JPS5877622A - Measuring method for flow rate of powder and granule - Google Patents

Measuring method for flow rate of powder and granule

Info

Publication number
JPS5877622A
JPS5877622A JP56175743A JP17574381A JPS5877622A JP S5877622 A JPS5877622 A JP S5877622A JP 56175743 A JP56175743 A JP 56175743A JP 17574381 A JP17574381 A JP 17574381A JP S5877622 A JPS5877622 A JP S5877622A
Authority
JP
Japan
Prior art keywords
powder
value
flow rate
granular material
transport pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56175743A
Other languages
Japanese (ja)
Inventor
Katsuhiko Shimada
島田 勝彦
Koji Nakayama
中山 耕治
Tatsuo Sato
佐藤 辰夫
Kazuo Saito
斉藤 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Dengyo Corp
JFE Engineering Corp
Original Assignee
Sankyo Dengyo Corp
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Dengyo Corp, NKK Corp, Nippon Kokan Ltd filed Critical Sankyo Dengyo Corp
Priority to JP56175743A priority Critical patent/JPS5877622A/en
Priority to US06/395,969 priority patent/US4490077A/en
Priority to DE19823227875 priority patent/DE3227875A1/en
Publication of JPS5877622A publication Critical patent/JPS5877622A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/13Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters using a reference counter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G11/00Apparatus for weighing a continuous stream of material during flow; Conveyor belt weighers
    • G01G11/14Apparatus for weighing a continuous stream of material during flow; Conveyor belt weighers using totalising or integrating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G13/00Weighing apparatus with automatic feed or discharge for weighing-out batches of material
    • G01G13/24Weighing mechanism control arrangements for automatic feed or discharge
    • G01G13/28Weighing mechanism control arrangements for automatic feed or discharge involving variation of an electrical variable which is used to control loading or discharge of the receptacle
    • G01G13/285Weighing mechanism control arrangements for automatic feed or discharge involving variation of an electrical variable which is used to control loading or discharge of the receptacle involving comparison with a reference value
    • G01G13/2851Weighing mechanism control arrangements for automatic feed or discharge involving variation of an electrical variable which is used to control loading or discharge of the receptacle involving comparison with a reference value for controlling automatic loading of weigh pans or other receptacles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain measured values continuously and accurately by measuring the flow rates of the gas in a transport pipe and the pressure drop of the fluid mixture between two places in a straight pipe part from a hopper during a prescribed period. CONSTITUTION:The flow rate of the powder and granules flowing in a transport pipe 1 is operated in an arithmetic circuit 15 (the operated value thereof is Gs) in accordance with the measuring signal of the flow rate of the air in the pipe 1 and the measuring signal of the pressure drop of the gaseous mixture of the powder and granules and the air in the pipe 1 from a differential pressure gage 14. On the other hand, the change in the weight of the powder and granules in a hopper 2 is measured continuously with a load cell 3, and the powder and granules are repeatedly supplied from a hopper 5 into the hopper 2 in such a way that the signal value thereof moves back and forth between WUU and WLL. The ratio (k) between the weighed value W of the powder and granules supplied into the pipe 1 determined from the signal values WU-WL of the cell 3 and the integrated value S in the prescribed period of the value GS is operated and is outputted to a multiplier 19. Here, a new operated value G's=kXGs is outputted.

Description

【発明の詳細な説明】 この発明は、極めて正確な測定が行なえる粉粒体の流量
測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the flow rate of powder or granular material, which allows extremely accurate measurement.

例えば、微粉炭等め粉粒体を空気輸送するに際しては、
粉粒体の供給量を何らかの手段で知る必要があるが、従
来、粉粒体の供給量を知るための装置として、第1図に
示すような、いわゆるロスインウェイト方式を適用した
粉粒体供給装置が知られている。図示されるように、1
は輸送管であり、輸送管1の一端には図系しない圧力空
気供給源が接続され、他端に向って空気が送り込まれる
For example, when transporting granular materials such as pulverized coal by air,
It is necessary to know the supply amount of powder or granular material by some means, and conventionally, as a device for determining the supply amount of powder or granular material, a powder or granular material applying the so-called loss-in-weight method as shown in Figure 1 has been used. Feeding devices are known. As shown, 1
is a transport pipe, and a pressure air supply source (not shown) is connected to one end of the transport pipe 1, and air is sent toward the other end.

2はホッパー、3はホッパー2に連結された、ホッパ−
2内に供給された粉粒体の重量を秤量するためのロード
セル、4はホッパー2の下部に取付けられた四−タリパ
ルプであり、ロータリパルプ4を通して、ホッパー2内
の粉粒体は、粉粒体輸送用の空気が流れている輸送管1
の途中から、その中に供給される。ホッパー2の上方に
は、その外部から粉粒体が供給されるサブホッパー5が
配置されており、サブホッパー5の下部に°取り付けら
れたロータリパルプ6を通して、サブホッパー5内の粉
粒体がホッパー2内に供給される。4′はロータリパル
プ4の直下に設けられた輸送管1とロータリパルプ4と
を連結するための伸縮継手、6′は同様にロータリパル
プ6の直下に設けられた伸縮継手である。
2 is a hopper; 3 is a hopper connected to hopper 2;
2 is a load cell for weighing the weight of the powder and granules supplied into the hopper 2; 4 is a four-tary pulp installed at the bottom of the hopper 2; through the rotary pulp 4, the powder and granules in the hopper 2 are Transport pipe 1 through which air for body transport flows
From the middle of, it is supplied into it. A sub-hopper 5 is arranged above the hopper 2 to which powder and granules are supplied from the outside. It is fed into the hopper 2. 4' is an expansion joint for connecting the transport pipe 1 and the rotary pulp 4 provided directly below the rotary pulp 4, and 6' is an expansion joint provided directly below the rotary pulp 6.

