JPS5877516A - Converter refining method - Google Patents

Converter refining method

Info

Publication number
JPS5877516A
JPS5877516A JP17679081A JP17679081A JPS5877516A JP S5877516 A JPS5877516 A JP S5877516A JP 17679081 A JP17679081 A JP 17679081A JP 17679081 A JP17679081 A JP 17679081A JP S5877516 A JPS5877516 A JP S5877516A
Authority
JP
Japan
Prior art keywords
gas
refining
steel
decarburization
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17679081A
Other languages
Japanese (ja)
Inventor
Yoshihide Kato
嘉英 加藤
Kenji Saito
健志 斎藤
Tsutomu Nozaki
野崎 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17679081A priority Critical patent/JPS5877516A/en
Publication of JPS5877516A publication Critical patent/JPS5877516A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/34Blowing through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To prevent an increase in the content of hydrogen in steel in the stage of refining steel by decarburization in a converter provided with bottom blowing double pipe tuyeres by changing over a refining gas from pure oxygen to a gaseous mixture of oxygen and an inert gas on progression of decarburization reaction. CONSTITUTION:In the case of refining molten steel by decarburization in a bottom or top and bottom blown converter, a gas for refining by decarburization is blown into the molten steel through the inside pipe of the double tuyere pipes under the melt surface and a hydrocarbon gas for cooling and protecting the tuyeres through the outside pipe. Pure oxygen is first blown as a gas for refining by decarburization through the inside pipe to decarburize the C on the melt as CO. The content of C decreases to 0.8-0.3% with progression of the decarburization, and when the partial pressure of CO decreases on account of a decrease in the rate of generation of CO, the partial pressure of H2 produced by the decomposition of a hydrocarbon gas such as propane as a protecting gas increases and the content of H2 in the steel increases, thus degrading the quality. At this time the gas for refining is changed over to a gaseous mixture of O2 and an inert gas such as Ar of >=0.6 ratio, whereby the partial pressure of the H2 is decreased by the inert gas and the entry of the H2 into the molten iron is prevented.

Description

【発明の詳細な説明】 この発明は溶鋼渇+ni位i1イよりも下部に2重管羽
目が設けられた転炉、例んば底吹き転炉もしくけ上底吹
き転炉にお(つる精錬方法に関し、特に前記2重管羽口
の内・αから溶鋼中にt〜錬ガスを吹込むとともに2重
管羽目の内管とtA管との間に利口保護のだめの炭化水
素系冷却媒体を流すようにした精錬方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION This invention applies to a converter in which a double pipe wall is provided below the molten steel thirst + ni position i1 a, for example, a bottom blowing converter and a top and bottom blowing converter (vine smelting Regarding the method, in particular, a refining gas is blown into the molten steel from the inner α of the double pipe tuyere, and a hydrocarbon-based cooling medium for protection is inserted between the inner pipe of the double pipe tuyere and the tA pipe. This relates to a refining method that uses flowing water.

最近に至り炉底に羽口を設けて、その羽目から溶鋼中に
情錬カスを吹込むようにした底吹き転炉や、炉底の羽目
からの吹込みとランスからの土吹きとを併用しだ上底吹
き転炉が実用化されるようになった。これらの転炉にお
いては、炉底の羽口を溶損から保ii!h ’j’るた
め、その羽口を2重管構造として、内・aから溶鋼中に
梢鎚力′スを吹込むとともに、内管と外管との間の隙間
に冷却媒体を流すことが多い。この羽口保護用冷却媒体
と(2ては4)u(・11のものが使用されでいるが、
顕熱のみならず分)・、イ時の吸Mj・も冷却に寄Ij
シて潰れた冷却効果を147ることかできる点から、プ
「Jパンカス翁の炭化水素糸カスもしくけ液体炭化水素
を使用することか多い。
Recently, bottom blowing converters have been developed in which tuyeres are installed at the bottom of the hearth and the slag is injected into the molten steel through the tuyere, and a combination of blowing from the bottom tuyere and soil blowing from a lance has been developed. Top-bottom blowing converters have come into practical use. In these converters, the tuyeres at the bottom of the furnace are protected from melting damage! In order to cool the tuyeres, the tuyere has a double-tube structure, and the tuyeres are blown into the molten steel from the inside and a, and the cooling medium is flowed into the gap between the inner and outer tubes. There are many. This cooling medium for protecting the tuyere and (2) u (・11) have been used,
Not only the sensible heat but also the absorption Mj at the time of Ij contributes to cooling.
Liquid hydrocarbons are often used to remove the cooling effect of liquid hydrocarbons.

