JPS5877575A - Method and device for production of solid thin film on surface of work - Google Patents

Method and device for production of solid thin film on surface of work

Info

Publication number
JPS5877575A
JPS5877575A JP56177561A JP17756181A JPS5877575A JP S5877575 A JPS5877575 A JP S5877575A JP 56177561 A JP56177561 A JP 56177561A JP 17756181 A JP17756181 A JP 17756181A JP S5877575 A JPS5877575 A JP S5877575A
Authority
JP
Japan
Prior art keywords
particles
workpiece
diaphragm
container
powder particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56177561A
Other languages
Japanese (ja)
Other versions
JPS5933670B2 (en
Inventor
Takashi Ide
井出 敞
Yuzo Mori
勇蔵 森
Isao Konta
紺田 功
Naoya Igawa
井川 直哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56177561A priority Critical patent/JPS5933670B2/en
Publication of JPS5877575A publication Critical patent/JPS5877575A/en
Publication of JPS5933670B2 publication Critical patent/JPS5933670B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • B05B5/081Plant for applying liquids or other fluent materials to objects specially adapted for treating particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/16Arrangements for supplying liquids or other fluent material
    • B05B5/1683Arrangements for supplying liquids or other fluent material specially adapted for particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1404Arrangements for supplying particulate material
    • B05B7/144Arrangements for supplying particulate material the means for supplying particulate material comprising moving mechanical means
    • B05B7/1445Arrangements for supplying particulate material the means for supplying particulate material comprising moving mechanical means involving vibrations

Abstract

PURPOSE:To form solid thin films having electrical and mechanical properties better than those of raw materials by accelerating the particles of solid powder at high velocity by utilizing an electrostatic method, and bombarding the same onto the surface of the solid work thereby sticking and depositing the particles thereon. CONSTITUTION:DC high voltage is applied to a vibration diaphragm 8 and the work 4 from a voltage power source 5 to constitute electrodes corresponding to the anode and the cathode. The diaphragm 8 is electromagnetically oscillated by the effect of the alternating magnetic fields generated by an electromagnetic coil 16 and the powder particles 1 packed in a particle supply system P are supplied through the fine holes of the diaphragm 8 to the spacing between the electrodes. The electrically neutral powder particles 1 existing near the surface of the diaphragm 8 which is the anode are charged to a positive polarity as the transfer of electrones from the particles 1 to the anode is induced by an electric field effect. The charged particles 1 are electrostatically accelerated in the direction of the electric field to have high velocity at which the particles impinge upon the surface of the work 4 which is the cathode, and receive strong impulsive and plastic deformation, so that said particles are stuck and deposited on the surface of the work 4.

Description

【発明の詳細な説明】 この発明は、静電的手法を利用して高速に加速した固体
の微細粉末粒子を固体の被加工物表面に衝突させ、付着
堆積させて固体薄膜を製造する薄膜製造方法並びにその
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a thin film manufacturing method in which solid fine powder particles accelerated at high speed collide with the surface of a solid workpiece using an electrostatic method and are deposited to form a solid thin film. The present invention relates to a method and an apparatus thereof.

微小単位の物質に何らかの加速手段によって運動エネル
ギを与え、これを固体材料表面に衝突、付着堆積させて
膜を製造する従来の技術として、たとえば原子的単位の
イオンの衝突に基づくものとしては、イオン化蒸着(プ
ラズマ法、スパッタリング法)やイオンビーム蒸着、ま
た」;り大きな単位の固体物質を熱的に溶融化したもの
の衝突に基づくものとして溶射技術がある。nif /
〒では、比較的良質の膜材料が得られるものの、J ’
il:、な膜形成条件の設定がむずかしく、またそのた
めに必要な雰囲気ガスの制御等の周辺技術が複雑化して
装置が大規模となる傾向があった。一方、後者では、空
気中で溶融化した高温物質を被加二[−物表面に吹きつ
けて肉盛りするもので、形成された膜材料の品質劣化あ
るいは被加工物質に生じる熱的変質が必然的に避けられ
ない欠点があった。
Conventional techniques for producing films by applying kinetic energy to minute units of matter using some kind of acceleration means, colliding with the surface of a solid material, and depositing the kinetic energy include, for example, ionization, which is based on the collision of atomic units of ions. There is evaporation (plasma method, sputtering method), ion beam evaporation, and thermal spraying technology based on the collision of large units of thermally melted solid materials. nif /
Although comparatively good quality membrane materials can be obtained in 〒, J'
It is difficult to set the conditions for film formation, and the peripheral technology required for this purpose, such as control of atmospheric gas, becomes complicated, and the apparatus tends to become large-scale. On the other hand, in the latter method, a high-temperature substance melted in the air is sprayed onto the surface of the workpiece to build up the material, which inevitably leads to quality deterioration of the formed film material or thermal deterioration of the workpiece. There were some unavoidable drawbacks.

