JPS587826Y2 - Coreless rotating equipment - Google Patents

Coreless rotating equipment

Info

Publication number
JPS587826Y2
JPS587826Y2 JP1976019164U JP1916476U JPS587826Y2 JP S587826 Y2 JPS587826 Y2 JP S587826Y2 JP 1976019164 U JP1976019164 U JP 1976019164U JP 1916476 U JP1916476 U JP 1916476U JP S587826 Y2 JPS587826 Y2 JP S587826Y2
Authority
JP
Japan
Prior art keywords
rotor
conductor
wound
parallelogram
coreless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1976019164U
Other languages
Japanese (ja)
Other versions
JPS52111310U (en
Inventor
関谷哲夫
宮本茂
内田裕之
梅田謙吉
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP1976019164U priority Critical patent/JPS587826Y2/en
Publication of JPS52111310U publication Critical patent/JPS52111310U/ja
Application granted granted Critical
Publication of JPS587826Y2 publication Critical patent/JPS587826Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)
  • Dc Machiner (AREA)

Description

【考案の詳細な説明】 本考案はコアレスモータ、コアレスゼネレータ等の回転
機器に於ける巻線構造に関するものである。
[Detailed Description of the Invention] The present invention relates to a winding structure in rotating equipment such as coreless motors and coreless generators.

カセットテープレコーダ等に用いられる小型直流モータ
として、回転子を中空円筒状に形成したコアレス型のも
のが用いられるようになってきた。
2. Description of the Related Art Coreless type motors in which the rotor is formed into a hollow cylindrical shape have come to be used as small DC motors used in cassette tape recorders and the like.

このコアレスモータは従来の有鉄芯型のものに比して起
動・停止の応答が良くまた変換効率が高い等の利点を有
している。
This coreless motor has advantages over conventional iron core type motors, such as better start-up/stop response and higher conversion efficiency.

コアレスモータの回転子は互いに接続された環状の導体
群を中空円筒状に形成して成るもので、従来より各導体
を菱形巻き、六角巻き、四角巻き等としたものが知られ
ている。
The rotor of a coreless motor is made up of a group of interconnected annular conductors formed into a hollow cylindrical shape, and conventionally known configurations in which each conductor is wound in a diamond shape, hexagonal shape, square shape, etc.

第1図はコアレスモータの回転子で2を上記菱形巻きを
例として示すものである。
FIG. 1 shows a rotor 2 of a coreless motor with the rhombic winding as an example.

この回転子1を作るには、先ず第2図に示すように断面
2aの形状を菱形とした芯材2の周面に巻線3を所定回
数巻回する。
To make this rotor 1, first, as shown in FIG. 2, a winding 3 is wound a predetermined number of times around the circumferential surface of a core material 2 whose cross section 2a is rhombic in shape.

次に巻線3から芯材2を抜き去った後、第3図に示すよ
うに筒状に形成された巻線3を互いに対向する両端部3
a 、3bを矢印で示す軸方向に互いに逆方向に引っ張
りながら押し潰して第4図の状態とする。
Next, after removing the core material 2 from the winding 3, as shown in FIG.
A and 3b are crushed while being pulled in opposite directions in the axial direction indicated by the arrows to form the state shown in FIG.

・次に第4図の巻線3の端部3a 、3bを互いに重ね
て接着することにより、第1図の中空円筒状の回転子1
を得ることができる。
・Next, by overlapping and gluing the ends 3a and 3b of the winding 3 shown in FIG. 4, the hollow cylindrical rotor 1 shown in FIG.
can be obtained.

この回転子10局面には太線で示すような菱形の導体1
aより成る導体群が形成される。
This rotor 10 has a diamond-shaped conductor 1 as shown by the thick line.
A conductor group consisting of a is formed.

ところで、一般に永久磁石型の直流モータのトルクは、
モータ自体の構造・材料・形状に関係する逆起電圧定数
Kvと外部から加えられる電流iとにより決定される。
By the way, the torque of a permanent magnet DC motor is generally
It is determined by the back electromotive force constant Kv, which is related to the structure, material, and shape of the motor itself, and the externally applied current i.

逆起電圧定数Kvは、一本の導体に鎖交する磁束密度を
B1導体の長さを21円筒軸から力の作用点迄の距離を
rとすると、Kv=B7r ■ で表わされる。
The back electromotive voltage constant Kv is expressed as Kv=B7r (2), where the magnetic flux density interlinking with one conductor is B1, the length of the conductor is 21, and the distance from the cylindrical axis to the point of application of force is r.

