JPS5878350A - Electric field emission generator and method of producing same - Google Patents

Electric field emission generator and method of producing same

Info

Publication number
JPS5878350A
JPS5878350A JP57147494A JP14749482A JPS5878350A JP S5878350 A JPS5878350 A JP S5878350A JP 57147494 A JP57147494 A JP 57147494A JP 14749482 A JP14749482 A JP 14749482A JP S5878350 A JPS5878350 A JP S5878350A
Authority
JP
Japan
Prior art keywords
electrode
insulating layer
layer
mask
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57147494A
Other languages
Japanese (ja)
Inventor
デイタ・フイツシヤ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battelle Institut eV
Original Assignee
Battelle Institut eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battelle Institut eV filed Critical Battelle Institut eV
Publication of JPS5878350A publication Critical patent/JPS5878350A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、電気絶縁板と第1電極と絶縁層と第2電極と
からなり、素子に電界放出を発生する装置に関する。本
発明は更にこの装置の特殊な使用法とその製造方法とに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device that includes an electrically insulating plate, a first electrode, an insulating layer, and a second electrode, and generates field emission in an element. The invention further relates to a special use of this device and a method for its manufacture.

真空中で金属から電界放出を発生させる方法は以前から
知らCている。こnらの方法は多くの場合単数または機
数個のタングステンの微細先端を利用し、先端と逆電極
との間に電圧を加えた時先端に発生する謁い電界を利用
している。実用可能な放出電流を得るには先端に10’
  V / on以上の電界強さが必要となる。最近こ
のフィールドエミッタが特殊な蒸看操作と台わせて写真
平版法でも製造さ扛た(シー、エイ。スピンド他者「応
用物理学ジャーナル」第47巻 第12号 1976年
刊 52481 (C0A、5pindt  et  
allJ、Appl 、Phys。47,12 (19
76) S、5248)。
It has long been known how to generate field emission from metals in vacuum. These methods often utilize one or more fine tungsten tips and utilize the electric field generated at the tip when a voltage is applied between the tip and a counter electrode. 10' at the tip to obtain a practical emission current.
An electric field strength of V/on or higher is required. Recently, this field emitter has been manufactured using a photolithography method in conjunction with a special steaming operation.
allJ, Appl, Phys. 47,12 (19
76) S, 5248).

この種の装置は多くの場合直流が供給さ扛ねばならない
冷陰極として用いるものとして構想さ扛る。しかしこの
種の装置は例えばガス放電全トリガーするため短時間の
放出にも適している。マ) IJツクス内の離散した個
別エミッタを制御する装置はと扛まで公表さnていない
。別の電界放出発生方法では薄膜MIM−構造(金属−
絶縁体−金属)が使用さnる。この構造を用いてマトリ
ックスの上に制御可能エミッタを製造する試みがなさ扛
た(アール、ダブリュー、ジュー。ジー。シモンズ共著
「無線と電子J 1968年5月刊265負(R,W、
 Lomax、  J、G、 Sirrwnons、 
Radio andElectron、、 Mai t
9ss、 S、 265 )。
Devices of this type are often designed for use as cold cathodes which must be supplied with direct current. However, devices of this type are also suitable for short-term releases, for example in order to fully trigger the gas discharge. M) The devices that control the discrete individual emitters within the IJ system have not been disclosed until now. Another field emission generation method uses thin-film MIM-structures (metal-
(insulator-metal) is used. There has been no attempt to fabricate a controllable emitter on top of a matrix using this structure (R,W, J.G. Simmons, Radio and Electronics J, May 1968, 265).
Lomax, J.G., Sirrwnons,
Radio and Electron,,Mait
9ss, S, 265).

だがこnはその特性のゆえにダイオード全前置してのみ
可能である。しかも再現可能に製造することは困難であ
る。
However, due to its characteristics, this is only possible with a diode in front. Moreover, it is difficult to manufacture reproducibly.

そnゆえ本発明の課題は、フィールドエミッタとして使
用でき、特にプラズマパネルにおいてガス放電によって
遅滞なく点火することのできる単純構造の装置を提供す
ることである。
It is therefore an object of the invention to provide a device of simple construction which can be used as a field emitter and which can be ignited without delay by means of a gas discharge, in particular in plasma panels.

