be used in the present invention. Generally, a suitable sulfur absorbent should have the ability to absorb at least about 50 φ-% of the sulfur oxides present in the regeneration zone. In the case of reactive alumina, the sulfur absorbent particles typically contain at least 60% by weight alumina. This alumina is at least 501
2/(l) and contains about 0.1 to 100 weight percent reactive alumina. Typically, the sulfur absorbent contains about 0.1 to about 25 weight percent of the total circulating catalyst population. The sulfur absorbent is generally included with the catalyst in an amount sufficient to
Contained as a finely divided solid physically mixed with catalyst particles and promoter particles. However, U.S. Patent No. 4,115.2
49, the sulfur absorbent is
It may also be present on the particles.

炭化水素供給原料のクラッキングに用いる触媒は、FC
C系に用いるのに適した任意の触媒であってよい。この
種の触媒は、普通シリカ及び(又は)アルミナを含有し
ている。マグネシアやジルコニアのような他の耐火性金
属酸化物が示唆されたことがあるし、所望によってはそ
れらを使うこともできる。種々のタイプの天然産及び合
成のフフルミノ珪酸塩分子篩が通常クラッキング用触媒
に添加される。触媒の選択は本発明の臨界的要素をなす
ものではない。選択される酸化促進剤よりもむしろクラ
ッキングされる供給原料及び操作方法によって、触媒の
選択基準がきまるように思われる。従って、触媒の選択
は当業者の裁量範囲内であり、詳しい説明をここで述べ
る必要はない。
The catalyst used for cracking hydrocarbon feedstocks is FC
It can be any catalyst suitable for use with C systems. Catalysts of this type usually contain silica and/or alumina. Other refractory metal oxides such as magnesia and zirconia have been suggested and can be used if desired. Various types of naturally occurring and synthetic fufluminosilicate molecular sieves are commonly added to cracking catalysts. The selection of catalyst is not a critical element of the invention. The catalyst selection criteria appears to be determined by the feedstock to be cracked and the method of operation rather than the oxidation promoter selected. Therefore, the selection of catalyst is within the discretion of those skilled in the art and does not require detailed explanation here.

金属促進剤の活性を実質的に妨げないものであるならば
、ほかの種々のタイプの物質をFCC]CC上の循環触
媒集団に含ませることができる。
Various other types of materials can be included in the circulating catalyst population on the FCC]CC, provided they do not substantially interfere with the activity of the metal promoter.

銅又はクロムのような付加的な一酸化炭素酸化促進剤を
添加してもよい。アルミナと共に硫黄吸収剤にナトリウ
ムも用いられた。この種の物質は、適齢であれば本発明
の実施に支障をきたすことがない。
Additional carbon monoxide oxidation promoters such as copper or chromium may be added. Along with alumina, sodium was also used as a sulfur absorbent. This kind of substance does not pose a problem in carrying out the present invention if it is of an appropriate age.

窒素酸化物の形成を制御するのには、パラジウムとイリ
ジウム(10: 1 )及びパラジウムとロジウム(1
0:1)の各混合物を含む酸化促進剤が特に望ましい。
Palladium and iridium (10:1) and palladium and rhodium (10:1) are used to control the formation of nitrogen oxides.
Particularly preferred are pro-oxidant mixtures of 0:1).

特に好ましいものはパラジウムとイリジウムとの混合物
であり、このものは二酸化硫黄から三酸化穂黄へのすぐ
れた酸化促進効果を発揮した。
Particularly preferred is a mixture of palladium and iridium, which has an excellent effect of promoting the oxidation of sulfur dioxide to panicle trioxide.

本発明をさらに明白に理解するため、次の表に注目願い
たい。含浸法で種々の酸化促進剤を平衡触媒HEZ−5
5の上に置き、そしてアルミナ上への三酸化硫黄の吸着
率を調べることによって、二酸化硫黄を三酸化硫黄に酸
化する個々の金属の能力を間接的に測定した。表は、3
種類の選ばれた金属触媒を単独で用いた時の活性度を示
す。
For a clearer understanding of the invention, please draw attention to the following table. Equilibrium catalyst HEZ-5 with various oxidation promoters by impregnation method
The ability of individual metals to oxidize sulfur dioxide to sulfur trioxide was indirectly determined by placing them on alumina and examining the adsorption rate of sulfur trioxide on alumina. The table is 3
The activity is shown when a selected type of metal catalyst is used alone.