會た発生するトルクTは、 T=Btir=KvXi ■ で表わされる。The torque T generated by the meeting is T=Btir=KvXi ■ It is expressed as

而して、電流iはこれを成るべく小さくして大きなトル
クTを得るようにすることが好1しく、このためには上
記■式よりKvをできるだけ大きくすることが望筐れる
Therefore, it is preferable to make the current i as small as possible to obtain a large torque T, and for this purpose, it is desirable to make Kv as large as possible from the above equation (2).

しかしながら前記従来の菱形巻き等の回転子では未だ充
分な大きさのKvを得ることができないものであった。
However, it has not been possible to obtain a sufficiently large Kv with the conventional rhombus-wound rotor.

本考案は上記の実状に鑑み成されたもので、回転子の環
状導体を菱形、正方形及び長方形を除く平行四辺形とし
て形成したものである。
The present invention was developed in view of the above-mentioned circumstances, and the annular conductor of the rotor is formed as a parallelogram excluding rhombuses, squares, and rectangles.

これによリトルクの大きい且つ生産性の良い斯種コアレ
ス型回転機器を得ることができる。
As a result, it is possible to obtain such a coreless type rotary device with large torque and good productivity.

以下本考案の実施例を図面と共に説明する。Embodiments of the present invention will be described below with reference to the drawings.

第5〜8図は本考案による平行四辺形巻き回転子11を
得るための工程を示すもので、第1〜4図の菱形巻きの
場合と同様に形成される。
5-8 show the steps for obtaining a parallelogram-wound rotor 11 according to the present invention, which is formed in the same manner as the diamond-wound rotor 11 shown in FIGS. 1-4.

即ち先ず第5図に示すように断面12aの形状を菱形、
正方形及び長方形を除く平行四辺形とした芯材12の周
面に巻線13を所定回数巻回する。
That is, first, as shown in FIG. 5, the shape of the cross section 12a is rhombic;
The winding 13 is wound a predetermined number of times around the circumferential surface of the core material 12 which is shaped like a parallelogram excluding squares and rectangles.

次に巻線13から芯材1.2を抜き去った後、第6図に
示すように、筒状に形成された巻線13を互いに対向す
る両端部13a、13bを矢印で示す軸方向に互いに逆
方向に引っ張りながら押し潰して第7図の状態とする。
Next, after removing the core material 1.2 from the winding 13, as shown in FIG. While pulling each other in opposite directions, they are crushed to form the state shown in Fig. 7.

次に第7図の巻線13の端部13a、13bを互いに重
ねて接着することにより、第8図の中空円筒状の回転子
11を得ることができる。
Next, by overlapping and bonding the ends 13a and 13b of the winding 13 shown in FIG. 7 to each other, the hollow cylindrical rotor 11 shown in FIG. 8 can be obtained.

この回転子110周面には太線で示すような平行四辺形
の導体11aの導体群が形成される。
On the circumferential surface of the rotor 110, a conductor group of parallelogram-shaped conductors 11a as shown by thick lines is formed.

次に本考案による回転子11と従来の回転子の特性を比
較する。
Next, the characteristics of the rotor 11 according to the present invention and a conventional rotor will be compared.

第9図は本考案による平行四辺形巻き回転子11と、従
来の菱形巻き回転子1、六角巻き回転子21.四角巻き
回転子31の概略図で、各回転子11,1,21,31
の周面には夫々の形状の環状導体11a、1a、21a
、31aが示されており、各導体は夫々ピッチ角θで巻
回されている。
FIG. 9 shows a parallelogram-wound rotor 11 according to the present invention, a conventional rhombus-wound rotor 1, a hexagonal-wound rotor 21, and so on. A schematic diagram of a square-wound rotor 31, in which each rotor 11, 1, 21, 31
Annular conductors 11a, 1a, 21a of respective shapes are provided on the circumferential surface of the
, 31a are shown, and each conductor is wound at a pitch angle θ.

各回転子11,1,21,31は夫々軸方向の長さをt
lとし、回転子11.21に於いては、導体11a、2
1aの上記軸と平行な辺の長さ2 t2をt2=βt1、(但しβニーとする)、まtま た回転子1に於いては、その菱形導体1aの一つの頂部
から回転子1aの円筒側縁1での長さを11とする。
Each rotor 11, 1, 21, 31 has a length t in the axial direction.
1, and in the rotor 11.21, the conductors 11a, 2
The length 2 t2 of the side parallel to the above-mentioned axis of 1a is t2 = βt1 (however, β knee), and in the rotor 1, from the top of one of the rhombic conductors 1a to the rotor 1a, Let the length at the cylinder side edge 1 be 11.