この課題は技術的に進歩し7た方法において第2電極の
縁の前に金属インゼルを設けてなる冒頭述べた種類の装
置Nによって達成できることが判明した。本発明による
装置の有利な実施態様は特許請求の範囲第2項乃至第5
項に記載しである。特許請求の範囲第6項乃至第14項
は本発明による装置の製造方法に関する。特許請求の範
囲第15項乃至第17項は3つの使用法を対象とする。
It has been found that this object can be achieved in a technologically advanced manner with a device N of the type mentioned at the outset, which comprises a metal insel in front of the edge of the second electrode. Advantageous embodiments of the device according to the invention are defined in claims 2 to 5.
It is described in the section. Claims 6 to 14 relate to a method of manufacturing a device according to the invention. Claims 15-17 are directed to three uses.

本発明による装置は次のように製造することができる。The device according to the invention can be manufactured as follows.

L 絶縁層の上に不十分に載−したマスクを通して電極
全蒸層すると第2電極の縁に必然的にインゼルが得ら扛
る。マスクと絶H1@との間の距l1wは有利には10
〜50)Lmとする。こnはマスク金押付けることなく
ゆるく絶縁層に載置すると得ることができる。蒸着源、
例えばボートまたはコイルは点状ではないので、この隙
間によって蒸着層の縁は鋭くならない。寧ろこの個所で
は層厚が常に数μm内でゼロに減少する。
When the entire electrode layer is vaporized through a mask that is insufficiently placed on the insulating layer, an insel is inevitably formed at the edge of the second electrode. The distance l1w between the mask and the absolute H1@ is advantageously 10
~50) Lm. This can be obtained by placing the mask metal loosely on the insulating layer without pressing it. evaporation source,
For example, boats or coils are not point-like, so the gaps do not cause sharp edges of the deposited layer. Rather, the layer thickness always decreases to zero within a few μm at this location.

しかし、例えば約5 )LWL以下の薄い蒸着層はもは
や連続しておらずインゼル構造を有する。と扛は蒸着層
の漸減縁部にも現わ扛る。
However, the thin deposited layer, for example below about 5) LWL, is no longer continuous and has an insel structure. The cracks also appear at the tapering edges of the deposited layer.

2、 インゼルは簡単に写真平版で製造することもでき
る。その際lず絶縁層の表面が僅かに粗くさ扛る。絶縁
層の粗面に例えば絶縁層をポリテトラフルオロエチレン
で構成すると得ることができる。このため第1電極を有
する支持体をポリテトラフルオロエチレン分散液に浸漬
し次に400℃で焼結す木。層厚は約2〜5pmである
2. Insel can also be easily manufactured by photolithography. At this time, the surface of the insulating layer becomes slightly rough. This can be obtained by, for example, forming an insulating layer on the rough surface of the insulating layer from polytetrafluoroethylene. For this, the support with the first electrode is immersed in a polytetrafluoroethylene dispersion and then sintered at 400°C. The layer thickness is approximately 2-5 pm.

平滑な被覆を生じる材料の場合表面の微細粗去は例えは
腐蝕によって得ることができる。
In the case of materials that produce a smooth coating, fine roughening of the surface can be obtained, for example, by etching.

Sip、層の場合ふつ化水素酸で腐蝕を行うことができ
る。表面粗さは約a1〜α5 %mとする。
In the case of a Sip layer, etching can be carried out with hydrofluoric acid. The surface roughness is approximately a1 to α5%m.

との粗面に次に周知の方法で第2電極を約Q1〜05μ
mの層厚に写真平版法で取付ける。
Next, apply a second electrode to the rough surface using a well-known method to a thickness of approximately Q1~05μ.
Mounted by photolithography to a layer thickness of m.

蒸着した金属層を次に写真ラッカーで被覆する。The vapor-deposited metal layer is then coated with a photographic lacquer.

写真ラッカ一層は絶縁層の粗さの山谷高さより厚めにし
、写真マスクを通して露光し現像する。
The single layer of photographic lacquer is made thicker than the height of the roughness of the insulating layer, exposed through a photographic mask, and developed.