しかるに」二連のごとく羽目保護のだめの冷却媒  □
体として炭化水素系のものを用いた場合、溶鋼中に吹込
甘れだ炭化水素は分解して水素を発生して、その水素の
一部が溶鋼中に溶解し、その結果通常の純i宜素土吹き
転炉(LD転炉)による精錬の場合や他の冷却媒体を用
いた底吹き転炉あるいは」−底吹き転炉による精錬の場
合と比較して鋼中水系濃度が1’;jl<なり、特に低
炭素鋼、極低素鋼の溶製の場合にその傾向が強い問題が
あった。このように鋼中水素濃度が高くなれば、溶鋼の
凝固時にフ[コーホールの発生が多く々シ、銅片の表面
欠陥や内部欠陥が牛じて鋼の品質低1を招く問題がある
However, the refrigerant is used as a double layer to protect the lining □
When a hydrocarbon-based material is used as the material, the hydrocarbons blown into the molten steel decompose and generate hydrogen, and some of the hydrogen dissolves into the molten steel, resulting in normal pure i. The aqueous concentration in the steel is 1'; There was a problem in which this tendency was particularly strong in the case of melting low carbon steel and ultra-low element steel. If the hydrogen concentration in the steel becomes high as described above, there is a problem that many copper holes are generated during solidification of the molten steel, and surface defects and internal defects in the copper piece lead to a decrease in the quality of the steel.

このような問題を解決する方法としては転炉から出鋼後
にRH脱ガス装置等により脱ガス処理する方法があるが
、この場合には鋼の総合的外製造コストの上昇を招く問
題がある。
As a method for solving this problem, there is a method of degassing the steel using an RH degassing device or the like after tapping the steel from the converter, but in this case, there is a problem that the overall external manufacturing cost of the steel increases.

この発明は以−1の事情に鑑みて力されたもので、2重
管羽口の羽目保護用冷却媒体として炭化水素系冷却媒体
を用いる場合において、鋼中水系濃度の上列を防止しつ
つ精錬し、特に低炭素鋼、極低炭素鋼の油製時における
鋼中水素濃度の増加を防止し、捷たこれにより2次的々
脱カス処理を不要にすることを目的とするものである。
This invention was developed in view of the following circumstances, and when a hydrocarbon-based cooling medium is used as a cooling medium for protecting the siding of a double-pipe tuyere, it is possible to prevent an increase in water-based concentration in steel while The purpose is to prevent the increase in hydrogen concentration in steel during oil production, especially for low carbon steel and ultra-low carbon steel, and to eliminate the need for secondary descaling treatment. .

本発明省@、け上述の目的を達成するべく、炭化水素系
冷却媒体の1釘用による吹錬中の鋼中水素濃m“の上昇
ノエに因について鋭HB調査検討を行ったところ、次の
ような)全回によるものであることが判明した。′j々
わち先す吹錬中の鋼中水素濃度の経時変什を調べたとこ
ろ、脱炭最盛JtJJを過きて低炭酸と々っだ時に鋼中
水系濃度が急激に上昇1−ることか知児された。−ツバ
 211管羽目の内管から溶鋼中へ吹込”止れるイ、’
J’ 針カスとして通常使用さtLでいるAJ■酸素は
、脱炭最盛Jυ1においては、はぼその全清か脱炭に富
力しくす乃わち脱炭酸素効率が1)、吹込寸ノ]だ1モ
ルの純酸素により2モルのCOカスを発生させるが、低
炭酸に々れば脱炭酸素効率が低重17てざ1−生COツ
Jス4B:が減少しでし捷い、このことから、炭化水素
系冷却媒体の流量か一定であれば、その炭化水素の分解
によ多発生する水素カス分圧は脱炭最盛期を過ぎた低炭
酸において急激に増加すると解される。これらから、鋼
中水素濃度の増加d1低炭域におけるCOガス発生量の
低下によって炭化水素冷却媒体の分解水素ガスの分圧が
上昇することに起因することが判明した。
In order to achieve the above-mentioned objective, the Ministry of the Invention conducted an intensive HB investigation into the cause of the increase in hydrogen concentration in steel during blowing using a hydrocarbon coolant for one nail, and found the following: It was found that this was due to the change in the hydrogen concentration in the steel over time during blowing. It was discovered that the aqueous concentration in the steel suddenly increased during the 1-day period. - It was discovered that the aqueous concentration in the steel suddenly increased.
J' Oxygen, which is normally used as needle waste at tL, is effective in decarburizing the whole grain at Jυ1, which is the maximum decarburization stage, so the decarburization oxygen efficiency is 1), and the injection size is 1). 1 mol of pure oxygen generates 2 mol of CO sludge, but if the carbon dioxide is low, the decarburization oxygen efficiency will be low and the raw CO sludge will decrease. From this, it can be understood that if the flow rate of the hydrocarbon cooling medium is constant, the partial pressure of hydrogen sludge often generated by decomposition of hydrocarbons will rapidly increase at low carbon dioxide levels after the peak decarburization period has passed. From these results, it has been found that the increase in hydrogen concentration in steel is caused by an increase in the partial pressure of decomposed hydrogen gas in the hydrocarbon cooling medium due to a decrease in the amount of CO gas generated in the d1 low coal region.