第10図は上記回転子1,11,21,31のピッチ角
θに対する逆起電圧定数Kvを計算により求めた結果を
示す特性図で、太線で示す曲線は平行四辺形巻き回転子
11の特性で、夫々β=0.6゜0.7 、0.8 、
0.9の場合を示す。
FIG. 10 is a characteristic diagram showing the results of calculating the back electromotive force constant Kv with respect to the pitch angle θ of the rotors 1, 11, 21, and 31, and the curve shown by the thick line is the characteristic of the parallelogram-wound rotor 11. So, β=0.6°0.7, 0.8, respectively.
The case of 0.9 is shown.

実線で示す曲線は六角巻き回転子21の特性で、夫々β
=0.2゜0゜4 、0.6の場合を示す。
The curves shown by solid lines are the characteristics of the hexagonally wound rotor 21, and β
The case where =0.2°0°4, 0.6 is shown.

渣た点線で示す曲線は菱形巻き回転子1aの特性、鎖線
で示す曲線は四角巻き回転子31の特性である。
The curve shown by the broken dotted line is the characteristic of the rhombus-wound rotor 1a, and the curve shown by the chain line is the characteristic of the square-wound rotor 31.

尚各曲線のa点は逆起電圧定数Kvが最大、即ちトルク
が最大となる点を示すものである。
Note that point a of each curve indicates the point where the back electromotive voltage constant Kv is maximum, that is, the torque is maximum.

またこれらの各特性は2極の永久磁石を用いたモータで
、各回転子1゜11.21,31の長さt7、半径、電
圧、内部損失、磁束密度等を一定とした場合のものであ
る。
In addition, these characteristics are based on a motor using two-pole permanent magnets, and when the length t7 of each rotor 1゜11.21, 31, radius, voltage, internal loss, magnetic flux density, etc. are constant. be.

第10図に於いて、本考案による平行四辺形巻き回転子
11は、βを0.6より犬とすることによって、少くと
も菱形巻き回転子1aより大きなトルクを得ることがで
き、βをさらに大きくすることによって六角巻き回転子
21と略等しいトルクを得ることができる。
In FIG. 10, the parallelogram-wound rotor 11 according to the present invention can obtain at least a larger torque than the rhombus-wound rotor 1a by setting β to a value smaller than 0.6; By increasing the size, it is possible to obtain approximately the same torque as that of the hexagonally wound rotor 21.

また六角巻き回転子21ではβが変わるとa点を得るピ
ッチ角θが変わるが、平行四辺形巻き回転子11では、
a点のピッチ角θは略90°で一定である。
Also, in the hexagonal-wound rotor 21, when β changes, the pitch angle θ for obtaining point a changes, but in the parallelogram-wound rotor 11,
The pitch angle θ at point a is approximately constant at 90°.

また第9図に於いて回転子11,21の導体11a、2
1aの軸と平行な一対の辺(長さt2の辺)と異る他の
辺はトルク発生には寄与しない。
Also, in FIG. 9, the conductors 11a and 2 of the rotors 11 and 21 are
The other sides, which are different from the pair of sides parallel to the axis of 1a (the sides with length t2), do not contribute to torque generation.

従って導体11aの長さt2を大きくしてその円筒形状
を軸方向に長くすることにより、上記他の辺の長さを変
えずに、即ちピッチ角θを変えずに導体11aの磁束鎖
交量を増大させてトルクを犬とすることができる。
Therefore, by increasing the length t2 of the conductor 11a to make its cylindrical shape longer in the axial direction, the magnetic flux linkage of the conductor 11a can be increased without changing the lengths of the other sides, that is, without changing the pitch angle θ. The torque can be increased by increasing the torque.

このためピッチ角θと無関係に単に回転子11の長さt
lを長くするだけでトルクを犬とすることができるので
特に細長の円柱形状を有するモータに適用した場合に有
効である。
Therefore, regardless of the pitch angle θ, the length t of the rotor 11 is simply
This is particularly effective when applied to a motor having an elongated cylindrical shape, since the torque can be increased simply by increasing l.

また逆起電圧定数Kvが大となるので回転数の変動の少
いスピードレギュレーションの良いモータを得ることが
できる。
Furthermore, since the back electromotive voltage constant Kv is large, a motor with good speed regulation and less variation in rotational speed can be obtained.

