JPS587717B2 - Conductor and energizing device for metal salt electrolyzer - Google Patents

Conductor and energizing device for metal salt electrolyzer

Info

Publication number
JPS587717B2
JPS587717B2 JP9871480A JP9871480A JPS587717B2 JP S587717 B2 JPS587717 B2 JP S587717B2 JP 9871480 A JP9871480 A JP 9871480A JP 9871480 A JP9871480 A JP 9871480A JP S587717 B2 JPS587717 B2 JP S587717B2
Authority
JP
Japan
Prior art keywords
conductor
metal salt
electrolytic cell
salt electrolytic
cell according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9871480A
Other languages
Japanese (ja)
Other versions
JPS5726185A (en
Inventor
加藤紀
加藤光男
谷口能敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP9871480A priority Critical patent/JPS587717B2/en
Publication of JPS5726185A publication Critical patent/JPS5726185A/en
Publication of JPS587717B2 publication Critical patent/JPS587717B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は電力供給用導電体及び金属塩電解槽に電力を供
給するための湿潤型通電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductor for power supply and a wet type energizing device for supplying power to a metal salt electrolytic cell.

一般に金属塩水溶液の電解、例えば銅の電解精錬等にお
いては、電解槽の側壁に設置される通電装置は単に銅製
導電体にアノードやカソードの電力供給端子を直接配置
して構成されていた。
In general, in the electrolysis of metal salt aqueous solutions, such as electrolytic refining of copper, the energizing device installed on the side wall of the electrolytic cell simply consists of anode and cathode power supply terminals placed directly on a copper conductor.

このような通電装置を使用した場合には導電体とアノー
ドやカソードの電力供給端子との接点に於ける接触抵抗
が大となり、種々の幣害を生ぜしめる。
When such an energizing device is used, the contact resistance at the contact point between the conductor and the power supply terminal of the anode or cathode becomes large, causing various damage.

即ち、該接触抵抗の増大により、電解精錬等の所要電力
を増大せしめ、又電解槽内の各接点に於ける接触抵抗に
ばらつきがあるとそれが電流のばらつきとなり、製品重
量がばらつくこととなり、更に又電流のばらつきにより
部分的に電流密度の高いカソードができ製品の品質の低
下を招くこととなる。
That is, due to the increase in contact resistance, the power required for electrolytic refining etc. increases, and if there is variation in contact resistance at each contact point in the electrolytic cell, this will lead to variation in current, which will cause variation in product weight. Furthermore, due to variations in current, a cathode with a high current density may be formed in some areas, leading to a deterioration in product quality.

上記のような諸々の幣害をもたらすカソードやアノード
の電力供給端子と導電体との間の接触抵抗を増大させる
原因としては、(1)電極側接触部の汚れ及び空気中の
酸素の働きによる酸化皮膜の生成、並びに(2)導電体
表面の汚れ及び電解液中の金属塩の析出による皮膜の生
成等が考えられる。
The causes of increased contact resistance between the cathode and anode power supply terminals and the conductor, which cause the various damage mentioned above, are (1) dirt on the electrode side contact and the action of oxygen in the air; Possible causes include the formation of an oxide film, and (2) the formation of a film due to dirt on the conductor surface and precipitation of metal salts in the electrolyte.

この接触抵抗を少なくするために種々の提案がなされて
いるが、特に特公昭49−16686号に開示されるよ
うに、常に電極と導電体との接触部を湿潤させる、所謂
湿潤コンタクト法が有効である。
Various proposals have been made to reduce this contact resistance, but the so-called wet contact method, which constantly moistens the contact area between the electrode and the conductor, is particularly effective, as disclosed in Japanese Patent Publication No. 49-16686. It is.

即ち、該湿潤コンタクト法によると、導電体と電極との
接触部分が常に導電性液体で湿潤状態に保たれているの
で該接触部と空気中の酸素とを遮断し接触部に於る酸化
皮膜の発生を防止し、接触面の状態を良好に保つことが
できる。
That is, according to the wet contact method, the contact area between the conductor and the electrode is always kept moist with a conductive liquid, which blocks the contact area from oxygen in the air and prevents the oxide film on the contact area from forming. can be prevented from occurring and the condition of the contact surface can be maintained in good condition.