上述のような従来の精錬方法における炭化水素系冷却媒
体使用による水素分圧の低炭酸における上昇についてさ
らに詳細に説明すると、例えば冷却媒体としてプロパン
ガスを使用し、また内管から溶鋼中に吹込まれる純酸素
の流量に対するプロパンガスの流量比をa%とし、プロ
パンガスが完全に炭素と水素に分解したと仮定すれば、
1モルのプロパンカスから4モルの水素が生じるから、
脱炭最盛期においては、水素分圧Pl(2は全圧を1s
tmとして PH2(atm)、 = (苗)/ (2+懇) 、、
、、、、 (1)と々る。通常の純酸素底吹き転炉操業
におけるプロパンガスの対酸素流量比aは4%程度であ
るからa−4(%)を(1)式に代入すれば、PH2=
 0.074(5) (aim )となる。一方、脱炭最盛期が過ぎて低炭酸
となり、脱炭r夜景効率が1以]、例えば05と々れは
、水素分圧P112は、 P112 (”” ) ”” (x?+71 )/ (
2X O,5+ 者) ・・・・・・(2)で表せる。
To explain in more detail the rise in hydrogen partial pressure at low carbon dioxide levels due to the use of a hydrocarbon-based cooling medium in the conventional refining method as described above, for example, propane gas is used as the cooling medium, and propane gas is blown into molten steel from an inner pipe. Assuming that the flow rate ratio of propane gas to the flow rate of pure oxygen is a%, and that propane gas is completely decomposed into carbon and hydrogen,
Since 4 moles of hydrogen are produced from 1 mole of propane gas,
At the peak of decarburization, the hydrogen partial pressure Pl (2 is the total pressure of 1 s
PH2 (atm) as tm, = (seedling) / (2+con),,
,,,, (1) Totoru. Since the propane gas to oxygen flow rate ratio a in normal pure oxygen bottom-blowing converter operation is about 4%, by substituting a-4 (%) into equation (1), PH2=
0.074(5) (aim). On the other hand, after the peak decarburization period has passed and the carbonation becomes low, and the decarburization r night view efficiency is 1 or more], for example, in 05 and Todore, the hydrogen partial pressure P112 is P112 ("") "" (x? +71) / (
2X O, 5+ person) ...... can be expressed as (2).

したがって前記同様にa−4(%)を代入すれば、P 
H2−、0138(a t m ) ・と々す、脱炭最
盛期の2倍の水素分圧とガる。さらに脱炭酸素効率が0
3に低下すれば、前記同様にa = 4 (%)におい
てPH2= 0.211 (atm)となるo’このよ
うに吹錬末期の低炭酸においでは水素分圧が著しく上昇
し、これが鋼中水系濃度の増加をもたらすのである。
Therefore, by substituting a-4 (%) in the same way as above, P
H2-, 0138 (at m) ・The hydrogen partial pressure is twice that of the peak decarburization period. Furthermore, the decarburization oxygen efficiency is 0.
If it decreases to 3, then PH2 = 0.211 (atm) at a = 4 (%) as described above.O' As shown above, in the low carbon dioxide at the end of blowing, the hydrogen partial pressure increases significantly, and this increases the hydrogen partial pressure in the steel. This results in an increase in water-based concentrations.