ロータリパルプ6は、次のように制御され、且つロータ
リパルプ6が閉じられた状態で、ロータリパルプ4を通
って輸送管1中に供給される粉粒体の重量は、ホッパー
2内にある粉粒体を秤量するロードセル3からの信号に
よって求められる。
The rotary pulp 6 is controlled as follows, and when the rotary pulp 6 is closed, the weight of the powder and granules supplied into the transport pipe 1 through the rotary pulp 4 is equal to the weight of the powder in the hopper 2. It is determined by the signal from the load cell 3 that weighs the granules.

即ち、ロードセル3からの秤量信号は、増幅器7を通っ
て微分器8および制御回路9に入力される。
That is, the weighing signal from the load cell 3 is input to the differentiator 8 and the control circuit 9 through the amplifier 7.

制御回路9においては、あらかじめホッパー2内の粉粒
体の重量の上限値および下限値が設定されており、この
制御回路9によって、ポツパー2内への粉粒体供給開始
に際して、ロードセル3の秤量値が上限値に達するまで
は、ロータリパルプ6を開放し、次いで、ロードセル3
の秤量値が上限値に達した時点でロータリパルプ6を閉
じ、次いで、ロードセル3の秤量値が下限値に達した時
点で、ロードセル3の秤量値が上限値に達するまで再び
ロータリパルプ6を開放する。なお、ロータIJ /<
ルプ4は、ロータリパルプ6の開閉にかかわらず、継続
して開放し、輸送管1中にホッパー2内の粉粒体を供給
する。一方、微分器8に入力されたロードセル3の秤量
信号は、微分器8において、微分され、かくして得られ
た微分信号は、制御回路9からの制御信号によって、ロ
ータリパルプ6が閉じている間は、微分器8からの信号
をそのまま通過させ乞ホールド回路10を通って、ホッ
パー2内から輸送管1中に供給された粉粒体流量の演算
信号として記録計等(図示せず)に出方される。ロータ
リパルプ6が開放している間(ロータリパルプ4は継続
して開放している)は、ロータリパルプ6を通ってサブ
ホッパー5からホッパー2に供給された粉粒体の重量が
わからない(即ち、ロードセル3は、2つのロータリパ
ルプ4.6のいずれか一方が閉じていなければホッパー
2内の粉粒体を秤量することができなt・)から、ロー
ドセル3は、ロータリパルプ4を通って輸送管1に供給
された粉粒体の重量を測定することができない。そこで
ホールド回路10は、制御回路9からの制御信号によっ
て、ロータリパルプ6が開放している間は、これが開放
開始した時点の微分器8かもの微分信号値をホールド(
保持)し、この値を、ホッパー2から輸送管1中に供給
される粉粒体の流量の推定値として出力する。
In the control circuit 9, the upper and lower limits of the weight of the powder or granular material in the hopper 2 are set in advance, and this control circuit 9 controls the weighing value of the load cell 3 when starting to supply the powder or granular material into the popper 2. The rotary pulp 6 is opened until the value reaches the upper limit, and then the load cell 3
When the weighing value of the load cell 3 reaches the upper limit, the rotary pulp 6 is closed, and then, when the weighing value of the load cell 3 reaches the lower limit, the rotary pulp 6 is opened again until the weighing value of the load cell 3 reaches the upper limit. do. In addition, rotor IJ /<
The loop 4 continues to open regardless of whether the rotary pulp 6 is opened or closed, and supplies the granular material in the hopper 2 into the transport pipe 1. On the other hand, the weighing signal of the load cell 3 input to the differentiator 8 is differentiated in the differentiator 8, and the thus obtained differentiated signal is controlled by the control signal from the control circuit 9 while the rotary pulp 6 is closed. , the signal from the differentiator 8 passes through the hold circuit 10 as it is, and is output to a recorder or the like (not shown) as a calculation signal of the flow rate of the powder and granular material supplied from the inside of the hopper 2 to the transport pipe 1. be done. While the rotary pulp 6 is open (the rotary pulp 4 is continuously open), the weight of the powder and granules supplied from the sub-hopper 5 to the hopper 2 through the rotary pulp 6 is unknown (i.e., The load cell 3 cannot weigh the granular material in the hopper 2 unless either one of the two rotary pulps 4.6 is closed, so the load cell 3 is transported through the rotary pulp 4. It is not possible to measure the weight of the granular material supplied to the tube 1. Therefore, while the rotary pulp 6 is open, the hold circuit 10 holds the differential signal value of the differentiator 8 at the time when the rotary pulp 6 starts to open (
) and outputs this value as an estimated value of the flow rate of the powder and granular material supplied from the hopper 2 into the transport pipe 1.

従って、以上のような構成においては、ロータリパルプ
6が開放している間は、輸送管1中に供給される粉粒体
の流量の正確な測定が行なえないという欠点がある。
Therefore, in the above configuration, there is a drawback that the flow rate of the granular material supplied into the transport pipe 1 cannot be accurately measured while the rotary pulp 6 is open.

このような点を考慮して、ホッパー内から、粉粒体輸送
用の気体が流れている輸送管中に粉粒体を供給し、前記
輸送管中の前記気体の流量、および前記輸送、管の直管
部2箇所間における、前記輸送管中の前記粉粒体と前記
気体との混合流体の圧力損失を測定し、前記両測定結果
に基づいて、前記輸送管中を流れる粉粒体の流量を演算
する、粉粒体の流量測定方法が提案された(特願昭55
−134400号、特公昭52−2630号)。
Considering these points, the powder and granular material is supplied from inside the hopper into the transport pipe through which the gas for transporting the powder and granular material is flowing, and the flow rate of the gas in the transport pipe and the transport, pipe are controlled. The pressure loss of the mixed fluid of the granular material and the gas in the transport pipe is measured between two straight pipe parts, and based on the measurement results, the pressure loss of the granular material flowing in the transport pipe is determined. A method for measuring the flow rate of powder and granular materials was proposed to calculate the flow rate.
-134400, Special Publication No. 52-2630).