111L1     So    、   l、/  
)白金0.1%           599パラジウ
ム0.1%       491イリジウム0.1% 
      318この表について、3種類の金属のう
ち、白金がとび抜けて最善の酸化促進剤であることにン
1目すベきである。イリジウムは酸化促進能力がきわめ
て低いことがわかる。
111L1 So, l, /
) Platinum 0.1% 599 Palladium 0.1% 491 Iridium 0.1%
318 Regarding this table, it should be noted that of the three metals, platinum is by far the best oxidation promoter. It can be seen that iridium has extremely low ability to promote oxidation.

すでに述べたとおり、本用細劇に開示される金属混合物
による二酸化aiaの酸化を選択的に促進し、しかも窒
素酸化物の形成を最低に抑えうる能力は、従来技術で見
られなかった利点をもたらすものである。このことは第
1図を参照づると明らかである。第1図には、前述の表
に示される個々の金属及び本発明の範躊に11る金属の
種々の混合物の活性度が示されている。第1図から、供
試金属混合物のすべてが、混合物を製造づるのに用いら
れた個々の金属に較べ、二酸化硫黄に対する促進剤とし
ての改良された活性を有していたことがわかる。また同
時に、白金が単独で用いられた時に較べ、これらの金属
混合物による窒素酸化物の形成量が著しく低下したこと
もわかる。1べ゛【のデータは、支持体上に重置で合計
0.1%の金醜を用いたときのものである。
As previously mentioned, the ability of the metal mixture disclosed herein to selectively promote the oxidation of aia dioxide while minimizing the formation of nitrogen oxides provides advantages not seen in the prior art. It is something that brings. This becomes clear when referring to FIG. FIG. 1 shows the activity of the individual metals listed in the table above and of various mixtures of the 11 metals within the scope of the invention. It can be seen from FIG. 1 that all of the metal mixtures tested had improved activity as a sulfur dioxide promoter compared to the individual metals used to make the mixtures. At the same time, it can also be seen that the amount of nitrogen oxides formed by these metal mixtures was significantly reduced compared to when platinum was used alone. The data for 1B is from a total of 0.1% gold superimposed on the support.

二酸化硫黄酸化促進剤として特に活性の高いのは、パラ
ジウムとイリジウム(10:1)及びパラジウムと白金
(10:1)の各混合物である。
Particularly active sulfur dioxide oxidation promoters are mixtures of palladium and iridium (10:1) and mixtures of palladium and platinum (10:1).

第2図を参照するに、パラジウム対白金の比率を変えた
場合の二酸化硫黄酸化促進作用に及はづ影響が比較され
ている。この図から白金とパラジウムとの種々の混合物
が真の相乗効果を示すこと、1なわちいずれか一方の金
属を単独で用いたときよりもすぐれた酸化促進作用を、
それらの混合物が示していることがわかる。最^の酸化
促進効果が得られるのは、パラジウム対白金の比率が約
1:1のときであるが、経済的な見地から、混合物に含
まれる白金の鰻を最適時よりも少な目にして操作するの
が通常望ましい。このことは、パラジウムに較べて白金
のコストが高いことに起因する。
Referring to FIG. 2, the effect of varying the ratio of palladium to platinum on the promotion of oxidation of sulfur dioxide is compared. This figure shows that various mixtures of platinum and palladium exhibit a true synergistic effect, i.e., a greater oxidation promoting effect than either metal alone.
It can be seen that their mixture shows. The best oxidation promoting effect is obtained when the ratio of palladium to platinum is about 1:1, but from an economical point of view, it is recommended to operate with less platinum in the mixture than is optimal. It is usually desirable to do so. This is due to the higher cost of platinum compared to palladium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は種々の金属及び金属組合せによる、二酸化硫黄
の酸化促進能力及び窒素酸化物の形成度を比較した図で
あり、第2図は、種々のパラジウム/白金混合物の二酸
化硫黄酸化に及ぼす相乗効果を示すグラフである。 代理人 浅  利   皓 外4名 図面の浄!!’(内容に変更なし) FIG、   l。 FIG、  2゜ 手続補正書(方式) 昭和!2年Xり月−ρ日 特許庁長官殿 1、事件の表示 昭和g7年特許願第1117.f/乙号3、補正をする
者 住  所 4、代理人 5、補正命令の日付 昭和32年4月39日 6、補正により増加する発明の数 7、補正の対象
Figure 1 compares the ability of various metals and metal combinations to promote the oxidation of sulfur dioxide and the degree of formation of nitrogen oxides, and Figure 2 shows the synergistic effects of various palladium/platinum mixtures on oxidation of sulfur dioxide. This is a graph showing the effect. Purity of the drawings of four agents, Asahi and Kōgai! ! '(No change in content) FIG, l. FIG, 2゜Procedural Amendment (Method) Showa! Mr. Commissioner of the Japan Patent Office 1, Case Description Showa G7 Patent Application No. 1117. f/B No. 3, Address of the person making the amendment 4, Agent 5, Date of amendment order April 39, 1955 6, Number of inventions to be increased by the amendment 7, Subject of the amendment