写真ラッカーの露光個所を除去して金属層を露出させる
。次に、露光さ扛ずに縁に残った写真ラッカーがサブ腐
蝕さ扛るまで金属層’1i(11μm以上の浸入深さ、
特にu5〜1fimの浸入深さに腐蝕する。絶縁層表面
の微細粗さによってサブ腐蝕は均一でなく、その結果小
さな浮動金属インゼルが生じる、 本発明を以下1実施例のみを示した添付図面により詳し
く説明する。
The exposed areas of the photographic lacquer are removed to expose the metal layer. Next, the metal layer '1i (penetration depth of more than 11 μm,
Particularly corrosive occurs at penetration depths of u5 to 1 fim. Due to the micro-roughness of the surface of the insulating layer, the sub-corrosion is non-uniform, resulting in small floating metal insels.The invention will now be explained in more detail with reference to the accompanying drawings, which show only one embodiment.

第1図は、絶縁基板1と第1電極2と絶縁層3と第2電
極4とからなる本装置の個別素子を示す。電極2と4間
に電圧を加え、電極4を負の極にすると、電圧が十分高
い場合電極4の縁に電界放出が現t″しる。こnはこの
縁の電界強さが高いことによる。この効果は知られてい
る。更に、酸化膜または転位膜を形成する例えばアルミ
ニウムまたはマグネシウム等の金属表面からすでに電界
強さ約10’ V/11  の蒔電界放出が生じること
も周知である。しかし意外なことに電界放出は電極40
線の前に小さな金属インゼル5を設ける時特に強いこと
が判明した。このインゼルがない場合、測定可能な電界
放出を得るには電極2と4間に加える電圧をインゼルが
存在する場合よりも2倍から3倍大きくせねばならない
FIG. 1 shows the individual elements of the device, consisting of an insulating substrate 1, a first electrode 2, an insulating layer 3 and a second electrode 4. FIG. When a voltage is applied between electrodes 2 and 4 and electrode 4 is made negative, a field emission will appear at the edge of electrode 4 if the voltage is high enough. This means that the electric field strength at this edge is high. This effect is known. Furthermore, it is also well known that field emission with an electric field strength of about 10' V/11 already occurs from the surface of a metal such as aluminum or magnesium on which an oxide film or dislocation film is formed. However, surprisingly, field emission occurs at electrode 40.
It has been found to be particularly strong when a small metal insel 5 is provided in front of the line. In the absence of this insel, the voltage applied between electrodes 2 and 4 must be two to three times greater than in the presence of the insel to obtain a measurable field emission.

電極4は本発明により好ましくは厚さ約Q5声mのアル
ミニウム膜からなる。縁にインゼルを形成するためこの
電極は上述の方法の1つに従って製造さ扛る。写真平版
で製造する場合この電極は簡単に電極2に対向したその
縁の全長ができるだけ大きく々るような構造にすること
ができる。第2図の実施例ではと扛が窓開口6によって
実現さ扛ている。個別素子は非常に小さく例えば約IQ
、umx I gkmとすることができる。
According to the invention, the electrode 4 preferably consists of an aluminum film with a thickness of approximately Q5 m. This electrode is manufactured according to one of the methods described above to form an insel at the edge. When produced by photolithography, this electrode can simply be constructed in such a way that the entire length of its edge facing electrode 2 is as large as possible. In the embodiment of FIG. 2, the opening is realized by a window opening 6. In the embodiment shown in FIG. The individual elements are very small, e.g. about IQ
, umx I gkm.

第3図に示した装置では二次電子倍増器(チャンネルト
ロン)によって電界放出を測定する。そのため電極4か
ら約50.A4rrLの距離にスペーサによって更に別
の電極7を取付けてと−nkネットとして構成する。最
後にネット7から約5閣上にチャンネルトロンのホッパ
ー8を設ける。チャンネルトロンの増幅は約10易 で
ある。この装置tを排気可能ケースに組込んで約10−
11ミリバールに排気する。
In the apparatus shown in FIG. 3, field emission is measured using a secondary electron multiplier (channeltron). Therefore, from electrode 4 to approximately 50. Another electrode 7 is attached with a spacer at a distance of A4rrL to form a -nk net. Finally, set up Channeltron's hopper 8 about 5 points above Net 7. Channeltron amplification is approximately 10 times easier. Approximately 10-
Evacuate to 11 mbar.