本発明における薄膜製造法では、静電的加速手段を用い
る点では前者と同様の方法原理といえるが、加速対象が
イオンよりはるかに大きなサイズの微細な固体物質(粉
末粒子)であり、しかも固体物質同士の高速衝撃現象を
膜形成に利用することを特徴とする。そのため、膜の形
成機構あるいは形成された膜材料の性質は両者の場合と
は異ったものとなる。すなわち、微細な固体物質による
固体材料表面への高速衝撃下には高パワー密度のエネル
ギ供給に基づく高温・高圧力状態の発生があり、被衝撃
物質の結晶学的な構造変化あるいは異種物質間での化学
反応が期待できる。
The thin film manufacturing method of the present invention can be said to have the same principle as the former method in that it uses electrostatic acceleration means, but the object of acceleration is a fine solid substance (powder particles) that is much larger in size than ions, and moreover, It is characterized by the use of high-speed impact phenomena between substances for film formation. Therefore, the film formation mechanism or the properties of the formed film material will be different in both cases. In other words, when a fine solid substance hits the surface of a solid material at high speed, a high temperature and high pressure state occurs due to the supply of energy with high power density, resulting in changes in the crystallographic structure of the impacted substance or changes in the structure of different materials. A chemical reaction can be expected.

第1図(a)は、本薄膜製造法の基本原理を示し、単一
の粉末粒子が電界中で帯電ならびに静電加速されて高速
を得、被加工物表面に衝突、付着するに至る経過を表わ
す。すなわち、直流高電圧電源5に接続された平板状電
極15と15はそれぞれ陽極および陰極を構成し、これ
らの電極間には極間の距離dとその印加電圧に依存した
強さの電界Eが加わる。最初、陽極表面近傍に存在した
電気的に中性の粉末粒子17には、電界作用によって電
子の電界放射あるいは電極表面との接触による電導が発
生し、粉末粒子から陽極への電子℃パの移動が起って正
極性の帯電量が付与される(同図中の(A))。
Figure 1 (a) shows the basic principle of this thin film manufacturing method, showing the process in which a single powder particle is charged and electrostatically accelerated in an electric field to obtain high speed, collide with and adhere to the surface of the workpiece. represents. That is, the flat electrodes 15 and 15 connected to the DC high voltage power supply 5 constitute an anode and a cathode, respectively, and an electric field E is created between these electrodes, the strength of which depends on the distance d between the electrodes and the applied voltage. join. Initially, in the electrically neutral powder particles 17 that existed near the anode surface, field emission of electrons due to the action of the electric field or conduction due to contact with the electrode surface occurs, and electrons ℃ transfer from the powder particles to the anode. occurs, and a positive charge is applied ((A) in the figure).

その結果、帯電した粉末粒子は、図の電界Eの方向に静
電加速されて高速を得、陰極表面に衝突する直前にその
速度は最高速度やとなる(同図中の(B))。高速の粉
末粒子は、衝突時にその運動エネルギを瞬時に解放する
ので、衝撃塑性的に強度形をうけて陰極表面上に付着堆
積する (同図中の(C)入 第1図(b)は、通常、凝集集団状態にある実際的な微
細粉末粒子が、電界中において凝集集団状態から ら単一の微細粒子へと分離され、前記の帯電、静電加速
挙動を経て膜形成に関与するに至る経過を示す。すなわ
ち、凝集状態の粒子集団が陽極表面近傍で前記の帯電機
構に基づいて帯電(同図中の(D))する結果、帯電電
荷同士の反撲力によってより小さな粒子集団に静電分散
される(同図中の(E))分離した粒子集団は正極性の
帯電量をもつので、陰極方向に静電加速されてその表面
に衝突し、ここでさら番こ衝撃力による機械的分離をう
ける(同図中の(F))。陰極表面に衝突した粒子は、
比較的小さな径の集団のもので高速を得たものについて
はその表面」−に付着するが、付着するに足る運動エネ
ルギをもたない比較的大きな径のものは負極性に再・(
静電して陽極方向に静電加速される3、このように、対
向した平板状電極間では、電極間の電界方向への往復運
動の間に静電分散および機械的分離が繰り返される結果
、初期の凝集集団粒子−はより小さな集団粒子を経て個
々の単一粒子へと分離が進む。また、凝集集団粒子が分
離されると、極間には多数個の帯電粉末粒子に起因する
空間電荷界が形成されるので、個々の粉末粒子はその静
電力によって相互に間接される。そのため、電極間中の
粉末粒子は、印加電界の方向に帯電、加速を繰り返して
往復運動しながら、電極周辺部へと拡散運動する。
As a result, the charged powder particles are electrostatically accelerated in the direction of the electric field E in the figure to obtain a high speed, and the velocity reaches the maximum speed just before colliding with the cathode surface ((B) in the figure). When high-speed powder particles collide, they instantly release their kinetic energy, so they undergo impact-plastic strength and are deposited on the cathode surface. , practical fine powder particles, which are usually in an aggregated state, are separated from the aggregated state into single fine particles in an electric field, and participate in film formation through the above-mentioned charging and electrostatic acceleration behavior. In other words, as a result of the agglomerated particle group being charged near the anode surface based on the above-mentioned charging mechanism ((D) in the figure), the repulsive force between the charged charges causes the particles to become statically divided into smaller particle groups. The separated particle group that is electrodispersed ((E) in the same figure) has a positive charge, so it is electrostatically accelerated toward the cathode and collides with the surface, where it is mechanically accelerated by the impact force. The particles that collide with the cathode surface are separated ((F) in the same figure).
Groups of relatively small diameter particles that achieve high speed will adhere to the surface, but those with relatively large diameters that do not have enough kinetic energy to attach will revert to negative polarity (
Electrostatically accelerated toward the anode 3. In this way, between the opposing flat electrodes, electrostatic dispersion and mechanical separation are repeated during the reciprocating motion between the electrodes in the direction of the electric field. The initial aggregated collective particles progress through smaller aggregated particles and then separate into individual single particles. Further, when the aggregated particles are separated, a space charge field due to the large number of charged powder particles is formed between the poles, so that the individual powder particles are mutually interconnected by the electrostatic force. Therefore, the powder particles between the electrodes are repeatedly charged and accelerated in the direction of the applied electric field, and move back and forth to diffuse toward the electrode periphery.

