JPS5878057A - Heating and cooling device for air-conditioning - Google Patents

Heating and cooling device for air-conditioning

Info

Publication number
JPS5878057A
JPS5878057A JP17697581A JP17697581A JPS5878057A JP S5878057 A JPS5878057 A JP S5878057A JP 17697581 A JP17697581 A JP 17697581A JP 17697581 A JP17697581 A JP 17697581A JP S5878057 A JPS5878057 A JP S5878057A
Authority
JP
Japan
Prior art keywords
heating
heat
cooling
refrigeration cycle
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17697581A
Other languages
Japanese (ja)
Other versions
JPS6252226B2 (en
Inventor
真 小畑
堀 通真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17697581A priority Critical patent/JPS5878057A/en
Publication of JPS5878057A publication Critical patent/JPS5878057A/en
Publication of JPS6252226B2 publication Critical patent/JPS6252226B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は冷暖房用加熱冷却装置に関するものである。[Detailed description of the invention] The present invention relates to a heating and cooling device for heating and cooling.

従来のと一トポンプ式冷暖房装置は、暖房運転時外気温
の低下につれて暖房能力の低下が生じ、厳重時にはこの
装置のみでは室内を十分に暖房できないことはよく知ら
れてiる。このため従来、装置にヒータを組み込みこの
ヒータによシ能力補助をする方法が種々開発されている
が人民発生の心配がある。また他の方法に、室外側熱交
換器の補助熱源としてと一一による冷媒加熱や灯油の燃
焼などがあるが、多量の消費電力や灯油燃料を要すると
いう欠点があった。また冷房運転時においても外気温の
上昇につれて冷房能力の低下が生じ、この装置のみでは
室内【十分に冷房できないことはよく知られている。
It is well known that the heating capacity of conventional single-pump type air-conditioning equipment decreases as the outside temperature decreases during heating operation, and that this equipment alone cannot adequately heat the room in severe conditions. For this reason, various methods have been developed in which a heater is incorporated into the device and the heater is used to assist the performance, but there is a concern that this may cause problems. Other methods include heating a refrigerant using heat exchangers and burning kerosene as an auxiliary heat source for the outdoor heat exchanger, but these methods have the disadvantage of requiring a large amount of power consumption and kerosene fuel. Furthermore, even during cooling operation, the cooling capacity decreases as the outside temperature rises, and it is well known that this device alone cannot cool the room sufficiently.

し友がって、この発明の目的は、安全かつ経済的に冷暖
房能力を向上することができる冷暖房用加熱冷却装置を
提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a heating and cooling device for heating and cooling that can safely and economically improve heating and cooling capacity.

この発明の一実施例を図面に示す、すなわち、この冷暖
房用加熱冷却装置は、金属水素化物の吸熱または発熱作
用を利用したもので、その熱源および冷却源として冷凍
サイケyの高圧冷媒、低圧冷媒および空気を利用したも
のである0図において、1は通常の冷凍サイクル、2.
3は金属容器で内部に金属水素化物4およびそれと特性
の異なる金属水素化物5が各々封入しである。金属容器
2.3は外周にフィン6.7を形成して意外側熱交換器
8の風上側に配設し、内部に高圧冷媒利用の熱交換パイ
プ9.10と低圧吸入冷媒利用O熱交換パイプ11.1
2を各々埋設している。1Bは金属容器2.3′を連通
する水素配管13mの途中に介設した弁である。14は
金属容器2.3と熱交換する空気を送る意外側送風機で
ある。15゜16は金属容器2.3と熱交換し一#:、
g!IICt択−的に切り換えるダンパである。17.
18は高圧側の冷凍サイクルの冷媒流路を金属容器2.
3内の熱交換パイプ9.10に切り換える三方弁である
An embodiment of the present invention is shown in the drawings. That is, this heating and cooling device for heating and cooling utilizes the endothermic or exothermic action of metal hydrides, and uses high-pressure refrigerant and low-pressure refrigerant as the heat source and cooling source. In Figure 0, 1 is a normal refrigeration cycle, 2.
3 is a metal container in which a metal hydride 4 and a metal hydride 5 having different characteristics are sealed. The metal container 2.3 has fins 6.7 formed on its outer periphery and is arranged on the windward side of the outer heat exchanger 8, and has a heat exchange pipe 9.10 that uses high pressure refrigerant and an O heat exchanger that uses low pressure suction refrigerant inside. pipe 11.1
2 are buried in each. 1B is a valve interposed in the middle of the hydrogen pipe 13m that communicates with the metal container 2.3'. Reference numeral 14 denotes an outer side blower that sends air to exchange heat with the metal container 2.3. 15゜16 exchanges heat with metal container 2.3 1#:,
g! IICt is a selectively switched damper. 17.
18 connects the refrigerant flow path of the high-pressure side refrigeration cycle to a metal container 2.
3 is a three-way valve that switches to the heat exchange pipe 9.10.