この流量測定方法によれば、ホッパー内の粉粒体重量を
測定する必要がないから、ホッパー内から輸送管中に供
給さPる粉粒体の流量の正確な測定を連続的に行なうこ
とができることが期待できる0例えば、この流量測定方
法を実施するための演算法の一例は次の通りである。即
ち、輸送管の途中にある直管部の2箇所間における圧損
比αと混合比mとは、m=K (α−1)の関係にある
According to this flow rate measurement method, there is no need to measure the weight of the powder in the hopper, so it is possible to continuously accurately measure the flow rate of the powder supplied from the hopper into the transport pipe. For example, an example of a calculation method for implementing this flow rate measurement method is as follows. That is, the pressure loss ratio α and the mixing ratio m between two straight pipe portions in the middle of the transport pipe have a relationship of m=K (α−1).

(ここで、 s ””  /Ga G5:輸送管中を流れる(混合流体中の)粉粒体の流量
の演算値 Ga:輸送管中を流れる(混合流体中の)気体の流量の
演算値 Ga=C0・5Iへ ΔPad:輸送管中を流れる気体の流量計11による差
圧の測定値 α−17/ΔP3 ΔPT:輸送管の直管部2箇所間における、輸送管中の
粉粒体と気体との混合流体の 圧力損失 Ua:  輸送管の直管部2箇所間における気体の流速
、Ua=C,−Ga ΔPa:輸送管の直管部2箇所間における、輸送管中の
気体のみの圧力損失、 △Pa=c3 @r mUa (imAq) CI、C2,C3,に:比例定数 r : 空気密度) 従ってJKを検定(実測)によってあらかじめ定めてお
けば、GSは、Gs=m@Gaによって求めることがで
きる。
(Here, s ”” /Ga G5: Calculated value Ga of the flow rate of granular material (in the mixed fluid) flowing in the transport pipe Ga: Calculated value Ga of the flow rate of gas (in the mixed fluid) flowing in the transport pipe = C0.5I ΔPad: Measured value of differential pressure of gas flowing in the transport pipe by the flowmeter 11 α-17/ΔP3 ΔPT: Particles and gas in the transport pipe between two straight pipe parts of the transport pipe Pressure loss of mixed fluid Ua: Gas flow rate between two straight pipe parts of the transport pipe, Ua=C, -Ga ΔPa: Pressure of only the gas in the transport pipe between two straight pipe parts of the transport pipe Loss, △Pa=c3 @r mUa (imAq) CI, C2, C3: constant of proportionality r: air density) Therefore, if JK is determined in advance by verification (actual measurement), GS is determined by Gs=m@Ga. You can ask for it.

しかしながら、以上のような流量測定方法においては、
経時変化による輸送管の内面の摩耗、粉粒体の物性(例
えば粒径、湿度)の変化等により、前述したに、および
C3が変化する。そのため、上述した演算に誤差が生じ
、正確な測定が行なえないという問題がある。
However, in the above flow measurement method,
As described above, and C3 change due to wear on the inner surface of the transport pipe due to changes over time, changes in the physical properties of the powder (for example, particle size, humidity), etc. Therefore, there is a problem in that an error occurs in the above-mentioned calculation, and accurate measurement cannot be performed.

そこでこの発明は、以上のような問題を解消すべくなさ
れたもので、 ホッパー内から、粉粒体輸送用の気体が流れている輸送
管中に粉粒体を供給し、 前記輸送管中の前記気体の流量、および前記輸送管の直
管部2箇所間における、前記輸送管中の前記粉粒体と前
記気体との混合流体の圧力損失を測定し、 前記両測定結果に基づいて、前記輸送管中を流れる粉粒
体の流量を演算する、粉粒体の流量測定方法において、 前記ホッパーに連結された秤量手段によって、所定期間
中に前記ホッパーから前記輸送管中に供給された前記粉
粒体の重量を秤量し、且つ前記粉粒体の流量の演算値を
前記所定期間中積分し、ついで、前記所定期間経過後に
おける前記輸送管中を流れる前記粉粒体の流量の新漬算
値G’ sを、G’ s m=kxQs 〔但しGS:前記気体の流量の測定結果、および前記混
合流体の圧力損失の 測定結果に基づいて求めた前記 輸送管中を流れる前記粉粒体の 流量の演算値 に:前記所定期間中の前記粉粒体の重量の秤量値Wと、
前記所定期間の最終時点における前記Gsの積分値Sと
の比、即ちシ〕に基づいて求めることに特徴を有する。
Therefore, this invention was made to solve the above-mentioned problems, and the granular material is supplied from inside the hopper into a transport pipe through which gas for transporting the granular material is flowing, and Measure the flow rate of the gas and the pressure loss of the mixed fluid of the granular material and the gas in the transport pipe between two straight pipe parts of the transport pipe, and based on the results of both measurements, In a method for measuring the flow rate of powder and granular material that calculates the flow rate of powder and granular material flowing in a transport pipe, the powder supplied from the hopper into the transport pipe during a predetermined period is measured by a weighing means connected to the hopper. Weighing the weight of the granular material, and integrating the calculated value of the flow rate of the granular material during the predetermined period, and then calculating a new flow rate of the granular material flowing through the transport pipe after the elapse of the predetermined period. The value G's is expressed as G's m=kxQs [where GS is the value of the granular material flowing in the transport pipe, which is determined based on the measurement result of the flow rate of the gas and the measurement result of the pressure loss of the mixed fluid. The calculated value of the flow rate: a weighed value W of the weight of the powder or granular material during the predetermined period;
It is characterized in that it is determined based on the ratio of the Gs to the integral value S at the end of the predetermined period, that is, the ratio of the Gs to the integral value S.

以下この発明を実施例に基づいて図面を参照しながら説
明する。
The present invention will be described below based on embodiments and with reference to the drawings.