平板状′電極間の静電加速によって、粉末粒子が得る速
度は理論的に V −(2q Va /FBI)−(6βεo E2(
1jr p o)″(ここで、q 、 +11、γおよ
びρ。、はそれぞれ粉末粒子の帯電量、質量、半径およ
び密1θ:、v、、 、r>およびdは電極間の印加電
圧、印加電界強度および距離、βは電荷係数、ε。は真
空誘電率)で与えられ、粒子径が小なる粉末粒子(Jど
高速を得ることを示している。したがって、電極間での
往復運動の間に粒子径の微細化が進み、付着するに足る
運動エネルギを得た高速粒子が選択的に市、極(彼加工
物)の表面にイ・1着し、その堆積に。にる薄膜形成が
進行することになる。第4図は、+lLl平行電極間の
帯電、加速に基づく往復運動の間に、初期の凝集集団粒
子がほぼ単一・の粉末粒子−にまで分離されることを実
証した実験結果の一例である。すなわち、往復運動させ
ずに極間から引出した帯電粉末粒子の平均的な比帯電I
f q/ nr (自スキ丸)が著しく低いのに対して
、往復運動さl) 7.−場合のq 7m (黒丸)は
単一の粉末粒子の理論値に近い値を示し、引き出した粒
子が前記の理論速度に達していることを示す。このよう
に、凝集訃の強い微細な粉末粒子を静電加速の理論に適
った高速にまで加速できるのは、平板状電極の効果であ
り、また本薄膜製造法の特徴でもある。さらには、粉末
粒子の空間電荷界に起因した拡散運動によって、かなり
広範囲の破加工物表面1−にほぼ一様な薄膜を形成でき
る特徴がある。なお、第1図(a)、fb)では、陰極
面−にに粒子の付着が進行するものとしているが、陰極
面l−でも同様のことが起こる3、シかし、陰極から陽
極方向に加速される負極性の帯電粒子では、電界の集中
効果によって粒子からの′市界電r放射に起因する帯電
極1生の逆転が起こり易く、そのために陽極表向に衝突
できない粒子の割合が増大すると考えられて1・1台は
は比較的少ない。
Due to electrostatic acceleration between the plate-like electrodes, the velocity obtained by the powder particles is theoretically V − (2q Va /FBI) − (6βεo E2 (
1jr p o)'' (where q, +11, γ and ρ., respectively, are the charge amount, mass, radius and density of the powder particles 1θ:, v, , r> and d are the applied voltage between the electrodes, the applied It is given by the electric field strength and distance, β is the charge coefficient, and ε is the vacuum permittivity, and indicates that powder particles with small particle diameters (J) obtain high speed. Therefore, during the reciprocating motion between the electrodes, As the particle size continues to become finer, the high-speed particles that have acquired enough kinetic energy to adhere selectively land on the surface of the workpiece, resulting in the formation of a thin film. Figure 4 demonstrates that during the reciprocating motion based on the charging and acceleration between +lLl parallel electrodes, the initial aggregated particles are separated into almost single powder particles. This is an example of experimental results. That is, the average specific charge I of charged powder particles pulled out from between the electrodes without reciprocating motion.
f q/nr (self-skipping circle) is extremely low, whereas reciprocating motion l) 7. - case q 7m (black circle) shows a value close to the theoretical value for a single powder particle, indicating that the drawn particles have reached the theoretical velocity mentioned above. In this way, the ability to accelerate fine powder particles with strong agglomeration to a high speed that conforms to the theory of electrostatic acceleration is an effect of the flat electrode and also a feature of the present thin film manufacturing method. Furthermore, due to the diffusion movement caused by the space charge field of the powder particles, a substantially uniform thin film can be formed on the surface 1- of the fractured workpiece over a fairly wide range. In addition, in Fig. 1 (a) and fb), it is assumed that particles adhere to the cathode surface -, but the same phenomenon occurs also on the cathode surface l-. For negatively charged particles that are accelerated, the concentration of the electric field tends to cause a reversal of the charged electrode 1 due to radiation from the particles, which increases the proportion of particles that cannot collide with the surface of the anode. Considering this, the number of 1.1 units is relatively small.

したがって、陰極側を肢加工物とする方が、膜形成の効
率面において有利である。
Therefore, it is more advantageous in terms of film formation efficiency to use the cathode side as a limb processed product.

以F、本発明を−・実施例につき図面を参照して詳説す
る。
Hereinafter, the present invention will be explained in detail by way of embodiments with reference to the drawings.