19.20は冷房時低圧側の冷凍サイクルの冷媒流路を
金属容器2.3内の熱交換パイ111.12に切り換え
る三方弁である。21は圧縮機、22は室内側熱交換器
で室内側送風機23によって室内の冷暖房を行なうもの
である。24は冷暖房用切換四方弁、25.26はキャ
ビフリチ凰−ブ、27.28は逆止弁、29はアキエム
レータである。
19.20 is a three-way valve that switches the refrigerant flow path of the low-pressure side refrigeration cycle to the heat exchange pipe 111.12 in the metal container 2.3 during cooling. 21 is a compressor, and 22 is an indoor heat exchanger that cools and heats the room using an indoor blower 23. 24 is a four-way switching valve for heating and cooling, 25.26 is a cavity fringe valve, 27.28 is a check valve, and 29 is an ache emulator.

つぎにこの実施例の作用を説明する。まず冷凍サイクル
的な作用は基本的には従来既存のサイクル通りで室内ユ
ニット(番号なし)0運転に連動して圧縮機21が運転
される。
Next, the operation of this embodiment will be explained. First, the operation of the refrigeration cycle is basically the same as the conventional cycle, in which the compressor 21 is operated in conjunction with the indoor unit (no number) 0 operation.

暖房運転時には弁24に:よって室内側熱交換器22が
凝縮器動作をし、意外側熱交換器8が蒸発器動作をする
。この暖房運転時においてまず三方弁17を切p換え、
窩内側熱交換@22にて熱交換された高圧冷媒をこれに
より熱交換パイプ9へ流入する。この高圧冷媒の熱によ
って金属容器2内の金属水素化物4が加熱され、高圧の
水素ガスが放出して水素配管13麺および弁13を経て
金属容器3内に入り、その内の金属水素化物SK@賦さ
れる。これにより金属容器3内にて発生した吸蔵熱はフ
ィン7、を介して周囲の空気を加熱する。
During heating operation, the indoor heat exchanger 22 operates as a condenser, and the outside heat exchanger 8 operates as an evaporator. During this heating operation, first switch the three-way valve 17 to
The high-pressure refrigerant heat-exchanged in the cavity inside heat exchanger @22 flows into the heat exchange pipe 9. The metal hydride 4 in the metal container 2 is heated by the heat of this high-pressure refrigerant, and high-pressure hydrogen gas is released and enters the metal container 3 through the hydrogen pipe 13 and the valve 13, and the metal hydride SK in it is heated. @Available. As a result, the absorbed heat generated within the metal container 3 heats the surrounding air via the fins 7.