第11図は第9図の導体11a、21a、31aを比較
するために、これらの導体を長さ11として互いに重ね
合わせた状態を示す。
In order to compare the conductors 11a, 21a, and 31a of FIG. 9, FIG. 11 shows the conductors 11a, 21a, and 31a in FIG.

この第11図より明らかなように、面積は四角巻きの導
体31aが最も犬きく、平行四辺形巻きの導体11aと
六角巻きの導体21aとは面積が等しい。
As is clear from FIG. 11, the square-wound conductor 31a has the largest area, and the parallelogram-wound conductor 11a and the hexagonal-wound conductor 21a have the same area.

従って鎖交磁束量は導体31aが最も大きく、第10図
のようにKvが大きくなる。
Therefore, the amount of flux linkage is the largest in the conductor 31a, and Kv becomes large as shown in FIG.

しかし各導体の全長を比較すれば、導体11aの長さが
最も小さいことは明らかである。
However, if the total lengths of each conductor are compared, it is clear that the length of the conductor 11a is the shortest.

即ち、導体11aの抵抗が最も小さく、従って前記■式
以下に述べたように電流iを戒るべく小さくして大きな
トルクTを得たいと云う要求を満足することができる。
That is, the resistance of the conductor 11a is the lowest, and therefore, the requirement to obtain a large torque T by reducing the current i to the extent possible can be satisfied as described in the equation (2) below.

!た導体31aの場合、この導体31aの導体群により
中空円筒を形成すると、円筒の上部と下部とに四角形の
横辺を形成する巻線が多重に積み重ねられて、この部分
が部厚くなってバランスを欠くようになる。
! In the case of the conductor 31a, when a hollow cylinder is formed by the conductor group of the conductor 31a, the windings forming the horizontal sides of the rectangle are stacked in multiple layers at the top and bottom of the cylinder, and this part becomes thicker to balance the cylinder. becomes lacking.

捷た寸法精度にもばらつきを生じて、回転子として動作
の不安定なものとなる。
This also causes variations in the dimensional accuracy of the rotor, resulting in unstable operation as a rotor.

これに比べて平行四辺形巻きの導体11aの場合は、第
8図のように中空円筒に形成しても、その上部及び下部
では各導体11aが少しづつずれるため上記のようなこ
とがなく、回転子として安定性及び生産性の良いものを
得ることができる。
In contrast, in the case of a parallelogram-wound conductor 11a, even if it is formed into a hollow cylinder as shown in FIG. 8, each conductor 11a is slightly shifted at its upper and lower parts, so the above problem does not occur. A rotor with good stability and productivity can be obtained.

以上はモータについて説明したが平行四辺形巻き回転子
11はゼネレータにも適用し得るものである。
Although the motor has been described above, the parallelogram-wound rotor 11 can also be applied to a generator.

本考案は、局面に環状導体群を有する中空円筒状に形成
された回転子を有するコアレス型回転機器に於いて、上
記環状導体を菱形、正方形及び長方形を除く平行四辺形
と成し、且つこの平行四辺形の長辺(例えば第9図の導
体11aの長さt2の辺)を上記回転子の軸方向と略平
行に配したことを特徴とするコアレス型回転機器に係る
ものである。
The present invention provides a coreless rotating device having a rotor formed in a hollow cylindrical shape with a group of annular conductors on its sides, in which the annular conductor is formed into a parallelogram shape other than a rhombus, a square, and a rectangle; The present invention relates to a coreless rotating device characterized in that the long side of the parallelogram (for example, the side of length t2 of the conductor 11a in FIG. 9) is arranged substantially parallel to the axial direction of the rotor.

従って本考案によれば、逆起電圧定数を充分に大きくと
りながら、巻線抵抗を小さくすることができるので、他
の形状巻きの導体と比べて、同一電圧で歇動したときに
、電流iを小さくしながら大きなトルクを得ることがで
きる。
Therefore, according to the present invention, it is possible to reduce the winding resistance while maintaining a sufficiently large back electromotive force constant, so compared to conductors with other winding shapes, when oscillating at the same voltage, the current i It is possible to obtain large torque while reducing the