第2図は本実施例に使用される膜製造装置のL′隻部を
一例として示す。膜の原材料たる粉末粒子−を高電界中
へ供給するための拉r・供給系1ゝは、適当に粒子供給
用の細孔を配した11.(動板)3、この振動板を粉末
充填容器7にゆる(締結た1、+1するための振動仮押
えリング9とたとえばゴl、製01Jングのような弾四
リング10、ならびに振動板を電磁振動させるために設
置された鉄心(iと円筒状11℃磁=1イル16から成
る。この粒子供給系とその振動板に対向するように配置
された披加1−物4 (上板状)との間に(J、前者を
陽極1)1とする的1ifi:高電)1が高電圧電源5
の接続によって加えら41て[、Sす、同図では振動板
と彼加1−物とがそれイ′れ第1図にt;ける陽極と1
;λ極とに対応する電極構成とjr 6 ’ 、、 1
1rJ“1の形成は、電磁コイルに、J: 、てffi
’lする交化磁□140)作用テ振動& ヲ1(i (
a N+Q ll1Ilサセ、l+’!、 r・fjシ
袷系に16拍されていた粉末粒r−+が振動板の細化よ
り電極間1こ供給されて、011記のJi ln原理に
従、)て1ltj動仮に対向した岐加り物ノ」而1−に
進行しr 14 (r ++侍;(を形成する。また、
膜形成は、拉r−の帯電11日、り和防+1装置構成部
品間の絶縁耐力の向l−1t)土び吸i’t #’スの
除去等のため、真空ポンプ11によ=r ”C]j’!
□1″↓空域にまで排気された真空容器12中で実施さ
れる。。
FIG. 2 shows, as an example, the L' section of the membrane manufacturing apparatus used in this embodiment. The aperture/supply system 1 for supplying powder particles, which are the raw materials for the membrane, into a high electric field is a 11. (Moving plate) 3. Loosen (fasten) this diaphragm to the powder filling container 7. Attach the vibrating temporary holding ring 9 and the diaphragm ring 10, such as GOL 01J, and the diaphragm. It consists of an iron core (i) installed for electromagnetic vibration and a cylindrical 11°C magnet (16). ) and (J, the former is the anode 1) 1 is the target 1ifi: high voltage) 1 is the high voltage power supply 5
By connecting the anode and the diaphragm, the diaphragm and the anode are connected.
; the electrode configuration corresponding to the λ pole and jr 6 ′,, 1
1rJ"1 is formed in the electromagnetic coil by J: , ffi
'l alternating magnetism □140) action te vibration & wo1(i (
a N+Q ll1Il sase, l+'! , Powder grains r-+, which had been distributed 16 times in the r-fj line, are supplied between the electrodes by the thinning of the diaphragm, and according to the Ji ln principle of Then proceed to 1- and form r 14 (r ++ Samurai; (. Also,
The film formation is carried out by the vacuum pump 11 in order to remove the dirt, etc. r”C]j’!
The process is carried out in a vacuum vessel 12 evacuated to an air space of □1″↓.

なお、同図に示した例では振動板を陽極として使用して
いるが、別の平板状陽極を振動板直下に挿入設置し、こ
の陽極と被加工物(陰極)との間に供給系から粉末粒子
を供給してもよい。さらには、前記の電磁振動を利用す
る粒子供給方式以外の方法として、粉末粒子を静電的に
帯電させることによって噴霧状化させた位rビームを陽
極と被加工物との間に流入させる方法もとり14る。
In the example shown in the same figure, the diaphragm is used as an anode, but another flat anode is inserted and installed directly under the diaphragm, and the supply system is connected between this anode and the workpiece (cathode). Powder particles may also be provided. Furthermore, as a method other than the above-mentioned particle supply method using electromagnetic vibration, there is a method in which powder particles are electrostatically charged to form an atomized r-beam and flowed between an anode and a workpiece. Motori 14ru.

第3図は、本発明の池の方法を実施する装置の例を示し
、第2図と対応する部分には同−符′7号を付して重複
説明を省略する。この例においては、第2図の例では被
加工物を陰極として兼用していたものを図の如(分離し
て設置し、電極13および14間で帯電、加速された粉
末粒子2の一部を陰極−にの孔より引き出し、高速の粉
末粒子ビームとして被加工物の表面に照射して(−1着
膜3の形成を実施するものである。第2図の方法では粉
末粒子の帯電と加速に導電性の平板状電極を必要とする
ため、液加1−物もそのような材料および形状のものに
限られるのに対し、この方法によれ(j、粉末粒子の加
速部と膜形成部が分離されるために被加工物の制約は解
除される。すなわち、たとえば、その対象となる被加工
物は、形状的には鋭利な突起形状をもつものでも」;<
、また祠費的には導体、半導体はもとより絶縁体でもよ
いので11の形成の適用範囲が拡張される。さらには、
引き出された加速粉末粒子に対して、静電集束、再加速
といった制御を施こすこともi■能である。
FIG. 3 shows an example of an apparatus for carrying out the Ike method of the present invention, and parts corresponding to those in FIG. In this example, the workpiece that was also used as a cathode in the example of FIG. is pulled out through a hole in the cathode and irradiated onto the surface of the workpiece as a high-speed powder particle beam (-1 to form a deposited film 3. In the method shown in Fig. 2, the powder particles are charged and Since a conductive plate-shaped electrode is required for acceleration, liquid additives are also limited to those materials and shapes. Because the parts are separated, constraints on the workpiece are lifted.For example, even if the target workpiece has a sharp protrusion shape.
In addition, in terms of processing costs, not only conductors and semiconductors but also insulators can be used, so the range of application for forming 11 is expanded. Furthermore,
It is also possible to perform controls such as electrostatic focusing and re-acceleration on the extracted accelerated powder particles.