このときダンパ15は位置Bにダンパ16は位置Aに制
御されるため、室外側送風機14によって温風となって
意外側熱交換器8を加熱する。こうして容器3は交換器
8の補助熱源となり、暖房運転時の暖房効率を向上させ
る。一方金属容器2内の金属水素化物4は吸熱を伴うが
熱交換バイ19にて加熱されており、ま九金属水素化物
5は吸蔵熱を発生するが室外側送風機14で外気強制放
熱されているため圧力差による水素ガスの移動に際して
は何ら支障はない。水素ガスの移動は金属容器2.3の
内圧がバランスするまで行なわれ、移動が完了すると弁
13は開の状態の1まで、ダンパ16はBの位置、ダン
パ15はAの位置に制御され、冷媒流路切換三方弁17
はバイブ9への通路を断に切り換え、弁18は熱交換パ
イプIOK切り換えて前記と逆の作用により容器2が意
外側熱交換−8の補助熱源となる。このときの容器2゜
3間の水素ガスの移動が完了すると容器2.3における
動作の1サイクルが終了し、これが順次くりかえされて
交換器8を連続的に加熱することとなる。
At this time, the damper 15 is controlled to the position B and the damper 16 is controlled to the position A, so that the outdoor side blower 14 generates warm air to heat the outside heat exchanger 8 . In this way, the container 3 becomes an auxiliary heat source for the exchanger 8, improving heating efficiency during heating operation. On the other hand, the metal hydride 4 in the metal container 2 absorbs heat, but is heated by the heat exchanger 19, and the metal hydride 5 generates storage heat, but the heat is forcibly radiated to the outside air by the outdoor fan 14. Therefore, there is no problem in the movement of hydrogen gas due to the pressure difference. The movement of hydrogen gas is continued until the internal pressure of the metal container 2.3 is balanced, and when the movement is completed, the valve 13 is opened to 1, the damper 16 is controlled to the B position, the damper 15 is controlled to the A position, Refrigerant flow path switching three-way valve 17
The passage to the vibrator 9 is switched off, the valve 18 is switched to the heat exchange pipe IOK, and the container 2 becomes an auxiliary heat source for the outside heat exchanger 8 by the reverse action. When the transfer of hydrogen gas between the containers 2.3 at this time is completed, one cycle of operation in the containers 2.3 is completed, and this cycle is sequentially repeated to continuously heat the exchanger 8.

なお、金属水素化物4.5は蓄熱作用を伴うため、弁1
3の制−によって負荷に追従した能力制御が可能となる
とともに高圧冷媒の熱を有効に利用した暖房効率の向上
が図れる。
Note that metal hydride 4.5 has a heat storage effect, so valve 1
The control in 3 makes it possible to control the capacity in accordance with the load, and to improve the heating efficiency by effectively utilizing the heat of the high-pressure refrigerant.

つぎに冷房運転は、弁24の切り換えにより行われ、室
内側熱交換器22が蒸発器動作をし、室外側熱交換器8
が凝縮器動作をする。この冷房運転時においてはまず水
素ガスが金属容器3内へ移動し停止し九場合、室内側熱
交換器22にて熱交換された低圧冷媒は三方弁19の切
り換えによって熱交換パイプ11へ流入する。この低圧
吸入冷媒によって、水素ガス放出側となる金属容器2内
の金属水素化物4が冷却され、ガスの吸蔵によって金属
容器2内の圧力が低下する。一方金属容器3は外電熱に
よって加熱され金属容器3内の水嵩圧力は高い状態とな
る。そこで弁13が開放されると圧力差によって金属水
素化物5内の水素ガスが放出して金属容器2内へ入りそ
の内の金属水素化物4に吸蔵される。このとき金属容器
3内の金属水素化物5は水素ガスの放出により吸熱作用
を伴うため容器3ON8の空11Cを冷却する。ま友ダ
ンパ15は位置Bにあり、ダンパ16は位置Aにあるよ
うに制御されるため、室外側送風機14によってフィン
7t−介して外気との熱交換が促進され、冷風となって
室外側熱交換器8を冷却してその熱交換量を増加させ、
冷房運転時の冷、房効率を向上させる。ところで金属容
器2内に発生した吸蔵熱は低圧吸入冷媒によって冷却さ
れているため圧力差による水素ガスの移動に際しては何
ら支障はなく、金属容器2.3の内圧がバランスするま
で水素ガスの移動が行なわれ、これが完了すると弁13
は開の状態のままでダンパ15は位置A、ダンパ16は
位置Bに切り換えられ、冷媒流路切換三方弁19の切り
換えによりパイプ11tし中断し、弁20を熱交換パイ
プ12に4gJJ)換えて、前記と逆の作用をさせる。
Next, cooling operation is performed by switching the valve 24, the indoor heat exchanger 22 operates as an evaporator, and the outdoor heat exchanger 8 operates as an evaporator.
acts as a condenser. During this cooling operation, when the hydrogen gas first moves into the metal container 3 and stops, the low-pressure refrigerant that has been heat exchanged in the indoor heat exchanger 22 flows into the heat exchange pipe 11 by switching the three-way valve 19. . This low-pressure suction refrigerant cools the metal hydride 4 in the metal container 2 on the hydrogen gas release side, and the pressure in the metal container 2 decreases due to gas occlusion. On the other hand, the metal container 3 is heated by external electric heat, and the water bulk pressure inside the metal container 3 becomes high. When the valve 13 is opened, hydrogen gas in the metal hydride 5 is released due to the pressure difference, enters the metal container 2, and is stored in the metal hydride 4 therein. At this time, the metal hydride 5 in the metal container 3 has an endothermic action due to the release of hydrogen gas, so that the space 11C of the container 3ON8 is cooled. Since the damper 15 is controlled to be at position B and the damper 16 is controlled to be at position A, the outdoor side blower 14 promotes heat exchange with the outside air via the fins 7t, and the outdoor side heat is turned into cold air. cooling the exchanger 8 to increase its heat exchange amount;
Improves cooling efficiency during cooling operation. By the way, since the absorbed heat generated in the metal container 2 is cooled by the low-pressure suction refrigerant, there is no problem with the movement of hydrogen gas due to the pressure difference, and the movement of hydrogen gas is continued until the internal pressure of the metal container 2.3 is balanced. and when this is completed, the valve 13
remains open, damper 15 is switched to position A, damper 16 is switched to position B, pipe 11t is interrupted by switching the refrigerant flow path switching three-way valve 19, and valve 20 is switched to heat exchange pipe 12 (4gJJ). , causes the opposite effect to the above.