Claims (1)

【特許請求の範囲】 (1) 微粒状クラッキング用触媒が含まれている循環
インベンタリーを、炭化水素クランキング帯域と触媒再
生帯域との間で循環させ、かつ、該循環インベンタリー
内に硫黄酸化物収着剤を含ませることにより、該再生帯
域を出るガスの硫黄含有量を制御する流動接触クラッキ
ング法において、パラジウム又はパラジウム化合物と、
白金、オスミウム、イリジウム、レニウム及びロジウム
からなる群から選ばれる少なくとも1種の別の金属又は
その化合物とを緊密に連合させて形成した二酸化硫黄酸
化促進剤を、無機酸化物支持体と連合させて該再生帯域
内に存在させることを特徴とする改良方法。 (2) 硫黄酸化物収着剤が、ククッキング用触媒と物
理的に混合された別の粒子からなる特許請求の範囲(1
)の方法。 (3) 二酸化硫黄酸化促進剤が一酸化炭素酸化促進剤
としても作用する特許請求の範囲(1)の方法。 (4) 無機酸化物支持体が循環インベンタリーと混合
可能な微粒状の固体であり、そしてクラッキング帯域と
再生帯域との間でそれを循環させる特許請求の範囲(1
)の方法。 (5) 二酸化硫黄酸化促進剤が、パラジウム又はパラ
ジウム化合物と1種の別の金属又は1種の別の金属の化
合物とを連合させたものである特許請求の範囲(1)の
方法。 (6) 別の金属が白金である特許請求の範囲(5)の
方法。 (7) 別の金属がイリジウムである特許請求の範囲(
5)の方法。 (8) 別の金属がロジウムである特許請求の範囲(5
)の方法。 (9) 重量%で約10対1ないし約1対10の範囲内
の相互比率において金属類を含ませる特許請求の範囲(
6)、(7)又は(8)の方法。 (10) 促進剤の全金属含有量が約0.01ないし約
2重量%の範囲内であり、クラッキング用触媒の約o、
oiないし約100重量 ppmを占める特許請求の範
囲(4)の方法。 (11) 支持体が摩擦抵抗性を有する多孔質の無定形
クラッキング用触媒である特許請求の範囲(4)の方法
。 (12)(a)  水素の不存在下において炭化水素を
クラッキングするための微粒状クラッキング用触媒、 (b)  三酸化硫黄を収着しうる硫黄収着剤からなる
、該微粒状クラッキング用触媒とは異なる第1の微粒状
固体、及び (0)  パラジウム又はパラジウム化合物と、白金、
オスミウム、イリジウム、レニウム及びロジウムからな
る群から選ばれる少なくとも1種の別の金属又はその化
合物とが含まれる金属混合物と連合した無機酸化物支持
体からなる、該微粒状クラッキング用触媒とは異なる第
2の微粒状固体を含むことを特徴とする、添加水素の不
存在下において硫黄含有炭化水素をクララ4−ングする
のに有用な組成物。 (13) 第1の微粒状固体が重量で約0.1−・10
0%の反応性アルミtを含んでいる特許請求の範囲(1
2)の組成、物。 (14) 第2の微粒状固体がパラジウム又はパラジウ
ム化合物と、1種の別の金属又は1種の別の金属の化合
物とを含んでおり、そして該第2の微粒状固体の全金属
含有量が約0.01ないし約2重量%の範囲内であって
、クラッキング用触媒の約0.1ないし約110011
ppを占めている特許請求の範囲(12)の組成物。 (15) 別の金属が白金である特許請求の範囲(14
)の組成物。 (16) 別の金属がイリジウムである特許請求の範囲
(14)の組成物。 〈17) 別の金属がロジウムである特許請求の範囲(
14)の組成物。 (1B)  1iilで約10対コないし約1対10の
範囲内の相互比率において金属類が含まれ−でいる特許
請求の範囲(15)、(16)又は(17)の組成物。 (19)(a )  硫黄酸化物を収着しうるアルミニ
ウム化合物で含浸処理したシリカ含有クラッキング用触
媒から本質的に構成される微粒状クラッキング用触媒、
及び (b)  パラジウム又はパラジウム化合物と、白金、
オスミウム、イリジウム、レニウム及びロジウムからな
る群から選ばれる少なくとも1種の別の金属又はその化
合物とに連合している無機酸化物支持体からなる、該微
粒状クラッキング用触媒とは異なる第2の微粒状固体を
含むことを特徴とする、添加水素の不存在下において硫
黄含有炭化水素をクラッキングするのに有用な組成物。
[Scope of Claims] (1) A circulating inventory containing a particulate cracking catalyst is circulated between a hydrocarbon cranking zone and a catalyst regeneration zone; palladium or a palladium compound in a fluid catalytic cracking process in which the sulfur content of the gas leaving the regeneration zone is controlled by the inclusion of a solid sorbent;
A sulfur dioxide oxidation promoter formed in close association with at least one other metal selected from the group consisting of platinum, osmium, iridium, rhenium and rhodium or a compound thereof, in association with an inorganic oxide support. An improved method characterized by making the reproduction band exist within the reproduction band. (2) Claim (1) in which the sulfur oxide sorbent comprises separate particles physically mixed with a cooking catalyst.
)the method of. (3) The method according to claim (1), wherein the sulfur dioxide oxidation promoter also acts as a carbon monoxide oxidation promoter. (4) Claims (1) in which the inorganic oxide support is a finely divided solid that is miscible with the circulating inventory and circulates it between the cracking zone and the regeneration zone.