本膜形成法の実施の一例として、電極間の印加電圧80
 KV、極間距離5u、真空度I X 、1(]−’ 
To r rの形成条件において、平均粒子径1蔗4μ
mのカーボンブラック粒子を炭素工具鋼(SK3)表面
に衝突、付着させた場合、粒子径に相当する程度の微視
的領域の表面あらさをもつ平滑で、がっち密な炭素膜が
7QA/minの形成速度で作製できることを確認した
。本炭素膜は被加工物表面に対4る良好な密着性をもつ
ので、従来の炭素膜形成法である真空蒸着法、イオン化
蒸着法、イオンビーJ・蒸着法ではこれまでに報告例の
ない厚さ数μ711程度の厚膜形成が可能であった。こ
の従来法に対する優位性は、固体間の高速衝撃によって
、粒子と液加二[物材料間および粒子材料間に強い結合
が生まれるために他ならない。なお、本炭素膜の形成は
、1111記の実施条件以外でも進行するが、印加電圧
が80 KV以−1−では、凝集状態の比較的大きな径
の粒子でも付着するに足る速度を得ることができるので
そのような粒子の膜内へのとり込みがあり、形成された
膜材料の構造1−の均質性を欠く場合がある1、また、
極度に低い印加電圧では、付着するに不充分な速度とな
るので、膜形成が進行しないことはもちろんのことであ
る。
As an example of the implementation of this film formation method, the applied voltage between the electrodes is 80
KV, distance between poles 5u, degree of vacuum IX, 1(]-'
Under the formation conditions of Tor r, the average particle size is 1 μm
When carbon black particles of m are collided with and adhered to the surface of carbon tool steel (SK3), a smooth and dense carbon film with a surface roughness in the microscopic range corresponding to the particle diameter is formed at 7QA/min. It was confirmed that it could be fabricated at a formation speed of . This carbon film has good adhesion to the surface of the workpiece, so it has a thickness that has never been reported in conventional carbon film formation methods such as vacuum evaporation, ionization evaporation, and ion beam J-evaporation. It was possible to form a thick film with a thickness of about 711 μm. This superiority over the conventional method is due to the high-speed impact between the solids, which creates strong bonds between the particles and the liquid material and between the particle materials. Although the formation of the present carbon film proceeds under conditions other than those described in Section 1111, when the applied voltage is 80 KV or higher, it is difficult to obtain a speed sufficient to adhere even relatively large-diameter particles in an agglomerated state. Therefore, such particles may be incorporated into the film, and the structure of the formed film material may lack homogeneity.
Of course, if the applied voltage is extremely low, the film formation will not proceed because the deposition rate will be insufficient.

本膜形成法において作製された炭素膜の特性について、
これまで確認された主要な事項とその用途を列記する。
Regarding the characteristics of the carbon film produced using this film formation method,
List the main items confirmed so far and their uses.

まず、電気的特性に関する知見ならびにその用途に関し
ては、 (a)  室温下の電気抵抗率は10  Ω・国 と測
定され、原H料カーボン粒子のそれ(10Ω・on  
オーダ)に比べて著しく抵抗の高い新しい薄膜半導体材
料を合成できた。また、半導体としての伝導型は、ゼー
ベック効果に基づく熱起電圧の測定よりP型と判定され
た。
First, regarding the knowledge regarding electrical properties and their uses, (a) The electrical resistivity at room temperature is measured to be 10 Ω・on, and that of the raw material carbon particles (10 Ω・on
We were able to synthesize a new thin-film semiconductor material with significantly higher resistance than that of conventional semiconductors. Further, the conductivity type as a semiconductor was determined to be P type based on the measurement of thermoelectromotive force based on the Seebeck effect.

(1))  抵抗率の温度依存性は、p =Ac xP
 (13/(ゝ A ’I’)  (ここでρは抵抗率、A、I3は祠′41
1定数、To は絶対温度)の関係式に極めてよく適合することが測定
温度範囲80〜42(11(でl1M1認さ4また9、
本炭素膜月料が薄膜ゆえに小さな熱容[11−であるこ
と、また炭素材料本来の性質として大きな熱1云導率を
もつことを考えると、温度変化に利する応答訃と信頼性
に優れた温度計測用サーミスタ素r−への適用がiiJ
能である。
(1)) The temperature dependence of resistivity is p = Ac xP
(13/(ゝA 'I') (Here, ρ is resistivity, A, I3 are shrines '41
1 constant and To is the absolute temperature.
Considering that this carbon film material has a small heat capacity [11- Application to the thermistor element r- for temperature measurement is iiJ
It is Noh.

(C)  抵抗率の電界依存性としては、高電界印加時
に抵抗率の値が著しく減じる非オー、z、訃を示した。
(C) The dependence of resistivity on electric field showed non-O, Z, and Z-types in which the resistivity value decreased significantly when a high electric field was applied.

すなわち、このとき′電流の宸u曽1見((シが起こる
ので、たとえば大電流制御用のバリスタ素r−への適用
が考えられる。
In other words, at this time, a change in the current occurs, so it can be applied to, for example, a varistor element for controlling a large current.