またスピード−レギュレーションの良い、且つ寸法形状
及び動作の安定な生産性の良いコアレス回転機器を得る
ことができる。
Moreover, a coreless rotating device with good speed regulation, stable dimensions, shape and operation, and high productivity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は菱形巻き回転子の斜視図、第2〜4図は第1図
の回転子の製造工程の一例を示す斜視図、第5〜8図は
本考案による平行四辺形巻き回転子の製造工程の実施例
を示す斜視図、第9図は従来の回転子と本考案による回
転子の概略的な斜視図、第10図は従来のモータと本考
案によるモータの特性図、第11図は各形状巻きの導体
を重ね合わせた図である。 なお図面に用いられている符号に釦いて、11は平行四
辺形巻き回転子、11aは環状導体、12は芯材、13
は巻線である。
Figure 1 is a perspective view of a rhombus-wound rotor, Figures 2-4 are perspective views showing an example of the manufacturing process of the rotor shown in Figure 1, and Figures 5-8 are of a parallelogram-wound rotor according to the present invention. FIG. 9 is a schematic perspective view of a conventional rotor and a rotor according to the present invention. FIG. 10 is a characteristic diagram of a conventional motor and a motor according to the present invention. FIG. 11 is a perspective view showing an example of the manufacturing process. is a diagram in which conductors of various shapes are superimposed. In addition, according to the symbols used in the drawings, 11 is a parallelogram-wound rotor, 11a is an annular conductor, 12 is a core material, and 13 is a parallelogram-wound rotor.
is a winding.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 周直に環状導体群を有する中空円筒状に形成された回転
子を有するコアレス型回転機器に於いて、上記環状導体
を菱形、正方形及び長方形を除く平行四辺形と成し、且
つこの平行四辺形の長辺を上記回転子の軸方向と略平行
に配したことを特徴とするコアレス型回転機器。
In a coreless rotating device having a rotor formed in a hollow cylindrical shape having a group of annular conductors along the circumference, the annular conductor is formed into a parallelogram other than a rhombus, a square, and a rectangle, and the parallelogram A coreless rotating device characterized in that a long side of the rotor is arranged substantially parallel to the axial direction of the rotor.
JP1976019164U 1976-02-20 1976-02-20 Coreless rotating equipment Expired JPS587826Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1976019164U JPS587826Y2 (en) 1976-02-20 1976-02-20 Coreless rotating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1976019164U JPS587826Y2 (en) 1976-02-20 1976-02-20 Coreless rotating equipment

Publications (2)

Publication Number Publication Date
JPS52111310U JPS52111310U (en) 1977-08-24
JPS587826Y2 true JPS587826Y2 (en) 1983-02-10

Family

ID=28479235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1976019164U Expired JPS587826Y2 (en) 1976-02-20 1976-02-20 Coreless rotating equipment

Country Status (1)

Country Link
JP (1) JPS587826Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872356A (en) * 1981-10-23 1983-04-30 Matsushita Electric Works Ltd Manufacture of coil for coreless motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018902A (en) * 1973-06-22 1975-02-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018902A (en) * 1973-06-22 1975-02-27

Also Published As

Publication number Publication date
JPS52111310U (en) 1977-08-24

Similar Documents

Publication Publication Date Title
JPS5810940B2 (en) M Yuki Soukouri
JPS587826Y2 (en) Coreless rotating equipment
JPH0213540B2 (en)
JPS6019496Y2 (en) Armature of rotating electrical machine
JPH083188Y2 (en) Brushless motor
JPH059177U (en) Rotating electric machine
JPS6046633B2 (en) Electric motor
JPH0545099Y2 (en)
KR20210149379A (en) 3-phase 4-pole superconducting synchronous machine with dual field windings
JPS5936803B2 (en) Manufacturing method of hollow coil
JP2765764B2 (en) Stator winding arrangement method for synchronous motor
TWI769099B (en) Motor and coreless stator winding assembly thereof
JPH051965Y2 (en)
CN2199631Y (en) Electric generator with new structure
JPH07274422A (en) Method for winding electric rotary machine
JPH07274540A (en) Layered type electrostatic motor and manufacture of electrode for layered type electrostatic motor
JP2986290B2 (en) Squirrel cage rotor
KR200216664Y1 (en) cylinder type vibration motor using thin film coil
JPS6011743Y2 (en) Magnet generator for internal combustion engine ignition system
JPS5825748Y2 (en) Gaitengata Yudoudouukidendoukino Kaitenshitetsushin
JP3492454B2 (en) Generator
US20060267438A1 (en) Rotor winding
JPH0436215Y2 (en)
JPH0528945Y2 (en)
JPS6073385U (en) linear stepping motor