第2図はこの発明を実施するための粉粒体の流量測定装
置の一態様を示す概略構成図(第1図と同一符号部分は
同一物を示す)であり、第3図は同装置によるタイムチ
ャートの一例を示す図である。第2図に示されるように
、輸送管IVcおいて、ホッパー2からの粉粒体の供給
点より上流側に、空気流量計11が、さらにその上流側
に流量制御弁12がそれぞれ設けられており、流量制御
弁12は、弁制御回路13によって制御される。弁制御
回路13は、空気流量8計11の信号を入力し、これが
あらかじめ設定した流量値になるように流量制御弁12
を制御し、かくして、流量制御弁12の下流側の輸送管
1中の空気流量は、一定に制御される。
FIG. 2 is a schematic configuration diagram showing one embodiment of a powder/granular material flow rate measuring device for carrying out the present invention (the same reference numerals as in FIG. 1 indicate the same parts), and FIG. It is a figure showing an example of a time chart. As shown in FIG. 2, in the transport pipe IVc, an air flow meter 11 is provided upstream of the supply point of the powder and granular material from the hopper 2, and a flow rate control valve 12 is provided further upstream thereof. The flow control valve 12 is controlled by a valve control circuit 13. The valve control circuit 13 inputs the signals of the air flow rate 8 meter 11, and controls the flow rate control valve 12 so that the signal becomes a preset flow rate value.
Thus, the air flow rate in the transport pipe 1 on the downstream side of the flow rate control valve 12 is controlled to be constant.

14は輸送管1の前記粉粒体の供給点より下流側であっ
て、空気と粉粒体との混合流体が定常状態で流れている
区間(粉粒体の運動が安定した区間)における輸送管1
の2箇所間に設けられた輸送管1中の空気と粉粒体との
混合流体の圧力損失(差圧)を測定するための差圧計で
ある。差圧計14からの信号と、空気流量計11からの
信号とは、演算回路15に入力され、演算回路15にお
いて、前述した通りの演算、即ち、 Ga =C,・FΣで Ua=C2・Ga ΔPa=c3 a r *Ua’ 。=ΔPTムP3 m  =K(α−1) Gs =m・Ga が行なわれ、輸送管1中を流れる粉粒体の流量Gsが演
算される。
Reference numeral 14 denotes transportation in a section downstream from the supply point of the powder or granular material in the transport pipe 1, where a mixed fluid of air and granular material flows in a steady state (a section in which the movement of the powder or granular material is stable). tube 1
This is a differential pressure gauge for measuring the pressure loss (differential pressure) of a mixed fluid of air and powder in a transport pipe 1 provided between two locations. The signal from the differential pressure gauge 14 and the signal from the air flow meter 11 are input to the arithmetic circuit 15, and the arithmetic circuit 15 performs the calculation as described above, that is, Ga = C, ·FΣ, and Ua = C2 · Ga. ΔPa=c3 a r *Ua'. =ΔPTmP3 m =K(α-1) Gs =m·Ga is performed, and the flow rate Gs of the powder and granular material flowing through the transport pipe 1 is calculated.

一方、ホッパー2に連結されたロードセル3からの信号
は、増巾器7を通って制御回路9および補正制御回路1
6に入力される。
On the other hand, the signal from the load cell 3 connected to the hopper 2 passes through the amplifier 7 to the control circuit 9 and the correction control circuit 1.
6 is input.

制御回路9は、第3図に示すように、後述する補正信号
が入力されない限り、ロードセル3かもの信号値がWr
、b(ホッパー2内の粉粒体を、輸送管1中に連続供給
するのに支障のない下限値)になった時点でロータリパ
ルプ6を開き(ONL)、ロードセル3からの信号値が
WUU(ホッパー2内に粉粒体を収容できる上限値)に
なった時点でロータリパルプ6を閉じる(OFFする)
という動作を繰返す(なお、この間ロータリパルプ4は
ロータリパルプ6の開、藺に関係なく開いている)。
As shown in FIG. 3, the control circuit 9 controls the signal value of the load cell 3 to be Wr unless a correction signal to be described later is input.
, b (the lower limit value that does not hinder continuous supply of the powder and granular material in the hopper 2 into the transport pipe 1), the rotary pulp 6 is opened (ONL), and the signal value from the load cell 3 becomes WUU. The rotary pulp 6 is closed (turned OFF) when it reaches (the upper limit that can accommodate powder and granular material in the hopper 2).
This operation is repeated (during this time, the rotary pulp 4 is open regardless of whether the rotary pulp 6 is open or closed).

演算回路15の出力信号(演算信号)は、掛算器19と
、スイッチ17を介して積分器18とに入力される。積
分器18の出力信号は、ホールド回路20を通って除算
器21に出力される。
The output signal (calculation signal) of the calculation circuit 15 is input to the integrator 18 via the multiplier 19 and the switch 17. The output signal of the integrator 18 is output to the divider 21 through the hold circuit 20.