)the method of. (5) The method according to claim (1), wherein the sulfur dioxide oxidation promoter is a combination of palladium or a palladium compound and one type of other metal or one type of compound of another metal. (6) The method of claim (5), wherein the other metal is platinum. (7) Claims in which the other metal is iridium (
Method 5). (8) Claims in which the other metal is rhodium (5)
)the method of. (9) Claims containing metals in a mutual ratio within the range of about 10:1 to about 1:10 by weight (
6), (7) or (8) method. (10) The total metal content of the promoter is within the range of about 0.01 to about 2% by weight, and the total metal content of the cracking catalyst is about o,
oi to about 100 ppm by weight. (11) The method according to claim (4), wherein the support is a porous amorphous cracking catalyst having friction resistance. (12) (a) a particulate cracking catalyst for cracking hydrocarbons in the absence of hydrogen; (b) a sulfur sorbent capable of sorbing sulfur trioxide; are different first particulate solids, and (0) palladium or a palladium compound, and platinum,
A catalyst different from the particulate cracking catalyst, comprising an inorganic oxide support in association with a metal mixture containing at least one other metal selected from the group consisting of osmium, iridium, rhenium and rhodium, or a compound thereof. 1. A composition useful for clarifying sulfur-containing hydrocarbons in the absence of added hydrogen, the composition comprising particulate solids of 2. (13) The first fine particulate solid is about 0.1-・10 by weight
Claims containing 0% reactive aluminum (1
2) Composition, substance. (14) the second particulate solid comprises palladium or a palladium compound and one other metal or a compound of one other metal, and the total metal content of the second particulate solid is within the range of about 0.01 to about 2% by weight of the cracking catalyst, and about 0.1 to about 110011 of the cracking catalyst.
The composition of claim (12) occupying pp. (15) Claims in which the other metal is platinum (14)
) composition. (16) The composition of claim (14), wherein the other metal is iridium. <17) Claims in which the other metal is rhodium (
14) Composition. (1B) The composition of claim (15), (16) or (17), wherein the metals are contained in a mutual ratio within the range of about 10:1 to about 1:10. (19)(a) A particulate cracking catalyst consisting essentially of a silica-containing cracking catalyst impregnated with an aluminum compound capable of sorbing sulfur oxides;
and (b) palladium or a palladium compound and platinum,
A second particulate, different from the particulate cracking catalyst, comprising an inorganic oxide support associated with at least one other metal or compound thereof selected from the group consisting of osmium, iridium, rhenium and rhodium. 1. A composition useful for cracking sulfur-containing hydrocarbons in the absence of added hydrogen, the composition comprising a sulfur-containing solid.
JP57147516A 1981-08-27 1982-08-25 Oxidation accelerator for sulfur dioxide in cracking process Granted JPS5879090A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29661981A 1981-08-27 1981-08-27
US296619 1981-08-27
US344915 1994-11-25