チャンネルトロンの端子9に+2.5 kV−L5kV
、5・ζ′ 、 の電圧を加え、ネット7に+100v〜200vの電圧
を加える。電極4は地電位に接続する。電極2に約10
0vの電圧パルスが加わると電極4の縁に電界放出が生
じる。放出さrた電子の1部は加速ネット7によってチ
ャンネルトロンへと加速され増幅さnる。約25n8の
遅延時間ケヤンネルトロン内の走行時間)の後、増幅さ
扛た信号を端子10で測定できる。電界放出は約100
 nsの時間内でだけ行わ扛、電極2にひき続き電圧が
加わっていてもこの時間が過ぎると再び中断さnる。電
界放出を再度行う場合には電極2の電圧極性を逆転し、
再び約100 ′rL8 の放出を再び行わねばならな
い。この効果は電極4の縁に前置したインセルの充電状
態によって説明できる。インセルは縁に対して放出する
間電極2の電位の前置符号に応じて正または負に充電さ
扛る。この充電状態は電極2と4間の電圧を切った後で
も維持さnる。−かかる素子での電界放出を第4a)図
乃至第・  号; 4g)図に示し、そ扛ぞn個別セルを断面で示した。
+2.5 kV-L5kV to terminal 9 of channeltron
, 5·ζ', and apply a voltage of +100v to 200v to net 7. Electrode 4 is connected to earth potential. Approximately 10 to electrode 2
When a voltage pulse of 0V is applied, field emission occurs at the edge of the electrode 4. A part of the emitted electrons is accelerated to the channeltron by the acceleration net 7 and amplified. After a delay time of approximately 25n8 (travel time in the Keynertron), the amplified signal can be measured at terminal 10. The field emission is about 100
The operation is carried out only within a time period of ns, and even if the voltage is continuously applied to the electrode 2, it is interrupted again after this time has elapsed. When performing field emission again, reverse the voltage polarity of electrode 2,
Again the emission of about 100'rL8 has to be carried out again. This effect can be explained by the state of charge of the in-cell placed in front of the edge of the electrode 4. The in-cell is charged positively or negatively depending on the pre-sign of the potential of the electrode 2 during discharge to the edge. This state of charge is maintained even after the voltage between electrodes 2 and 4 is removed. - The field emission in such a device is shown in Figures 4a) to 4g), in which the individual cells are shown in cross section.

インセル5は電極2とでキャパシタンスC+ k、また
接地した第2電極4とでキャパシタンスC!を形成する
(第4a図)。単純化のためC,=C。
The in-cell 5 has a capacitance C+k with the electrode 2, and a capacitance C! with the grounded second electrode 4. (Figure 4a). For simplicity, C,=C.

と仮定する。電極2に電圧−U(例えば−150V)k
加えるとインセル5 S / 2 (第471)図)と
ガる。だが第2電極4の縁までの距離が短いのでこの電
極に向かって高い電界強さが生じる。こ扛によってイン
セル5から縁へと電子放出が起き、インセル5の電位が
ΔUだけ正となる(第4C)図)。
Assume that Voltage -U (e.g. -150V) k on electrode 2
When added, it becomes incell 5 S/2 (Fig. 471)). However, since the distance to the edge of the second electrode 4 is short, a high electric field strength is generated toward this electrode. This action causes electron emission from the in-cell 5 to the edge, and the potential of the in-cell 5 becomes positive by ΔU (Figure 4C).

電位差−U/2+ΔUがそ扛以上電界放出を起こさない
ほど小さい時、または電極材料としてアルミニウムを用
いた場合酸化皮膜上の表面状態(十分小さな仕事関数を
有する表面状態)が空にさγした時、放出は中断する。
When the potential difference -U/2+ΔU is so small that it does not cause field emission, or when aluminum is used as the electrode material and the surface state on the oxide film (surface state with a sufficiently small work function) is empty. , the emission is interrupted.

電圧−U−q切った後、正に充電さ扛たインセル5はあ
とに残る(第4d図)。電圧−Uを再度加えてももはや
放出は起きない。
After turning off the voltage -U-q, a positively charged in-cell 5 remains behind (Fig. 4d). Reapplying the voltage -U no longer causes emission.

次に電1電極2に電圧+Uf加える(第48図)。こn
によってインセル5が+U/2+ΔUの 電位に高まり
、いまや電極のエツジからインセル5へと電界放出が起
きうる。こ扛によってインセル5の電位が小さくない(
第47)図)、電位差子U/2−ΔU1の時放出が再び
中断する。電圧+Uを切った後いまやインセル5は負の
充電状態となる(第4g)図)。
Next, voltage +Uf is applied to electrode 1 and electrode 2 (Fig. 48). Kon
As a result, the potential of the in-cell 5 increases to +U/2+ΔU, and field emission can now occur from the edge of the electrode to the in-cell 5. Due to this, the potential of the in-cell 5 is not small (
(FIG. 47)), the release is interrupted again when the potentiometer U/2-ΔU1. After switching off the voltage +U, the in-cell 5 is now in a negative charging state (FIG. 4g)).