22は補正指令スイッチ回路であり、この回路は任意時
期(例えば1日1回又は数回一定時刻、又は操作者の任
意選定時刻等)に、補正信号を補正制御回路16に出力
する。補正制御回路16は、補正信号によって、次のよ
うに作動する。即ち、(1)、まず補正信号が入力され
た時点が、ロータリパルプ6が開放している状態(第3
図■参照)であった場合(ロータリ1バルブ6の−、閉
の判断は、制御回路9からの、ロータリパルプ6の開、
閉作動の制御信号を入力することにより得られる)は、
一旦ロータリパルプ6が閉(OFF)になってから、ロ
ードセル3の信号値がwU (wUUより所定値だけ小
さい値)になった時点で、それまで開いていたスイッチ
17を閉じる(第3図@参照)。また、補正信号が入力
された時点が、ロータリパルプ6が閉じている状態(第
3図a参照)であった場合は、直ちにロータリパルプ6
を開放させる指令を制御回路9に出力する。その結果、
ロータリパルプ6は開放し、ロードセル3の信号値がW
TJUになった時点でロータリパルプ6は閉(OFF)
になり、次いで、ロードセル3の信号値がWUになった
時点でそれまで開になっていたスイッチ17を閉じる(
第3図O′参照)。(2)、次いで、ロードセル3の信
号値がWy、(WLI−より 所定値だけ大きζ°)値
)になった時点で、スイッチ17を開にすると共に、ホ
ールド回路20をON(ホールド)シ、且つ除算器21
に、wU−wL、即ち、ロードセル3の信号値がwtr
からWLまで減じる間にホッパー2内から輸送管1中に
供給された粉粒体の重量の測定値(秤量値)Wを入力さ
せる(なお、このWtr−Wr、=VJあらかじめ除算
器21内に記憶させておいてもよい)。
Reference numeral 22 denotes a correction command switch circuit, and this circuit outputs a correction signal to the correction control circuit 16 at an arbitrary time (for example, at a fixed time once or several times a day, or at a time arbitrarily selected by the operator). The correction control circuit 16 operates as follows based on the correction signal. That is, (1), the point in time when the correction signal is first input is the state in which the rotary pulp 6 is open (the third
(Refer to Figure ■) (The determination of whether the rotary 1 valve 6 is - or closed is determined by the control circuit 9's opening or closing of the rotary pulp 6.
(obtained by inputting the control signal for closing operation) is
Once the rotary pulp 6 is closed (OFF) and the signal value of the load cell 3 reaches wU (a value smaller than wUU by a predetermined value), the switch 17 that was open until then is closed (Fig. 3 @ reference). In addition, if the rotary pulp 6 is in a closed state (see Fig. 3 a) at the time when the correction signal is input, the rotary pulp 6 is immediately closed.
A command to open the circuit is output to the control circuit 9. the result,
The rotary pulp 6 is opened and the signal value of the load cell 3 is W.
The rotary pulp 6 is closed (OFF) when TJU is reached.
Then, when the signal value of the load cell 3 becomes WU, the switch 17, which had been open until then, is closed (
(See Figure 3 O'). (2) Next, when the signal value of the load cell 3 reaches Wy, (a value larger than WLI- by a predetermined value ζ°), the switch 17 is opened and the hold circuit 20 is turned on (hold). , and divider 21
, wU-wL, that is, the signal value of load cell 3 is wtr
The measured value (weighed value) W of the weight of the powder and granular material supplied from the inside of the hopper 2 into the transport pipe 1 during the subtraction from W to WL is input (this Wtr-Wr, = VJ is entered in advance in the divider 21). (You may remember it.)

積分器18は、スイッチ17の閉によって、演算回路1
5かもの演算信号(Gs)を積分開始し、次いでスイッ
チ17の開によってその積分を停止する(第3図θθ′
参照)。
The integrator 18 is connected to the arithmetic circuit 1 by closing the switch 17.
Integration of the 5 calculation signals (Gs) is started, and then the integration is stopped by opening the switch 17 (Fig. 3 θθ'
reference).

ホールド回路20は、OFF時は積分器18かもの積分
信号をそのまま留めておき、補正制御回路16からのO
N信号入力時点でONして、その時の積分器18からの
積分信号値を保持し、これ(S)を除算器21に入力す
る。
The hold circuit 20 holds the integral signal of the integrator 18 as it is when it is OFF, and outputs the O from the correction control circuit 16.
It is turned ON when the N signal is input, holds the integral signal value from the integrator 18 at that time, and inputs this (S) to the divider 21.

除算器21は、ホールド回路20からのホールド信号、
即ち、スイッチ17の開による積分終了時点の積分値S
と、前記秤量値Wとの比に= 1へ熾を演算し、これを
掛算器19に出力する。
The divider 21 receives a hold signal from the hold circuit 20,
That is, the integral value S at the time when the integration ends when the switch 17 is opened
and the weighed value W to be equal to 1, and output this to the multiplier 19.

掛算器19は、かくして入力されたkを、次の新しいk
が入力されるまでは保持し、演算回路15からの演算信
号の演貧値Gsと、kとの積、即ちkaQsを、輸送管
1中に流れる粉粒体の流量の新漬算値G’ Sとして出
方する(なお、本粉粒体の流量測定装置のスタート時は
、1(=lとして設定しである)。
The multiplier 19 converts the thus inputted k into the next new k
The product of the computed value Gs of the computed signal from the computing circuit 15 and k, that is, kaQs, is used as the new calculated value G' of the flow rate of the powder and granular material flowing in the transport pipe 1. S (note that when starting this powder/granular material flow measuring device, it is set as 1 (=l)).

以上のよう、な構成によって、輸送管1中を流れる粉粒
体の流量は、流量計11からの、輸送管1中の空気流量
測定信号、および差圧計14からの。
With the above configuration, the flow rate of the powder flowing through the transport pipe 1 is determined by the air flow rate measurement signal in the transport pipe 1 from the flow meter 11 and from the differential pressure gauge 14.

輸送管1中の粉粒体と空気との混合流体の圧力損失測定
信号に基づいて、演算回路15において演算される(そ
の演算値はQs )。
It is calculated in the calculation circuit 15 based on the pressure loss measurement signal of the mixed fluid of powder and air in the transport pipe 1 (the calculated value is Qs).

一方、ホッパー2内の粉粒体の重量変化は、ロードセル
3によって連続測定され、ホッパー2内には、その信号
値がWUUとWjLJ、4間を往復するように、粉粒体
がサブホッパー5から繰返し供給される。
On the other hand, the weight change of the granular material in the hopper 2 is continuously measured by the load cell 3, and the granular material in the hopper 2 is stored in the sub-hopper 5 so that the signal value reciprocates between WUU and WjLJ, 4. is repeatedly supplied from

そして、補正指令スイッチ回路22によって、補正信号
が補正制御回路16に入力されると(第3図■、■′参
照)、(ロータリパルプ6が閉(OFF)の場合は直ち
にこれが開放し)、ロードセル3の信号値がwUUにな
るまでロータリパルプ6の開(ON)が継続し、次いで
ロードセル3の信号値がWTJITになった時点でロー
タリパルプ6が閉じる。
Then, when the correction signal is inputted to the correction control circuit 16 by the correction command switch circuit 22 (see ■, ■' in Fig. 3), (if the rotary pulp 6 is closed (OFF), it is immediately opened), The rotary pulp 6 continues to be opened (ON) until the signal value of the load cell 3 becomes wUU, and then the rotary pulp 6 closes when the signal value of the load cell 3 becomes WTJIT.