さらに、P型半導体である本炭素膜を++ 、!l、!
7珪素半導体上に形成させて1〕−1接合ダイ」・−ド
を構成した場合の特性として ((1)電流−電圧特性として、ある大きさの逆方向バ
イアス電圧のもとてツェナー降伏現象に基づく電流の急
峻なffら上がりがある。このp−n接合面の特性は定
電圧ダイオード、スイッチングダイオードとして利用で
きるばかりでな(、トランジスタ索r−への適用をも示
唆する。、(el  白熱電球光および太陽光の照射時
に光起電圧の発生が認められ、太陽光電池への適用の可
能1牛を見い出した3、 つぎに、機械的特性に関する知見とその用途については
、 (f)  マイクロビッカース試験における本炭素膜の
硬さはI(、、−1100〜1900と評価され、原材
料カーボンのそれに比べて著しく高い値を示した。
Furthermore, this carbon film, which is a P-type semiconductor, is ++,! l,!
7.Characteristics of a 1]-1 junction die formed on a silicon semiconductor ((1) As a current-voltage characteristic, Zener breakdown phenomenon occurs under a certain magnitude of reverse bias voltage. There is a steep rise in current due to ff.The characteristics of this p-n junction surface can be used not only as a constant voltage diode and a switching diode (but also suggests its application to transistor wires). The generation of photovoltaic voltage was observed when irradiated with incandescent light and sunlight, and the possibility of application to photovoltaic cells was discovered.3 Next, regarding the knowledge regarding mechanical properties and its applications, see (f) Micro The hardness of this carbon film in the Vickers test was evaluated as I(, -1100 to 1900, which was a significantly higher value than that of the raw material carbon.

また、すべり摩擦試験において、膜拐料同士の摩擦係数
は約0.1であった。これは固体間摩擦としてはかなり
低い値に部類し、しかも摩擦雰囲気が大気中および高真
空中にかかわらず一定して得られることから、良好な摩
擦特性を有することがわかった。さらには、固体間摩擦
におけるすべり摩耗および硬質砥粒のひっかきに対する
アブレシブ摩!しに対しても優れた耐摩耗性を示すこと
が判明した。これらのことは、潤滑性を汀する硬質保護
膜としての機械工業分野への各種応用を示唆し、たとえ
ば、切削性能の向トと長寿命化を目的とした切削工具へ
の適用、あるいは11114 IIII/1の白土、を
1′1的として摺動部をもつ各f・1’i H1械部品
への適用などが考、えられる。
In addition, in the sliding friction test, the coefficient of friction between the membrane materials was about 0.1. This is a fairly low value for solid-solid friction, and since the frictional atmosphere is constant regardless of whether it is in the air or in a high vacuum, it was found that it has good frictional properties. Furthermore, abrasive wear for sliding wear caused by solid-solid friction and scratches from hard abrasive grains! It has been found that it exhibits excellent abrasion resistance even against These findings suggest various applications in the mechanical industry as a hard protective film that stabilizes lubricity, such as application to cutting tools for the purpose of improving cutting performance and extending life, or 11114 III. It is conceivable to use white clay of /1 as 1'1 and apply it to each f.1'i H1 machine part having a sliding part.

以−1−の実施例においては、本発明によ−〕で形成さ
れた膜の電気的、機械曲性1牛かII;r 4)I料の
それとは著しく異ったものに変化することを実jllシ
た。
In the following Examples, the electrical and mechanical bending properties of the membrane formed in accordance with the present invention are shown to be significantly different from that of the I material. I actually did it.

この特+1・の変化は、カーボンブラックlt’+ I
′−の3’il Jl衝撃において局所的にダイヤモン
ド構造への結晶構造変換が生じたことに基因するとれえ
てよい。
This special +1 change is carbon black lt'+ I
This may be due to local crystal structure conversion to a diamond structure caused by the 3'il Jl impact.

このように本発明によれば、特異なl’l質をもつ膜祠
料の合成が、比較的簡便な装置、技術を用いて実現でき
る。なお、本発明は前記実施例にのみ限定されるもので
はなく、原祠料粉本+1”t、 r−としては、微細径
のもので、かつ高電界中で導電性を示ず祠質のものであ
れば使用可能である。
As described above, according to the present invention, a membrane abrasion material having a unique l'l quality can be synthesized using relatively simple equipment and technology. It should be noted that the present invention is not limited to the above embodiments, and the raw abrasive powder +1"t, r- has a fine diameter, does not exhibit conductivity in a high electric field, and is of abrasive quality. If it is, it can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本原理を示す説明図、第2〜3図は
本発明で用いられる膜製造装置の断面説明図、第4図は
平行平板電極間で凝集集団粒子が単一粉末粒子に分離さ
れることを示した実験結果の表である。 (j−)粉末粒子、(?)帯電加速粉末粒子、に()付
着膜、(4)破加T物、(5)高電月ミ電源、(0)鉄
心、(7)粉末充填容器、(6)振動板、(頭振動板押
えリング、q())弾性リング、0りポンプ、0(2)
真空容器、(l:i)電極、すV電極、(1φ平板状電
極、ljΦ電磁フィル、(j7)粉末粒子特許出願人 
   井 出   敞 外3名=40 第1回 第2図 第 3 1’Q
Fig. 1 is an explanatory diagram showing the basic principle of the present invention, Figs. 2 and 3 are cross-sectional explanatory diagrams of the membrane manufacturing apparatus used in the present invention, and Fig. 4 shows that aggregated collective particles are formed into single powder particles between parallel plate electrodes. This is a table of experimental results showing that (j-) Powder particles, (?) Accelerated charged powder particles, () Adhesive film, (4) Fractured T object, (5) High electric power source, (0) Iron core, (7) Powder filling container, (6) Vibration plate, (head vibration plate holding ring, q()) elastic ring, zero pump, 0(2)
Vacuum container, (l:i) electrode, V electrode, (1φ flat electrode, ljφ electromagnetic filter, (j7) powder particle patent applicant
Atsushi Ide and 3 other people = 40 1st session Figure 2 3 1'Q