次に第1電極2にあらためて電圧−Uを加えると図示す
イクルを最初から始めることができる。
Next, by applying the voltage -U again to the first electrode 2, the illustrated cycle can be started from the beginning.

第4図実施例において電界放出の限界電圧は約85m’
である。この限界のゆえに第6図α)およびb)に示す
如く多くの個別素子のマトリックス制御が可能である。
In the example shown in FIG. 4, the limit voltage of field emission is approximately 85 m'
It is. Because of this limitation, matrix control of many individual elements is possible, as shown in FIG. 6 α) and b).

電極2がマトリックスの横列、電極4が縦列金形成し、
両者を絶縁層3が相互に分離する。定常状態の時、例え
ば電極はすべて地電位に接続さ扛る。いま電極の一方2
に例えば−50Vf加え、他方の電極1に例えば+5o
Vを加えると両電極の交点に100Vの電位差が存在し
、この個所でインセルの充電状態が適宜な場合この電位
差によって電界放出が生じる。マトリックスの別の個所
はどこも50T’の電位差を越えないので電界放出は起
きえない。放出の検出は第3図の装置で行わnる。
Electrodes 2 are formed in rows of a matrix, electrodes 4 are formed in columns, and
An insulating layer 3 separates both from each other. In steady state, for example, all electrodes are connected to earth potential. Now one side of the electrode 2
For example, -50Vf is applied to the other electrode 1, and +5o is applied to the other electrode 1.
When V is applied, a potential difference of 100 V exists at the intersection of both electrodes, and this potential difference causes field emission at this location if the in-cell state of charge is appropriate. No field emission can occur anywhere else in the matrix since the potential difference does not exceed 50 T'. Detection of the release is carried out using the apparatus shown in FIG.

例工ifプラズマパネルにおいてガス放電ヲトリガーし
た9またはドイツ特許公開明細梵第2627249号に
記載のエレクトレット記憶装置においてガス放電を遅滞
なく開始させるために使用することもできる。
It can also be used to start a gas discharge without delay in an electret storage device as described in Example 9 or German Patent Application No. 2 627 249 for triggering a gas discharge in a plasma panel.

エレクトレット記憶装置の構造を第5図に示す。The structure of the electret storage device is shown in FIG.

記憶装置は2枚のガラス板1と11間に構成さ扛る。こ
のガラス板のそ扛ぞ扛に平行な導体路2゜21をまたそ
の上に絶縁層3,3′ を取付ける。
The storage device is constructed between two glass plates 1 and 11. A conductor track 2.21 parallel to the length of the glass plate and an insulating layer 3, 3' are mounted thereon.