したがって鋼中水素濃度の増加を防止するためには、吹
錬末期の低炭酸における水素カス分圧の上昇を抑制すれ
ば良いと考えられる。その方法の1つとしては、低炭酸
において2 li 管羽目の内管と外管との間の隙間か
ら炭化水素系冷却媒体とともに不活性ガスを流すことが
考えられる。しかしながら内管と外管との間の隙間の断
面積は純酸素(6) を流す内管の断面積と比較して著しく小さいから、供給
し得る不活性ガスの絶対流計は少なく、そのため低炭域
において内管の酸素によるCOガス発生量の低下を炭化
水素系冷却媒体とともに供給する不活性カスで補うこと
は困難であり、したがって水素分圧の上昇を抑えて鋼中
水素濃度の増加を防止することは困難である。
Therefore, in order to prevent an increase in the hydrogen concentration in steel, it is considered that it is sufficient to suppress the increase in hydrogen scum partial pressure at low carbon dioxide levels at the end of blowing. One possible method is to flow an inert gas together with a hydrocarbon-based cooling medium through the gap between the inner tube and the outer tube of the 2<i><i><i> tube siding when the carbon dioxide is low. However, since the cross-sectional area of the gap between the inner tube and the outer tube is significantly smaller than that of the inner tube through which pure oxygen (6) flows, the absolute flow rate of inert gas that can be supplied is small, and therefore the In the coal region, it is difficult to compensate for the decrease in the amount of CO gas generated due to oxygen in the inner tube with the inert gas supplied together with the hydrocarbon cooling medium. It is difficult to prevent.

そこでこの発明においては、吹錬末期において内管から
酸素とともに不活性ガスを吹込み、これによって炭化水
素系冷却媒体の分解によシ生じた水素を不活性カスで希
釈して水素分圧の上昇を抑え、鋼中水素濃度の増加を防
止するようにしだのである。
Therefore, in this invention, in the final stage of blowing, inert gas is blown in together with oxygen from the inner tube, thereby diluting the hydrogen produced by the decomposition of the hydrocarbon cooling medium with inert scum, thereby increasing the hydrogen partial pressure. This is to suppress the hydrogen concentration in the steel and prevent an increase in the hydrogen concentration in the steel.

l−たがってこの発明の精錬方法は、2重管羽口の内管
から溶鋼中に吹込むガスを吹錬開始当初は純酸素ガスと
し、精錬後半でしかも溶鋼中炭素濃度が03係とガる時
1tJ]以前に内管から吹込むガス力゛ス を、純酸素ガスから酸素に対する不活聯ホ流計比を06
以上とした酸素ガスと不活性カスとの混合ガスに切替え
て吹錬終了1でその混合ガスの吹込みを継続させること
を特徴とするものである。
Therefore, in the refining method of the present invention, the gas injected into the molten steel from the inner pipe of the double-pipe tuyere is pure oxygen gas at the beginning of the blowing, and in the latter half of the refining, when the carbon concentration in the molten steel reaches 03 1 tJ] before the gas force blown from the inner pipe, the inert coupling flowmeter ratio from pure oxygen gas to oxygen was 06
The present invention is characterized in that the gas mixture is switched to the above-mentioned mixed gas of oxygen gas and inert dregs, and the blowing of the mixed gas is continued at the end of blowing 1.

さらにこの発明の偵錬方法を詳卸1に説明すると、この
発明の精錬方法においては、2重管羽口の内管と外管と
の間には精錬開始から終了1で−ぼしてプロパンガス等
の炭化水素系ガスもしくハ液体炭化水素、すなわち炭化
水素系冷却媒体を流す。
Further explaining the refining method of the present invention in detail 1, in the refining method of the present invention, there is a gap between the inner pipe and the outer pipe of the double pipe tuyere from the start of refining to the end of the refining process. A hydrocarbon-based gas such as gas or a liquid hydrocarbon, that is, a hydrocarbon-based cooling medium, is caused to flow.