次いでロードセル3の信号値がはじめてwU になった
時点でスイッチ17が閉じて、積分器18が演算回路1
5からの演算信号を積分開始しく第3図@、@′参照)
、次いで、ロードセル3の信号値、  がはじめてWL
 になった時点で、スイッチ17が開いて、積分器18
の積分が停止し、その時の演算信号の演算値Gs の積
分値Sをホールド回路2゜が保持し、これを除算器21
に出方する(第3図○、O′参照)。
Next, when the signal value of the load cell 3 reaches wU for the first time, the switch 17 is closed and the integrator 18 is switched to the arithmetic circuit 1.
(See Figure 3 @, @')
, then the signal value of load cell 3, becomes WL for the first time
, the switch 17 opens and the integrator 18
The hold circuit 2° holds the integrated value S of the calculated value Gs of the calculated signal at that time, and divides it into the divider 21.
(see ○, O' in Figure 3).

そして、除算器21は、前記積分期間中における、ロー
ドセル3の信号値wU〜IWLから求めた、輸送管1中
に供給された粉粒体の重量の秤量値Wと、積分値Sとの
比kを演算して、これを掛算器19に出力する。掛算器
19は、kを、次の新しい信号が除算器21かも入力さ
れるまではホールドし、このkと、演算回路15の演算
信号の演算値Gsとの積を演算して、その演算結果を、
輸送管1中の粉粒体の流量の新漬算値として出力する(
第3図θ、θ′参照。なお、積分終了から除算器21が
kを出力し、とのkに基づいて掛算器19が新漬算値を
出力するまでは瞬時に行なわれる)。
Then, the divider 21 calculates the ratio between the weight value W of the weight of the powder and granular material supplied into the transport pipe 1 and the integral value S, which is calculated from the signal values wU to IWL of the load cell 3 during the integration period. k is calculated and outputted to the multiplier 19. The multiplier 19 holds k until the next new signal is also input to the divider 21, calculates the product of this k and the calculated value Gs of the calculated signal of the calculation circuit 15, and calculates the calculated result. of,
Output as a new calculation value of the flow rate of powder and granular material in transport pipe 1 (
See Figure 3 θ, θ'. Note that the process from the end of the integration until the divider 21 outputs k and the multiplier 19 outputs a new sum value based on k is instantaneous).

このようにして、演算回路15の演算信号の演算値Gs
は、除算器21からの信号によって補正されてこれが新
漬算値G′sとして使用されるが、新漬算値G’sが演
算値Gsの誤差(真の流量に対する)を補正することに
なる理由は次の通りであ木。即ち、ロータリパルプ6が
閉じている間に、ロードセル3が秤量した、ホッパー2
内から輸送管1中に供給された粉粒体の重量は、正確で
ある。
In this way, the calculated value Gs of the calculation signal of the calculation circuit 15
is corrected by the signal from the divider 21 and used as the new calculated value G's, but the new calculated value G's corrects the error (with respect to the true flow rate) of the calculated value Gs. The reason for this is as follows. That is, while the rotary pulp 6 is closed, the load cell 3 weighs the hopper 2.
The weight of the powder and granules fed into the transport pipe 1 from within is accurate.

従って、ロータリパルプ6が閉じている間に該当する積
分期間中におけるロードセル3による秤量値W(ホッパ
ー2内から輸送管1中に供給された粉粒体の重量)と、
演算回路15の演算信号の演算値Gs の前記積分期間
の最終時点における積分値S(即ち、前記積分期間中に
おいて、輸送管1中を流れた粉粒体の重量の演算値)と
の比kによって、演算回路15の演算信号の演算値Gs
を補正するのであるから、新漬算値G’sは、演算値G
sに比べて、より正確な、輸送管1中を流れる粉粒体の
流量の測゛定値を示すことができるのである。
Therefore, the weighed value W (weight of the granular material supplied from the inside of the hopper 2 into the transport pipe 1) by the load cell 3 during the corresponding integration period while the rotary pulp 6 is closed,
Ratio k of the calculated value Gs of the calculation signal of the calculation circuit 15 to the integral value S at the end of the integration period (i.e., the calculation value of the weight of the powder and granular material flowing through the transport pipe 1 during the integration period) The calculated value Gs of the calculation signal of the calculation circuit 15 is
, the new calculated value G's is the calculated value G
Compared to s, it is possible to show a more accurate measured value of the flow rate of the powder and granular material flowing through the transport pipe 1.

第4図は、この発明を実施するための粉粒体の流量測定
装置の他の一態様を示す概略構成図(第2図と同一部分
は同一符号で示す)である。23はホッパー2の下部の
ロータリパルプ4の直下の輸送管1中への粉粒体の供給
路に設けられた、輸送管1中の流体の絶対圧力を測定す
るための圧力計であり、この圧力計23の信号は、重量
補正回路24に出力される。重量補正回路24には、さ
らに、増幅器7かうの信号が入力され、補正制御回路2
4の信号は、制御回路9および補正制御回路16に出力
される。
FIG. 4 is a schematic configuration diagram showing another embodiment of a powder/granular material flow rate measuring device for carrying out the present invention (the same parts as in FIG. 2 are indicated by the same reference numerals). 23 is a pressure gauge for measuring the absolute pressure of the fluid in the transport pipe 1, which is installed in the supply path of the powder and granular material into the transport pipe 1 directly below the rotary pulp 4 at the lower part of the hopper 2; The signal from the pressure gauge 23 is output to the weight correction circuit 24 . The weight correction circuit 24 is further input with the signal from the amplifier 7, and the correction control circuit 2
The signal No. 4 is output to the control circuit 9 and the correction control circuit 16.