次にその上にネットを作り、該ネットによって第2電極
4,41 と前置したインセルと全形成しまた網メツシ
ュを導体路2.21 に対向させる。最後に絶縁層3.
3”i流体接触法によって光t(形成)シ、ガラス片を
ガラス片に取付けた導体路2.21 が互いに直交する
ようスペーサーによって取付ける。隙間にネオン+α1
チアルゴンを詰めてガス放電区間を形成する。導体路2
,21 の各交点、すなわち両ネット4,41 のメツ
シュに各1個の記憶集子を設ける。ネッ)4.4”を接
地し、交点にある素子を点火するため導体路2゜2’ 
 k平衡制御する。完全点火電圧Uz は2つの第1電
極の交点にのみ存在する。同時に被制御第1電極2,2
′ と当該網メツシュ4,4− との間に電圧Uz/2
  があり、インセルを有する網エツジに電界放出が生
じる。その際電子が放出さ扛第1電極2,210交点で
ガス放電が遅滞なく点火さnる。
Next, a net is made thereon, which completely forms the second electrodes 4, 41 and the preceding incells, and also places the mesh opposite the conductor track 2.21. Finally, insulating layer 3.
3"I (formation) of light using the fluid contact method, the glass pieces are attached using spacers so that the conductor paths 2.21 attached to the glass pieces are orthogonal to each other. Neon+α1 is placed in the gap.
Fill with thiargon to form a gas discharge section. Conductor track 2
, 21 , that is, the meshes of both nets 4 and 41 , are provided with one memory collection. 4.4" to ground, and conductor path 2゜2' to ignite the element at the intersection.
k-balance control. The full ignition voltage Uz exists only at the intersection of the two first electrodes. At the same time, the controlled first electrodes 2, 2
′ and the meshes 4, 4-, a voltage Uz/2
, and field emission occurs at the edge of the network with in-cells. At this time, electrons are emitted and a gas discharge is ignited without delay at the intersection of the first electrodes 2 and 210.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は個別素子の構造の横断面図、 第2図は個別素子の平面図、 第3図は本発明素子において電界放出を測定する装置、 第4図a)〜g)は第2電極のエツジの前に設けたイン
セルを有する素子の電界放出、第5図は動的記憶装置の
構造の分解図、第6図は多くの個別素子から構成しうる
マトリックス。 2・・・第1電極、  3・・・絶縁層、4・・・第2
電極、  5・・・小さな金属インセル、6・・・窓開
口。 第1図 第2図
Figure 1 is a cross-sectional view of the structure of the individual element, Figure 2 is a plan view of the individual element, Figure 3 is an apparatus for measuring field emission in the element of the present invention, Figure 4 a) to g) are the second electrodes. 5 is an exploded view of the structure of a dynamic memory device, and FIG. 6 is a matrix that can be composed of a number of individual elements. 2...First electrode, 3...Insulating layer, 4...Second
Electrode, 5...Small metal incell, 6...Window opening. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 L  電気絶縁板と第1電極と絶縁層と第2電極とから
なり、素子に電界放出を発生する装置において、第2電
極(4)の緑の前に小さな金属インゼル(5)を設ける
ことを特徴とする装置2  インゼル(5)が電極材料
から成ることを特徴とする特許請求の範囲第1項に記載
の装置。 a  複数個の素子の電極(2、4)がマトリックスの
横列と縦列とを形成し、絶縁層(3)が該電極を互いに
分離することを特徴とする特許請求の範囲第1項または
第2項に記載の装置。 屯  第2電極(4)の縁を任意の構造物で延長するこ
と全特徴とする特許請求の範囲第1項乃至第3項のいず
牡かに記載のシ装置。 h  第2電極(4)が窓開口(6)を有し、窓開口の
縁に沿ってその前にインゼル(5)’Ik設けることを
特徴とする特許請求の範囲第4項に記載の装置。 G  電気絶縁板に周知の方法で第1電極を、またその
上に絶縁層を取付け、次に第2電極の形状に付致したマ
スク金、該マスクと絶縁層との間に僅かな隙間が残シか
つ非点源から蒸着によって第2電極が得らnるよ・う絶
縁層の上に置き、電極層の厚さを減らしてマスクの縁の
真下に金属インゼルを形成することを特徴とする特許請
求の範囲第1項乃至第5項のいず牡か1項の記載の装置
を製造する方法。 7  マスクと絶縁層との間の隙間を約10〜50声と
することを特徴とする特許請求の範囲第6項に記載の方
法。 &  マスクを押付けることなくゆるく絶縁層の上に載
置することによってマスクと絶縁層との間に隙間を得る
ことを特徴とする特許請求の範囲第6項または第7項に
記載の方法。 a  電気絶縁板に周知の方法で第1電極をまたその上
に絶縁層を取付け、絶縁層の表面を僅かに粗くシ、絶縁
層の上に周知の如く写真平版で第2電極を取付け、露光
した写真ラッカーの除去後露出した電極層を、除去さn
ないで縁に残った写真ラッカーがサブ腐蝕さ扛るまで腐
蝕させ、絶縁層表面を粗くすることによって電極層の縁
に金属イ/ゼルを形成することを特徴とする特許請求の
範囲第1項乃至第5項のいず扛か1項に記載の装置を製
造する方法。 1a 絶縁層の表面粗さを01〜Q5Pとすること全特
徴とする特許請求の範囲第9項に記載の方法。 IL 写真ラッカ一層の下のサブ腐蝕の侵入深さを11
421以上、特にa5〜l )Lnh とすることを特
徴とする特許請求の範囲第9項または第10項に記載の
方法。 12、第2電極を形成する金属層の厚さk(11〜(1
5,伽、写真ラッカ一層の厚さを1.翻とすることを特
徴とする特許請求の範囲第9項乃至第11項のいず牡か
1項に記載の方法。 1a 好適な材料、例えばポリテトラフルオロエチレン
の選択によって絶縁層の粗面を得ることを特徴とする特
許請求の範囲第9項乃至第12項のいず牡か1項に記載
の方法。 14、腐蝕によって絶縁層の粗面を得ることを特徴とす
る特許請求の範囲第9項乃至第12項のいず扛か1碑に
記載の方法。 1五 消去可能読取器を有するディジタル記憶装置とし
ての特許請求の範囲第1項乃至第5項のいずれか1項に
記載の装置の使用法。 1G プラズマパネルにおいてガス放電を遅滞なくひき
起こすための特許請求の範囲第1項乃至第5項のいずn
か1項に記載の装置の使用法。 17 エレクトレット記憶装置においてガス放電全遅滞
なくひき起こすための特許請求の範囲第1項乃至第5項
のいず扛か1項に記載の装置の使用法。