一方内管からはイ“N錬開始当初は純酸素ガスを吹込む
。そしてその状態で脱炭最盛期を過ぎ、精錬後半の鋼中
炭素濃度が0.3 %となる時期以前、すなわち鋼中炭
素濃度が03%以上の時lυ」に於いて内管からの吹込
みガスを純酸素ガスから酸素カスと不活性ガスとの混合
ガスに切替える。tli+]中炭素濃度が0.3係より
も低くなった時期に切替えた場合には−II記炭化水素
系冷却媒体の分解による水素分圧が上昇して鋼中水素濃
度が高くなってし1うから、少くとも鋼中炭素濃度が0
3%と々る時以前に切替える必要がある。一方切替え時
期が早過ぎた場合には脱炭;a> rb:が遅く々って
精錬時間が長く々るおそれがあるから少くとも精錬後半
とする必要があり、特に鋼中炭素濃度゛がo8係程度と
なった時期以降に切替えることが望ましい。結局、切替
えの適切時期は、鋼中炭素濃度が08〜03係の時期で
ある。また切替後の混合ガスは、酸素カスに対する不活
性ガスの流量比が0.6未満では、後述する実施例に示
すように、低炭域における炭化水素系冷却媒体の分解に
よる水素分圧の」二昇を抑えることが困難となり、した
がって混合ガスの酸素ガスに対する不活性ガスの混合比
(流量比)は06以」二とする必要がある。
On the other hand, pure oxygen gas is injected from the inner pipe at the beginning of the N refining process.In this state, the maximum decarburization period has passed and the carbon concentration in the steel reaches 0.3% in the latter half of the refining process. When the carbon concentration is 0.3% or more, the gas blown from the inner tube is switched from pure oxygen gas to a mixed gas of oxygen scum and inert gas. tli+] If the switch is made at a time when the carbon concentration in the steel is lower than the 0.3 factor, the hydrogen partial pressure due to the decomposition of the hydrocarbon coolant described in -II will increase and the hydrogen concentration in the steel will increase. Therefore, at least the carbon concentration in the steel is 0.
It is necessary to switch before it reaches 3%. On the other hand, if the switching time is too early, decarburization (a> rb) may be delayed and the refining time may become longer, so it is necessary to switch at least in the latter half of the refining process, especially if the carbon concentration in the steel is o8. It is desirable to switch after the time when it reaches the relevant level. In the end, the appropriate time for switching is when the carbon concentration in the steel is between 08 and 03. In addition, when the flow rate ratio of inert gas to oxygen sludge is less than 0.6, the mixed gas after switching will have a lower hydrogen partial pressure due to the decomposition of the hydrocarbon cooling medium in the low coal region, as shown in the examples described later. It becomes difficult to suppress the double rise, and therefore, the mixing ratio (flow rate ratio) of the inert gas to the oxygen gas in the mixed gas needs to be 0.6 or more.

上述のように低炭域において内管から酸素ガスとともに
不活性ガスを吹込んだ場合の水素分圧の上昇の抑制効果
について前記計算例に準じて試算すれば、酸素に対する
不活性ガスの比率が06の混合ガスを内管から吹込み、
かつ外管と内管との間に炭化水素系冷却媒体として対酸
素流量比4%のプロパンカスを流す場合において、脱炭
酸素効率が05の条件下においては、水素分圧PH2が
0.0909(at+n)と々シ、また脱炭酸素効率が
0.3の条件下においては水素分圧PH2が0118<
 aim )となる。これらの値は前述のように不活(
9) 性ガスを用いない場合の水素分圧(脱炭酸素効率05に
おいてPH2= 0..138、脱炭酸素効率o3にお
いてPH=0.211. )よりも格段に小さい。
As mentioned above, if the effect of suppressing the rise in hydrogen partial pressure when inert gas is injected together with oxygen gas from the inner pipe in the low coal region is calculated according to the above calculation example, the ratio of inert gas to oxygen is Blow the mixed gas of 06 from the inner pipe,
In addition, when propane gas with an oxygen flow rate ratio of 4% is flowed between the outer pipe and the inner pipe as a hydrocarbon-based cooling medium, under the condition that the decarburization oxygen efficiency is 05, the hydrogen partial pressure PH2 is 0.0909 ( at+n), and under the condition that the decarburization oxygen efficiency is 0.3, the hydrogen partial pressure PH2 is 0118<
aim). These values are inert (
9) It is much smaller than the hydrogen partial pressure when no gas is used (PH2=0..138 at decarburization oxygen efficiency 05, PH=0.211. at decarburization oxygen efficiency O3).