こう゛して水素ガスの往来により容器2.3のいずれか
で連続して室外側熱交換5et−冷却することとなる。
In this way, the outdoor heat exchange 5et-cooling is performed continuously in either container 2 or 3 due to the flow of hydrogen gas.

なお、弁13によって水素ガス流量を制御することKよ
り負荷に追従した能力制御が可能となるとともに低圧吸
入冷媒の熱を有効に利用し冷房効率の向上が図れること
は暖房運転時と同様である。
In addition, by controlling the hydrogen gas flow rate with the valve 13, it is possible to control the capacity in accordance with the load, and the heat of the low-pressure suction refrigerant can be effectively used to improve the cooling efficiency, as in the case of heating operation. .

以上のように、この発明の冷暖房用加熱冷却装置は、冷
暖房装置の冷凍すイクVの高圧冷媒、低圧吸入冷媒およ
び空気を利用して金属水素化物を加熱、冷却することに
よって金属水素化物の水素ガスの吸放出を行ない、これ
に伴う熱の授受を利用して冷暖房を行なうようにし九た
め、冷暖房負荷に追従した能力制御が可能となるととも
に、高圧冷媒、低圧吸入冷媒の熱を有効に利用して、安
全かつ経済的に冷暖房能力の向上が図れるという効果が
ある。!I!施態様態様て室外側熱変換器を加熱または
冷却すると冷暖房効率の向上が図れる。
As described above, the heating and cooling device for air conditioning of the present invention heats and cools the metal hydride using the high-pressure refrigerant of the freezing device V, the low-pressure suction refrigerant, and air. By absorbing and releasing gas and using the accompanying heat exchange for heating and cooling, it is possible to control the capacity in accordance with the heating and cooling load, and to effectively utilize the heat of high-pressure refrigerant and low-pressure suction refrigerant. This has the effect of improving heating and cooling capacity safely and economically. ! I! By heating or cooling the outdoor heat converter according to the embodiment, the efficiency of heating and cooling can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を冷暖房装置に応用したシス
テム図である。
The drawing is a system diagram in which an embodiment of the present invention is applied to a heating and cooling device.