Claims (1)

【特許請求の範囲】 ■)真空中に印加した高電界中で、固体粉末粒子を静電
的に帯電ならびに加速させて高速にしたものを被加工物
表面に衝撃、付着させて薄膜形成を行なうことを特徴と
する被加工物表面への固体薄膜製造方法。 2)固体粉末粒子として電界作用によって分離させた微
小な凝集集団粒子を用いてなる特許請求の範囲第1項記
載の被加工物表面への固体薄膜製造方法。 3)固体粉末粒子として電界作用によって分離させた単
一粒子を利用してなる特許請求の範囲第1項記載の被加
工物表面への固体薄膜製造方法。 4)固体粉末粒子を静電的に帯電ならびに加速させるに
平行平板電極間を用い該対向配設した電極間で凝集状態
の粒子を往復運動させることにより帯電、加速させてな
る特許請求の範囲第1項または第2項または第3項記載
の被加工物表面への固体薄膜製造方法。 5)高真空排気系に接続された真空室と、前記真空室に
設置し固体粉末粒子を収納した容器と、前記容器の底部
に位置し振動装置に関係づけられた固体粉末粒子供給用
の細孔を設けた振動板と、前記振動板の直下に配した液
加]−物とよりなり、前記容器側と被加工物間に高電圧
をかけ得るように電気的に直結してなることを特徴とす
る被加工物表面への固体薄膜製造装置。 6)振動装置として、容器外側に円筒状電磁コイルを設
けるとともに容器内部において振動板に臨むように鉄心
を配してなるものを利用した特許請求の範囲第5項記載
の固体薄膜製造装置。 7)高真空排気系に接続された真空室と、前記真空室に
設置し固体粉末粒子を収納した容器と、 前記容器の底部に位置し、振動装置に関係づけられ、固
体粉末粒子供給用の細孔を設けた振動板と、前記振動板
の直下に配し固体粉末粒子引出し用の細孔を設けた平板
状の電極と、 前記電極の下側に配した被加工物とよりなり、前記容器
、電極、被加工物に高電圧をかけ得るように電気的に直
結してなることを特徴とする被加工物表面への固体薄膜
製造装置。 8)高真空排気系に接続された真空室と、前記真空室に
設置し固体粉末粒子を収納した容器と、前記容器の底部
に位置し、振動装置に関係づけられ、固体粉末粒子供給
用の細孔を設けた振動板と、前記振動板の下面に固定し
た板状帯電加速用陽極並びに前記陽極下側に一定間隔を
あけて配し、中央に帯電加速、粉末粒子引出し用細孔を
有する加速粒子引出し用陰極と、 前記陰極の下側に配した被加工物とよりなり、前記容器
側と陰極と被加工物間に高電圧をかけ得るように電気的
に直結してなることを特徴とする被加工物表面への固体
薄膜製造装置。
[Claims] ■) In a high electric field applied in a vacuum, solid powder particles are electrostatically charged and accelerated to a high speed, and the particles are impacted and adhered to the surface of the workpiece to form a thin film. A method for producing a solid thin film on the surface of a workpiece, characterized by: 2) A method for producing a solid thin film on the surface of a workpiece according to claim 1, which uses fine agglomerated particles separated by the action of an electric field as solid powder particles. 3) A method for producing a solid thin film on the surface of a workpiece according to claim 1, which utilizes single particles separated by electric field action as solid powder particles. 4) Solid powder particles are electrostatically charged and accelerated by using parallel plate electrodes, and the particles in agglomerated state are reciprocated between the facing electrodes, thereby being charged and accelerated. A method for producing a solid thin film on the surface of a workpiece according to item 1, item 2, or item 3. 5) A vacuum chamber connected to a high vacuum evacuation system, a container installed in the vacuum chamber and containing solid powder particles, and a solid powder particle supply tip located at the bottom of the container and associated with a vibration device. It consists of a diaphragm with holes and a liquid supply placed directly below the diaphragm, and is electrically connected directly between the container side and the workpiece so that a high voltage can be applied. A device for producing a solid thin film on the surface of a workpiece. 6) The solid thin film manufacturing apparatus according to claim 5, wherein the vibration device includes a cylindrical electromagnetic coil provided outside the container and an iron core arranged inside the container so as to face the diaphragm. 7) a vacuum chamber connected to a high vacuum evacuation system; a container installed in the vacuum chamber and containing solid powder particles; and a container located at the bottom of the container and associated with a vibration device for supplying solid powder particles. It consists of a diaphragm provided with pores, a flat electrode placed directly below the diaphragm and provided with pores for drawing out solid powder particles, and a workpiece placed below the electrode, An apparatus for producing a solid thin film on the surface of a workpiece, characterized in that a container, an electrode, and a workpiece are electrically connected directly so that a high voltage can be applied to the workpiece. 8) A vacuum chamber connected to a high vacuum evacuation system, a container installed in the vacuum chamber and containing solid powder particles, and a container located at the bottom of the container and associated with a vibration device for supplying solid powder particles. A diaphragm provided with pores, a plate-shaped charging acceleration anode fixed to the lower surface of the diaphragm, and arranged at regular intervals below the anode, with a pore in the center for charging acceleration and powder particle extraction. It consists of a cathode for extracting accelerated particles, and a workpiece placed below the cathode, and is directly electrically connected to the container side so that a high voltage can be applied between the cathode and the workpiece. A device for producing solid thin films on the surface of workpieces.
JP56177561A 1981-11-04 1981-11-04 Solid thin film production device on the surface of the workpiece Expired JPS5933670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56177561A JPS5933670B2 (en) 1981-11-04 1981-11-04 Solid thin film production device on the surface of the workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56177561A JPS5933670B2 (en) 1981-11-04 1981-11-04 Solid thin film production device on the surface of the workpiece