[Claims] L In a device that includes an electrically insulating plate, a first electrode, an insulating layer, and a second electrode and generates field emission in an element, a small metal insel ( 5) Device 2. Device according to claim 1, characterized in that the insel (5) consists of an electrode material. a. Claim 1 or 2, characterized in that the electrodes (2, 4) of a plurality of elements form rows and columns of a matrix, and an insulating layer (3) separates the electrodes from each other. The equipment described in section. The device according to any one of claims 1 to 3, characterized in that the edge of the second electrode (4) is extended by an arbitrary structure. h The device according to claim 4, characterized in that the second electrode (4) has a window opening (6) and is provided with an insel (5)'Ik in front of it along the edge of the window opening. . G. A first electrode and an insulating layer are attached to the electrical insulating plate by a well-known method, and then a metal mask is attached to the shape of the second electrode, leaving a slight gap between the mask and the insulating layer. A second electrode is obtained by vapor deposition from a non-point source and is placed on top of the insulating layer, reducing the thickness of the electrode layer to form a metal insel just below the edge of the mask. A method for manufacturing an apparatus according to any one of claims 1 to 5. 7. A method according to claim 6, characterized in that the gap between the mask and the insulating layer is about 10 to 50 tones. & The method according to claim 6 or 7, characterized in that a gap is obtained between the mask and the insulating layer by placing the mask loosely on the insulating layer without pressing it. a. Attach a first electrode to an electrically insulating plate using a well-known method and an insulating layer thereon, make the surface of the insulating layer slightly rough, attach a second electrode on top of the insulating layer using a well-known photolithography method, and expose to light. After removal of the photographic lacquer, the exposed electrode layer is removed.
Claim 1, characterized in that a metal layer is formed at the edge of the electrode layer by etching the photographic lacquer remaining on the edge until it sub-corrodes and roughening the surface of the insulating layer. A method for manufacturing the device according to any one of Items 5 to 5. 1a The method according to claim 9, characterized in that the surface roughness of the insulating layer is 01 to Q5P. IL The penetration depth of sub-corrosion under one layer of photographic lacquer is 11
11. The method according to claim 9 or 10, characterized in that Lnh is 421 or more, in particular a5-l)Lnh. 12. Thickness k of the metal layer forming the second electrode (11~(1
5. The thickness of one layer of photographic lacquer is 1. 12. The method according to any one of claims 9 to 11, characterized in that the method is a transliteration. 1a. Process according to any one of claims 9 to 12, characterized in that the rough surface of the insulating layer is obtained by selecting a suitable material, for example polytetrafluoroethylene. 14. The method according to any one of claims 9 to 12, characterized in that the rough surface of the insulating layer is obtained by etching. 15. Use of a device according to any one of claims 1 to 5 as a digital storage device with an erasable reader. 1G Any of claims 1 to 5 for causing gas discharge without delay in a plasma panel
or 1. How to use the device described in item 1. 17. Use of the device according to any one of claims 1 to 5 for causing a gas discharge without any delay in an electret storage device.
JP57147494A 1981-08-26 1982-08-25 Electric field emission generator and method of producing same Pending JPS5878350A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE31337864 1981-08-26
DE19813133786 DE3133786A1 (en) 1981-08-26 1981-08-26 ARRANGEMENT FOR GENERATING FIELD EMISSION AND METHOD FOR THE PRODUCTION THEREOF