Publications (2)

Publication Number Publication Date
JPS5879090A true JPS5879090A (en) 1983-05-12
JPH0469198B2 JPH0469198B2 (en) 1992-11-05

Family

ID=23142799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147516A Granted JPS5879090A (en) 1981-08-27 1982-08-25 Oxidation accelerator for sulfur dioxide in cracking process

Country Status (2)

Country Link
JP (1) JPS5879090A (en)
BE (1) BE894216A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69708872T2 (en) * 1996-07-15 2002-04-11 Chevron U.S.A. Inc., San Ramon SULFUR-RESISTANT CATALYST FOR HYDROCONVERSION AND HYDROGEN TREATMENT OF HYDROGEN TREATMENT OF SULFURIZED LUBRICANT SUBSTANCES

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276305A (en) * 1975-12-19 1977-06-27 Standard Oil Co Method of redusing release of carbon monoxide and sulfur oxides
US4153535A (en) * 1975-12-19 1979-05-08 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4221677A (en) * 1979-03-19 1980-09-09 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276305A (en) * 1975-12-19 1977-06-27 Standard Oil Co Method of redusing release of carbon monoxide and sulfur oxides
US4153535A (en) * 1975-12-19 1979-05-08 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases
US4221677A (en) * 1979-03-19 1980-09-09 Standard Oil Company (Indiana) Catalytic cracking with reduced emission of noxious gases

Also Published As

Publication number Publication date
JPH0469198B2 (en) 1992-11-05
BE894216A (en) 1982-12-16

Similar Documents

Publication Publication Date Title
US4497902A (en) Composition for removing sulfur oxides from a gas
US4423019A (en) Process for removing sulfur oxides from a gas
US4381991A (en) Process for removing sulfur oxides from a gas
US4369108A (en) Process for removing sulfur oxides from a gas
US4369130A (en) Composition for removing sulfur oxides from a gas
US4836993A (en) Process for removing sulfur oxides from a gas
AU600076B2 (en) A process for regenerating a monofunctional large-pore zeolite catalyst having high selectivity for paraffin dehydrocyclization
US4544645A (en) Promoter for the oxidation of SO2 in an FCC process
JP4942536B2 (en) Composition, catalyst and FCC method for promoting combustion by reducing NOx amount by FCC
JP2004504143A (en) Regeneration of hydrogen sulfide sorbent
AU607974B2 (en) A process for regenerating sulfur contaminated reforming catalysts
US4405443A (en) Process for removing sulfur oxides from a gas
US6723230B1 (en) Regeneration of iron-based hydrogen sulfide sorbents
US4427536A (en) Promoter for the oxidation of SO2 in an FCC process
CA1144502A (en) Pollutants control in cracking system using a combustion promoter
JPS5879090A (en) Oxidation accelerator for sulfur dioxide in cracking process
US6129833A (en) Catalytic cracking with reduced emission of sulfur oxides
US20030178343A1 (en) Use of hydrogen to regenerate metal oxide hydrogen sulfide sorbents
GB2104406A (en) Improved fluid catalytic cracking process and catalyst for use therein
US4992161A (en) Chromium/tin mixture as sulfur dioxide oxidation promoter for FCC units
US5089461A (en) Chromium/tin mixture as sulfur dioxide oxidation promoter for FCC units
Klaassen et al. Promoter for the oxidation of SO 2 in an FCC process
JP2000024503A (en) Exhaust gas cleaning catalyst
KR100368441B1 (en) A catalyst composition for the removal of Volatile Organic Compounds(VOCs) and CO
AU2001273566A1 (en) The use of hydrogen to regenerate metal oxide hydrogen sulfide sorbents