したがって不活性ガスの[実用による水素分圧J−+1
抑制効果が大きいことが明らかである。
Therefore, inert gas [practical hydrogen partial pressure J-+1
It is clear that the inhibitory effect is large.

以下にこの発明の実原1例および比較例を記す。An actual example of this invention and a comparative example will be described below.

実h1!1例 炉底に4本の2重管羽目を設けた5トン底吹き転炉に溶
銑5トンを装入して、羽口の内管と外管 ″との間に冷
却媒体としてプロパンを流し、内管から吹錬開始当初は
純酸素を吹込み、吹錬後半の鋼中C(1,65〜03チ
の時期に内管の吹込みカスを純酸素から酸素とアルゴン
ガスもしく kl窒素ガスとの混合ガスに切替え、その
it吹錬終了に至らせた。なお内管のガスを混合ガスに
リノ替んる前の純酸素ガス流li1け15 N7717
m1nの一定飴とし、寸だプロパンの対酸素流量比に4
係の一定値としだ。
Actual H1! 1 Example: 5 tons of hot metal was charged into a 5-ton bottom-blowing converter with 4 double-pipe tubes installed at the bottom of the furnace, and was used as a cooling medium between the inner and outer tubes of the tuyere. At the beginning of blowing, propane is flowed, and pure oxygen is blown into the inner pipe at the beginning of blowing, and during the latter half of blowing, the stubs in the inner pipe are replaced with oxygen and argon gas. Finally, the gas was switched to a mixed gas with kl nitrogen gas, and the blowing was completed.The pure oxygen gas flow before changing the gas in the inner tube to the mixed gas was 15 N7717.
Assuming that m1n is constant, the ratio of propane to oxygen flow rate is 4.
Assuming a constant value of

この実施例における溶銑の成分および温度、内管カス切
替時期の成分および+?+λ川”、内管カス切替条件、
および吹止時の成分および妃m−を第1表の試(10) 験番号1〜6に示す。
In this example, the composition and temperature of hot metal, the composition and +? +λ river”, inner pipe waste switching condition,
The components and weight ratios at the time of blow-off are shown in Table 1, Test (10) Test Nos. 1 to 6.

比較例1 吹錬末期において内管から吹込む混合ガスとして酸素に
対する流量比が06よりも小さい05の不活性カス(ア
ルゴンガス)と酸素との混合ガスを用いた点以外は実施
例とほぼ同様にして吹錬した。
Comparative Example 1 Almost the same as the example except that a mixed gas of 05 inert gas (argon gas) and oxygen with a flow rate ratio to oxygen smaller than 06 was used as the mixed gas blown from the inner pipe at the final stage of blowing. It was then blown.

比較例2 内管から吹込むガスを純酸素ガスから酸素とアルゴンガ
スもしくは窒素ガスとの混合ガスに切替える時期を鋼中
C濃度が03チよりも低くなった時期としだ点以外は実
施例と同様にして吹錬した。
Comparative Example 2 Same as the example except that the timing for switching the gas blown from the inner tube from pure oxygen gas to a mixed gas of oxygen and argon gas or nitrogen gas was set at the time when the C concentration in the steel became lower than 03. It was blown in the same way.

比較例3 吹錬末期における内管カスの切替えを行なわず、吹錬開
始から吹錬終了まで純酸素を吹込んだ。その他の条件は
実施例と同様である。
Comparative Example 3 Pure oxygen was blown from the start of blowing to the end of blowing without changing the inner pipe waste at the end of blowing. Other conditions are the same as in the example.

以上の各比較例における溶銑の成分および温度、内管ガ
ス切替時期の成分および温度、内管カス切替条件、およ
び吹止時の成分および温度を第1表の試験番号7〜11
に示す。
The composition and temperature of the hot metal, the composition and temperature at the time of switching the inner tube gas, the conditions for switching the inner tube scum, and the composition and temperature at the time of blow-off in each of the above comparative examples were determined from test numbers 7 to 11 in Table 1.
Shown below.