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機、室内側熱交換器および室外側熱交換器を
含む冷凍サイクルと、それぞれに金属水嵩化物を封入す
るとともに水素ガスが往来するように相違通した一対の
伝熱容器とを備え、前記冷凍サイクルの暖房運転時に冷
凍サイクルの高圧冷媒によシ前記伝熱容器の水素ガス吸
蔵側を加熱して他方の伝熱容!IKより加熱動作させ、
冷凍サイクルの冷房運転時に冷凍サイクルの低圧冷媒に
より前記伝熱容器の水素ガス放出側を冷却して他方の容
器により冷却動作させるようにしたこと管特徴とする冷
暖房用加熱冷却装置。
(1) Equipped with a refrigeration cycle including a compressor, an indoor heat exchanger, and an outdoor heat exchanger, and a pair of heat transfer vessels, each of which is filled with a metal water bulk material and which are connected to each other so that hydrogen gas can pass therethrough. During the heating operation of the refrigeration cycle, the hydrogen gas storage side of the heat transfer container is heated by the high-pressure refrigerant of the refrigeration cycle, and the other heat transfer container is heated. Heating is activated by IK,
A heating and cooling device for heating and cooling, characterized in that during cooling operation of a refrigeration cycle, the hydrogen gas release side of the heat transfer container is cooled by a low-pressure refrigerant of the refrigeration cycle, and the other container is used for cooling operation.
(2) 前記伝熱容器は外11にツインf有して前記室
外側熱交換器の風上側に熱交換するように配設され、前
記冷凍サイクルに弁を介して接続された高圧冷媒用熱交
換バイブおよび低圧冷媒用熱交換パlプS−前記伝熱容
器に埋設し、かつ前記伝熱容器と意外側熱交Jll!l
との関KN閉ダンパを介在して相互に熱交換するものく
対してダンパを開成制御するようにしている特許請求の
範囲第(1)項記載の冷暖房用加熱冷却装置。
(2) The heat transfer container has a twin f on the outside 11 and is arranged to exchange heat on the windward side of the outdoor heat exchanger, and is connected to the refrigeration cycle via a valve to provide heat for high-pressure refrigerant. Exchange vibe and heat exchange pulp S for low-pressure refrigerant - embedded in the heat transfer container and performing heat exchange with the heat transfer container on the outside! l
A heating/cooling device for heating and cooling according to claim 1, wherein the damper is controlled to open for mutual heat exchange through a closed damper.
JP17697581A 1981-10-31 1981-10-31 Heating and cooling device for air-conditioning Granted JPS5878057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17697581A JPS5878057A (en) 1981-10-31 1981-10-31 Heating and cooling device for air-conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17697581A JPS5878057A (en) 1981-10-31 1981-10-31 Heating and cooling device for air-conditioning

Publications (2)

Publication Number Publication Date
JPS5878057A true JPS5878057A (en) 1983-05-11
JPS6252226B2 JPS6252226B2 (en) 1987-11-04

Family

ID=16022977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17697581A Granted JPS5878057A (en) 1981-10-31 1981-10-31 Heating and cooling device for air-conditioning

Country Status (1)

Country Link
JP (1) JPS5878057A (en)

Also Published As

Publication number Publication date
JPS6252226B2 (en) 1987-11-04

Similar Documents

Publication Publication Date Title
JP2980022B2 (en) Heat pump water heater
JPS63169457A (en) Heat pump type air conditioner
JPS5878057A (en) Heating and cooling device for air-conditioning
JPS6219666B2 (en)
JPS6252227B2 (en)
JPH04203776A (en) Heat pump type air conditioner
JP2002061897A (en) Heat storage type air conditioner
JPH02251051A (en) Heat accumulation type air conditioner
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JP2627332B2 (en) Cooling room equipment
JPS6143194Y2 (en)
JPS6475862A (en) Heat accumulation type air conditioner
JPH0510191Y2 (en)
JPH02187572A (en) Heat pump type air conditioner and hot water feeder
JPS5872853A (en) Absorption air conditioner
JPS62288455A (en) Air conditioner
JPH04106439U (en) refrigeration cycle
JPH02122168A (en) Air conditioner
JPS608290Y2 (en) Regenerative heating and cooling equipment
JPH0658578A (en) Air conditioner
JP2561408B2 (en) Closed pipe heat storage system
JPS637811Y2 (en)
JPS5878058A (en) Heat pump device
JPH02259375A (en) Cooling apparatus using metal hydride
JPH06229594A (en) Air-conditioning apparatus