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP59066211A Division JPS6041571A (en) 1984-04-02 1984-04-02 Preparation of solid thin film on surface of object to be processed

Publications (2)

Publication Number Publication Date
JPS5877575A true JPS5877575A (en) 1983-05-10
JPS5933670B2 JPS5933670B2 (en) 1984-08-17

Family

ID=16033110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56177561A Expired JPS5933670B2 (en) 1981-11-04 1981-11-04 Solid thin film production device on the surface of the workpiece

Country Status (1)

Country Link
JP (1) JPS5933670B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158350A (en) * 1992-11-18 1994-06-07 Isao Sugai Method for coating substrate
EP1132497A1 (en) * 1998-11-05 2001-09-12 Jury Veniaminovich Dikun Method for producing a coating made of powdered materials and device for realising the same
CN108871408A (en) * 2018-04-20 2018-11-23 大连理工大学 A kind of experimental rig for the quick injection granular materials of magnetic component
WO2021095726A1 (en) * 2019-11-12 2021-05-20 昭和電工マテリアルズ株式会社 Method for dispersing conductive particles, and electrostatic adsorption device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04169082A (en) * 1990-11-01 1992-06-17 Taiyo Yuden Co Ltd Cross conductor and its manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158350A (en) * 1992-11-18 1994-06-07 Isao Sugai Method for coating substrate
EP1132497A1 (en) * 1998-11-05 2001-09-12 Jury Veniaminovich Dikun Method for producing a coating made of powdered materials and device for realising the same
EP1132497A4 (en) * 1998-11-05 2002-03-27 Jury Veniaminovich Dikun Method for producing a coating made of powdered materials and device for realising the same
CN108871408A (en) * 2018-04-20 2018-11-23 大连理工大学 A kind of experimental rig for the quick injection granular materials of magnetic component
WO2021095726A1 (en) * 2019-11-12 2021-05-20 昭和電工マテリアルズ株式会社 Method for dispersing conductive particles, and electrostatic adsorption device
US11935669B2 (en) 2019-11-12 2024-03-19 Resonac Corporation Method for dispersing conductive particles, and electrostatic adsorption device

Also Published As

Publication number Publication date
JPS5933670B2 (en) 1984-08-17

Similar Documents

Publication Publication Date Title
Kersten et al. Micro‐Disperse Particles in Plasmas: From Disturbing Side Effects to New Applications
KR100767395B1 (en) Composite structured material
EP2928063B1 (en) Impulse generator and generator set
JPH05505909A (en) Aerosol deposition of silicon and film formation
CN1090552C (en) Abrasive material for precision surface treatment and manufacturing method thereof
WO2018111430A1 (en) New repair method for electrostatic chuck
JPS5877575A (en) Method and device for production of solid thin film on surface of work
JPS6041571A (en) Preparation of solid thin film on surface of object to be processed
US11247225B2 (en) Solid particle source, treatment system and method
US6200643B1 (en) Methods for coating substrates
JP6167104B2 (en) Method for producing thermoelectric conversion material
WO2014063000A1 (en) Non-bonded rotatable targets and their methods of sputtering
JP4565136B2 (en) Electrostatic chuck
Lee et al. Generation of positively charged nanoparticles by fracto-emission and their deposition into films during aerosol deposition
US5445852A (en) Method of coating a substrate with a coating material by vibrating charged particles with a electric field
CN102803548A (en) Plasma sputtering process for producing particles
JPH0724306A (en) Production of composite ultra-fine particle
KR101503385B1 (en) Apparatus of coating conducting powder using electrostatic powder and method of coating by the apparatus
CN110904389B (en) Multifunctional integrated Fe-Al-Ta eutectic composite material and preparation method thereof
JPH04108534A (en) Method and apparatus for gaseous phase synthesis of minute particle by creeping plasma cvd
US9035534B2 (en) Vortex alignment Buckypaper generating electricity
EP3446321A1 (en) Electrical power generator
Sattler Clusters in beams
Lim et al. Surface modification due to plasma treatment of an aluminum electrode for a triboelectric generator
Dyrenkov et al. Generation of a metal porous film by arc discharge