(11) 実施例の試験番号1〜4と比較例1(試験番号7)とを
比較すれば、混合カスにおける不活性ガスの対酸素比が
0.6以上であれは吹止水素濃度の」−昇が極小量に抑
制されることが明らかである。
(11) Comparing Test Numbers 1 to 4 of the Examples and Comparative Example 1 (Test Number 7), it is found that if the ratio of inert gas to oxygen in the mixed scum is 0.6 or more, the concentration of hydrogen at the end of the flow is lower. - It is clear that the increase in the temperature is suppressed to a minimum amount.

また実施例の試験番号1〜6と比較例2(試験番号8,
9)とを比較すれば、内管からの吹込みガス切替時期が
鋼中C#度03%以上の時期であれば吹止水素濃度の上
昇を抑えられることが明らかである。さらに、比較例3
(実験番号10.11)を参照すれば、内管からの吹込
みカスを低炭酸において純酸素カスから酸素ガスと不活
性カスとの混合ガスに切替えない場合には吹止水素濃度
が著しく上昇することが明らかである。
In addition, test numbers 1 to 6 of Examples and comparative example 2 (test number 8,
9), it is clear that if the timing of switching the gas blown from the inner pipe is at a time when the C# degree in the steel is 03% or more, the increase in the concentration of blown hydrogen can be suppressed. Furthermore, comparative example 3
(Experiment No. 10.11), when the gas blown from the inner tube is not switched from pure oxygen gas to a mixed gas of oxygen gas and inert gas at low carbon dioxide, the concentration of blown hydrogen increases significantly. It is clear that

このように実施例および各比較例から、鋼中水素濃度の
上昇を抑制するためには、2重管羽目の内管から吹錬末
期に酸素とともに不活性ガスを吹込むことが有効々こと
、またその場合不活性ガスの対酸素比が06以上であっ
てしかも吹込み開始時期(純酸素ガスからの切替時期)
が鋼中炭素濃度03係以前でなければ効果が得られない
ことが明らかとなった。
In this way, the examples and comparative examples show that in order to suppress the increase in hydrogen concentration in steel, it is effective to blow inert gas together with oxygen from the inner pipe of the double pipe panel at the final stage of blowing. In that case, the inert gas to oxygen ratio is 0.6 or higher and the timing to start blowing (time to switch from pure oxygen gas)
It has become clear that the effect cannot be obtained unless the carbon concentration in the steel is 03 or below.

以上のようにこの発明の方法によれは、2重管羽目を有
する底吹き転炉や上底吹き転炉において羽口の保護冷却
効果を高めるために羽口の内管と外管との間に炭化水素
系冷却媒体を流すにあたシ、その炭化水素系冷却媒体の
分解により生じる水素によって鋼中水素濃度が増加する
ことを有効に防止でき、しだがって溶鋼凝固時にブロー
ホールが発生して鋼片の品質を損うことを有効に防止で
きるとともに、鋼中水素濃度低下のために出鋼後に脱カ
ス処理を行う必要がなく々っで鋼の製造コストが低減さ
れる等の効果が474られる。
As described above, in the method of the present invention, in order to enhance the protective cooling effect of the tuyeres in a bottom-blown converter or a top-bottom-blown converter having double-pipe linings, the gap between the inner and outer tubes of the tuyere is When a hydrocarbon coolant is passed through the steel, it can effectively prevent the hydrogen concentration in the steel from increasing due to the hydrogen generated by the decomposition of the hydrocarbon coolant, and therefore blowholes occur when the molten steel solidifies. In addition to effectively preventing deterioration of the quality of steel slabs, there are also benefits such as lowering the hydrogen concentration in the steel and eliminating the need for descaling treatment after tapping, thereby reducing steel manufacturing costs. 474 will be added.