圧力計23の信号と、ロードセル3の信号との間には、
例えば第5図に示されるような関係がある。即ち、ホッ
パー2の上下にある2つの伸縮継f6′、4′の間にお
いて、面積(通路断面積)差があると(伸縮継手4′の
方が面積が大きい)、この面積差とホッパー2が受ける
輸送管1中の圧力との積の力を、ホッパー、2が上向き
に受け、これがロードセル3の測定値を、ホッパー2お
よびその内の粉粒体の真重量よりも軽い値として示させ
る−と考えられる(なお、ホッパー2,5内には、輸送
管1中の空気圧を、均圧管等を介して供給して、ホッパ
ー2,5内圧力を、輸送管1中圧力と均等にしである)
。第5図は、ホッパー2内の粉粒体重量を変えない条件
下で、2つの伸縮継手4’、6’の面積差が139.9
25(CIりのときにおいて、輸送管1中の圧力と、ロ
ードセル3の信号との関係の一例を示す図であり、図か
ら、実質的に両者は比例することが明らかである。図中
直線は、最小2乗近似直線であり、Y=−145,80
・X+284.64(相関係数r=0.9963、デー
タ数30)と表わせる。
Between the signal of the pressure gauge 23 and the signal of the load cell 3,
For example, there is a relationship as shown in FIG. That is, if there is a difference in area (passage cross-sectional area) between the two expansion joints f6' and 4' above and below the hopper 2 (the expansion joint 4' has a larger area), then this area difference and the hopper 2 The hopper 2 receives upwardly the force multiplied by the pressure in the transport pipe 1, which causes the measured value of the load cell 3 to be shown as a value lighter than the true weight of the hopper 2 and the granular material therein. (In addition, the air pressure in the transport pipe 1 is supplied to the hoppers 2 and 5 through a pressure equalizing pipe, etc., so that the pressure inside the hoppers 2 and 5 is equal to the pressure inside the transport pipe 1.) be)
. Figure 5 shows that under the condition that the weight of the powder in the hopper 2 is not changed, the area difference between the two expansion joints 4' and 6' is 139.9.
25 (CI) is a diagram showing an example of the relationship between the pressure in the transport pipe 1 and the signal of the load cell 3. From the diagram, it is clear that the two are substantially proportional. In the diagram, the straight line is the least squares approximation straight line, Y=-145,80
- It can be expressed as X+284.64 (correlation coefficient r=0.9963, number of data 30).

従って、重量補正回路24において、 Wa’巨Wa十C4op (ただし、 WIa二重二重正補正回路24力、即ち、ホッパー2内
の粉粒体の重量の測 定値 Wa:増巾器7の出力値(ロードセル3の測定値) P :圧力計23の測定値 C4:定数) を演算することによって、ホッパー2の上下の伸縮継手
6′、4′間の面積差による輸送管1中圧力の影響を受
けずに、ホッパー2内の粉粒体の重量の測定値を、制御
回路9および補正制御回路16に与えることができる。
Therefore, in the weight correction circuit 24, Wa' giant Wa C4op (however, WIa double double positive correction circuit 24 force, that is, the measured value Wa of the weight of the powder and granular material in the hopper 2: the output of the amplifier 7 (measured value of load cell 3) P: measured value of pressure gauge 23 C4: constant) By calculating The measured value of the weight of the powder or granular material in the hopper 2 can be given to the control circuit 9 and the correction control circuit 16 without receiving the weight.

以上説明したように、この発明においては、輸送管中を
流れる粉粒体の流量を、切れ目なく連続して極めて正確
に測定することができる。
As explained above, in the present invention, the flow rate of the powder or granular material flowing through the transport pipe can be measured continuously and extremely accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のロスインウェイト方式を適用した粉粒体
供給装置の概略構成図、第2図および第4図は、この発
明を実施するための粉粒体の流量測定装置のそれぞれ別
の態様を示す概略構成図、第3図は第2図示の装置によ
るタイムチャートの一例を示ス図、第5図はホツノく−
の上下の伸縮継手間に面積差がある場合における、ロー
ドセルの信号と輸送管中圧力との関係の一例を示す図で
ある。 1・・・輸送管、      2・・・ホツノ(−13
11,ロードセル、4.6・・・ロータリパルプ、9・
・・制御回路、    10.20・・・ホールド回路
、14・・・差圧計、   15・・・演算回路、16
・・・補正制御回路、  17・・・スイッチ、18・
・・積分器、   19・・・掛算器、21・・・除算
器、    22・・・補正指令スイッチ回路、23・
・・圧力計、   24・・・重量補正回路。 出願人 日本鋼管株式会社 出願人 三協電業株式会社 代理人 堤 敬太部 外1名 箪1図 シ
FIG. 1 is a schematic configuration diagram of a powder supply device to which a conventional loss-in-weight method is applied, and FIGS. 2 and 4 show different examples of a powder and granule flow rate measuring device for carrying out the present invention. FIG. 3 is a diagram showing an example of a time chart of the apparatus shown in FIG. 2, and FIG.
It is a figure which shows an example of the relationship between the signal of a load cell and the pressure in a transport pipe in the case where there is an area difference between the upper and lower expansion joints. 1...Transport pipe, 2...Hotsuno (-13
11, load cell, 4.6... rotary pulp, 9.
...Control circuit, 10.20...Hold circuit, 14...Differential pressure gauge, 15...Arithmetic circuit, 16
...correction control circuit, 17...switch, 18.
... Integrator, 19... Multiplier, 21... Divider, 22... Correction command switch circuit, 23.
...Pressure gauge, 24...Weight correction circuit. Applicant Nippon Kokan Co., Ltd. Applicant Sankyo Dengyo Co., Ltd. Agent Keitabe Tsutsumi

Claims (2)