Publications (1)

Publication Number Publication Date
JPS5878350A true JPS5878350A (en) 1983-05-11

Family

ID=6140171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57147494A Pending JPS5878350A (en) 1981-08-26 1982-08-25 Electric field emission generator and method of producing same

Country Status (6)

Country Link
EP (1) EP0073031A3 (en)
JP (1) JPS5878350A (en)
AU (1) AU8757782A (en)
BR (1) BR8204960A (en)
DE (1) DE3133786A1 (en)
ZA (1) ZA826237B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3316027C2 (en) * 1983-05-03 1987-01-22 Dornier System Gmbh, 7990 Friedrichshafen Photodetector and method for its manufacture
GB8621600D0 (en) * 1986-09-08 1987-03-18 Gen Electric Co Plc Vacuum devices
DE3642749A1 (en) * 1986-12-15 1988-06-23 Eltro Gmbh SURFACES FOR ELECTRICAL DISCHARGE
CA1272504A (en) * 1986-11-18 1990-08-07 Franz Prein Surface for electric discharge
DE3855482T2 (en) * 1987-02-06 1997-03-20 Canon Kk Electron emitting element and its manufacturing process
DE3853744T2 (en) * 1987-07-15 1996-01-25 Canon Kk Electron emitting device.
US5749763A (en) * 1987-07-15 1998-05-12 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulted from electrodes
USRE40062E1 (en) * 1987-07-15 2008-02-12 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
USRE39633E1 (en) * 1987-07-15 2007-05-15 Canon Kabushiki Kaisha Display device with electron-emitting device with electron-emitting region insulated from electrodes
USRE40566E1 (en) * 1987-07-15 2008-11-11 Canon Kabushiki Kaisha Flat panel display including electron emitting device
JP3634702B2 (en) * 1999-02-25 2005-03-30 キヤノン株式会社 Electron source substrate and image forming apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3277313A (en) * 1963-07-05 1966-10-04 Burroughs Corp Solid state quantum mechanical tunneling apparatus
US3359448A (en) * 1964-11-04 1967-12-19 Research Corp Low work function thin film gap emitter
DE1589822A1 (en) * 1967-04-26 1970-03-26 Gentsch Dr Horst Emitter diode for generating ions and free electrons
DE2627249A1 (en) * 1976-06-18 1977-12-29 Battelle Institut E V STORAGE ELEMENT FOR ERASABLE, DIGITAL PERMANENT MEMORY

Also Published As

Publication number Publication date
DE3133786A1 (en) 1983-03-10
BR8204960A (en) 1983-08-02
EP0073031A2 (en) 1983-03-02
AU8757782A (en) 1983-03-03
ZA826237B (en) 1983-07-27
EP0073031A3 (en) 1985-12-04

Similar Documents

Publication Publication Date Title
Uchiike et al. Secondary electron emission characteristics of dielectric materials in AC-operated plasma display panels
Compton et al. Electrical discharges in gases. Part I. Survey of fundamental processes
Kanter et al. Electron emission from thin Al‐Al2O3‐Au structures
JPS5878350A (en) Electric field emission generator and method of producing same
JPS636977B2 (en)
Pinto et al. Progress on large area GEMs
EP0520780A1 (en) Fabrication method for field emission arrays
Colaleo et al. Diamond-like carbon for the fast timing MPGD
US3531675A (en) Cathode ray storage tube having a target dielectric with collector electrodes extending therethrough
WO2024147802A1 (en) Atomic layer etching by electron wavefront
JPH05266787A (en) Device capable of controlling shape of charged particle beam
US3170083A (en) Microspace data storage tube using electron microscope optical assembly
JPH1186719A (en) Manufacture of field emission element
US3573454A (en) Method and apparatus for ion bombardment using negative ions
US3322999A (en) Image-intensifier tube
US5117149A (en) Parallel plate electron multiplier with negatively charged focussing strips and method of operation
JP3546606B2 (en) Method of manufacturing field emission device
Gutorov et al. Influence of thin dielectric layers on electron emission and plasma-surface contact stability
EP0038865A1 (en) Electron beam storage apparatus
JPH03191061A (en) Jig for film formation
Takeishi et al. Effect of structural reconstruction of Ge (111) and Ge (100) surfaces on Auger-type electron ejection by slow ions
JPS61117276A (en) Target for sputtering
JP4405027B2 (en) Cold cathode device
JPS5923415Y2 (en) Thin film pattern forming equipment
JPS5838446A (en) Ion detector