出願人川崎製鉄株式会社Applicant Kawasaki Steel Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)溶鋼湯面位置よりも下部に2重管羽口が設けられ
た転炉を用い、その2重管羽目の内管から溶鋼中に精錬
ガスを吹込むとともに内管と外管との間に羽目保護用の
炭化水素系冷却媒体を流すようにした転炉精錬方法にお
いて、 精錬開始当初は前記精錬ガスとして内管から純酸素ガス
を吹込み、精錬後半における溶鋼炭素濃度が03%以上
の時期に内管からの吹込みガスを純酸素ガスから酸素ガ
スに対する不活性カスの混合比が06以上の酸素ガスと
不活性ガスとの混合カスに切替え、その状態で精錬終了
捷で至らせることを特徴とする転炉精錬方法。
(1) Using a converter with a double-pipe tuyere installed below the molten steel level, refining gas is blown into the molten steel from the inner pipe of the double-pipe tuyere, and the inner and outer pipes are connected. In a converter refining method in which a hydrocarbon-based cooling medium for lining protection is flowed in between, pure oxygen gas is blown from the inner tube as the refining gas at the beginning of refining, and the molten steel carbon concentration in the latter half of refining is 0.3% or more. At the time of , the gas blown from the inner pipe is switched from pure oxygen gas to a mixture of oxygen gas and inert gas with a mixing ratio of inert gas to oxygen gas of 06 or more, and in this state, the refining is completed. A converter refining method characterized by the following.
(2)  内管からの吹込みガスを純酸素ガスから酸素
ガスと不活性ガスとの混合ガスに切替える時期を、溶鋼
炭素濃10゛が08チ以下03係以上の時期とした特許
請求の範囲第1項記載の転炉イ゛S針方法。
(2) The scope of the patent claims that the timing at which the gas blown from the inner tube is switched from pure oxygen gas to a mixed gas of oxygen gas and inert gas is set at the time when the molten steel carbon concentration 10゜ is below 08 degrees and above 03 degrees. Converter steel needle method as described in item 1.
JP17679081A 1981-11-02 1981-11-02 Converter refining method Pending JPS5877516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17679081A JPS5877516A (en) 1981-11-02 1981-11-02 Converter refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17679081A JPS5877516A (en) 1981-11-02 1981-11-02 Converter refining method

Publications (1)

Publication Number Publication Date
JPS5877516A true JPS5877516A (en) 1983-05-10

Family

ID=16019887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17679081A Pending JPS5877516A (en) 1981-11-02 1981-11-02 Converter refining method

Country Status (1)

Country Link
JP (1) JPS5877516A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620112A (en) * 1979-07-30 1981-02-25 Nippon Steel Corp Production of low hydrogen steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620112A (en) * 1979-07-30 1981-02-25 Nippon Steel Corp Production of low hydrogen steel

Similar Documents

Publication Publication Date Title
CN101225453A (en) Electric furnace smelting method for low-carbon low-silicon steel
US3891429A (en) Method for selective decarburization of alloy steels
JP3428628B2 (en) Stainless steel desulfurization refining method
JPS5877516A (en) Converter refining method
FI67094C (en) FOERFARANDE FOER ATT FOERHINDRA ATT SLAGGMETALL VAELLER UPP VI PNEUMATISK UNDER YTAN SKEENDE RAFFINERING AV STAOL
JPS58130216A (en) Refining method of high alloy steel and stainless steel
JP2006283065A (en) Gas-blowing tuyere
RU2105072C1 (en) Method for production of steel naturally alloyed with vanadium in conversion of vanadium iron in oxygen steel-making converters by monoprocess with scrap consumption up to 30%
US4592778A (en) Steelmaking of an extremely low carbon steel in a converter
JPH0124855B2 (en)
JP2000109924A (en) Method for melting extra-low sulfur steel
JPH0472009A (en) Method for refining high cleanliness steel
JPS6049687B2 (en) Tuyere cooling method
JP2005290515A (en) Blowing method for converter having high metal yield
JPS60194009A (en) Method for refining stainless steel
CN115369308A (en) Method for producing high-strength IF steel
JPH0633127A (en) Method for decarburizing chromium-containing molten iron
Jiang et al. Development and application of BRP technology in Baosteel
JPS6230807A (en) Apparatus for producing low nitrogen steel
CN114990285A (en) Nitrogen increasing method for low-alloy high-strength steel
JPH01312020A (en) Method for dephosphorizing molten iron by heating
JPH01283313A (en) Method for cooling multiplex-pipe tuyere in steelmaking furnace
JPH0379712A (en) Refining method in converter
JPH059533A (en) Method for treating molten iron
JPH04214812A (en) Method for smelting stainless steel