【特許請求の範囲】[Claims] (1)、ホッパー内から、粉粒体輸送用の気体が流れて
いる輸送管中に粉粒体を供給し、 前記輸送管中の前記気体の流量、および前記輸送管の直
管部2箇所間における、前記輸送管中の前記粉粒体と前
記気体との混合流体の圧力損失を測定し、 前記測測定結果に基づいて、前記輸送管中を流−れる粉
粒体の流量を演算する、粉粒体の流量測定方法において
、 前記ホ゛ツバ−に連結された秤量手段によって、所定期
間中に前記ホッパーから前記輸送管中に供給された前記
粉粒体の重量を秤量し、且ろ前記粉粒体の流量の演算値
を前記所定期間中積分し、ついで、前記所定期間経過後
における前記輸送管中を流れる前記粉粒体の流量の新漬
算値G’sを、G’s = k X Gs 〔但しGS:前記気体の流量の測定結果、および前記混
合流体の圧力損失の 測定結果に基づいて求めた前記 輸送管中を流れる前記粉粒体の 流量の演算値 に:前記所定期間中の前記粉粒体の 重量の秤量値Wと、前記所定期 間の最終時点における前記Gs の積分値Sとの比、即ち5〕 に基づいて求めることを特徴とする粉粒体の流量測定方
法。
(1) From inside the hopper, granular material is supplied into a transport pipe through which gas for transporting the granular material is flowing, and the flow rate of the gas in the transport pipe and the two straight pipe portions of the transport pipe are controlled. measuring the pressure loss of the mixed fluid of the powder and granular material and the gas in the transport pipe between the steps, and calculating the flow rate of the powder and granular material flowing in the transport pipe based on the measurement result. , a method for measuring the flow rate of powder or granular material, the weight of the powder or granular material supplied from the hopper into the transport pipe during a predetermined period is weighed by a weighing means connected to the hopper; The calculated value of the flow rate of the granular material is integrated during the predetermined period, and then the new calculated value G's of the flow rate of the granular material flowing in the transport pipe after the elapse of the predetermined period is calculated as G's = k X Gs [However, GS: The calculated value of the flow rate of the powder and granular material flowing in the transport pipe, which is determined based on the measurement result of the flow rate of the gas and the measurement result of the pressure loss of the mixed fluid: During the predetermined period A method for measuring the flow rate of a powder or granular material, characterized in that the flow rate is determined based on a ratio of a weighed value W of the weight of the powder or granular material to an integral value S of the Gs at the end of the predetermined period, that is, 5].
(2)、前記秤量手段の秤量値を、前記輸送管中の流体
圧力の測定値に基づいて補正することを特徴とする特許
請求の範囲第(1)項記載の粉粒体の流量測定方法。
(2) The method for measuring the flow rate of powder or granular material according to claim (1), characterized in that the weighed value of the weighing means is corrected based on the measured value of the fluid pressure in the transport pipe. .
JP56175743A 1981-07-28 1981-11-04 Measuring method for flow rate of powder and granule Pending JPS5877622A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56175743A JPS5877622A (en) 1981-11-04 1981-11-04 Measuring method for flow rate of powder and granule
US06/395,969 US4490077A (en) 1981-07-28 1982-07-07 Apparatus for continuously measuring flow rate of fine material flowing through transport pipe
DE19823227875 DE3227875A1 (en) 1981-07-28 1982-07-26 DEVICE FOR CONTINUOUSLY MEASURING THE FLOW RATE OF A FINE MATERIAL THROUGH A CONVEYOR PIPE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56175743A JPS5877622A (en) 1981-11-04 1981-11-04 Measuring method for flow rate of powder and granule

Publications (1)

Publication Number Publication Date
JPS5877622A true JPS5877622A (en) 1983-05-11

Family

ID=16001466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56175743A Pending JPS5877622A (en) 1981-07-28 1981-11-04 Measuring method for flow rate of powder and granule

Country Status (1)

Country Link
JP (1) JPS5877622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351520A (en) * 1991-08-12 1994-10-04 Sames S.A. Fluidized powder flowrate measurement method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351520A (en) * 1991-08-12 1994-10-04 Sames S.A. Fluidized powder flowrate measurement method and device
US5473947A (en) * 1991-08-12 1995-12-12 Sames S. A. Fluidized powder flowrate measurement method and device

Similar Documents

Publication Publication Date Title
US4490077A (en) Apparatus for continuously measuring flow rate of fine material flowing through transport pipe
JP4084304B2 (en) Method and apparatus for weight distribution of bulk material
US4198860A (en) Method and apparatus for measuring particulate matter flow rate
KR860001809B1 (en) Apparatus of checking and controlling humidity for storaging food
JPH02227614A (en) Non-breathing mass flowmeter apparatus and flow rate measurement
JPS5877622A (en) Measuring method for flow rate of powder and granule
Mason et al. A novel experimental technique for the investigation of gas–solids flow in pipes
JP4329921B2 (en) Inspection gas mixing apparatus and mixing method
JP3404614B2 (en) How to control the supply of powder
JPS58104839A (en) Fixed quantity supply mechanism for equipment for continuously supplying fixed quantity of powder
JPH08136314A (en) Method and device for distribution based on quantity of material that can flow such as liquid or scattered material
JP6906868B2 (en) Powder blowing system
Sen et al. PC-based gas-solids two-phase mass flowmeter for pneumatically conveying systems
JPH067322Y2 (en) Powder flow rate measuring device
JPH0136887B2 (en)
JPH0151932B2 (en)
JPS6229929Y2 (en)
JPH0158085B2 (en)
JPS5839738B2 (en) Blowout restriction method in high pressure gas transport equipment
JPS62215425A (en) Method of controlling conveyance of granular body at predetermined volume
JPS5974822A (en) Powdered material supplying method
JP2019056152A (en) Powder and granular material blowing device, calibration curve preparation device, and preparation method for calibration curve
JPS63294934A (en) Method for measuring and supplying fcc catalyst
US4825706A (en) Flowmeter for a moving packed bed
JPS5822216A (en) Conveying device for high pressure gas containing pulverous material