更に又該方法によると該接触部に電解液が付着し金属塩
が晶出することも防止することができ、従って結晶によ
る接触不良もなくすることができる。
Furthermore, according to this method, it is possible to prevent the electrolytic solution from adhering to the contact portion and crystallization of the metal salt, and therefore, it is possible to prevent poor contact due to crystals.

しかしながら、該湿潤コンタクト法によれば通常銅で形
成される導電体に溝又は穴を形成し含液部を設ける必要
があるが、このように導体中に含液部を形成することは
その加工が困難であるという欠点を有する。
However, according to the wet contact method, it is necessary to form a groove or hole in the conductor, which is usually made of copper, to provide a liquid-containing part. The disadvantage is that it is difficult to

又該導電体にはアノード及びカソードの電力供給端子を
同時に担持する必要があるが、この時該導電体と接触し
ない方の電力供給端子は該導電体に絶縁体を介して担持
することが必要となり極めて構造上複雑で且つ極板等の
取扱い時に注意が必要となり作業上不便であるという欠
点をも有している。
In addition, it is necessary to simultaneously support the anode and cathode power supply terminals on the conductor, but at this time, the power supply terminal that does not come into contact with the conductor must be supported on the conductor via an insulator. Therefore, it has the disadvantage that it is extremely complex in structure and requires care when handling the electrode plates, which is inconvenient in terms of work.

また、該湿潤コンタクト法は、導体と電極との接触部に
導電性液体を供給する含浸性海綿状物体(スポンジ)が
電解精錬等の酸性雰囲気にて、例えば硫酸ミスト等の作
用により著しく劣化され、寿命は短く、頻繁なスポンジ
の交換が余儀なくされる。
In addition, in the wet contact method, an impregnated spongy object (sponge) that supplies conductive liquid to the contact area between the conductor and the electrode is significantly deteriorated by the action of sulfuric acid mist, etc. in an acidic atmosphere such as electrolytic refining. , the lifespan is short and the sponge must be replaced frequently.

更に又スポンジは材質的に軟いものであるので、その設
定位置がずれ易く、その設定修正をする必要があり、取
扱い上煩しい面を有していた。
Furthermore, since the sponge is a soft material, its setting position is likely to shift, and it is necessary to correct the setting, making it difficult to handle.

本発明は、上記湿潤コンタクトが持つ諸欠点を解決する
ために、アノードやカソードの電力供給端子を担持し且
つ電力を供給し、さらに導電体自身が接触部を湿潤状態
に保つ能力を有する、例えば金属焼結体とか金属より線
とか、複数の金属薄板を層状に束ねた金属薄板積層体の
ような多孔質導電材料から形成された導電体を提供せん
とするものである。
In order to solve the various drawbacks of the above-mentioned wet contacts, the present invention provides a structure in which the conductor itself carries the power supply terminal of the anode or cathode and supplies power, and furthermore, the conductor itself has the ability to keep the contact part in a wet state, for example. The present invention aims to provide a conductor made of a porous conductive material such as a metal sintered body, a metal stranded wire, or a metal thin plate laminate made of a plurality of metal thin plates bundled in a layered manner.

更に本発明の目的はアノード又はカソード電力供給端子
と導電体との間の接触抵抗を低減せしめ、所要電力を著
しく節減することのできる通電装置を提供することであ
る。
A further object of the present invention is to provide a current-carrying device which can reduce the contact resistance between the anode or cathode power supply terminal and the conductor, thereby significantly reducing the required power.

本発明の他の目的は導電体に接触させる必要のない極板
を担持するために特別に絶縁支持手段を必要としない、
構造及び取扱いの簡単な通電装置を提供することである
Another object of the invention is that no special insulating support means are required to support the plates which do not need to be in contact with conductors.
An object of the present invention is to provide an energizing device that is simple in structure and handling.

本発明の他の目的は導電体を保持する碍子を加工すれば
よいために、製造が容易で且つ製造価格の低い通電装置
を提供することである。
Another object of the present invention is to provide an energizing device that is easy to manufacture and inexpensive since it is only necessary to process the insulator that holds the conductor.

本発明の他の目的は接触抵抗及びそのばらつきを低減す
ることができ、それによって電圧降下及びそのばらつき
を低減せしめ、所要供給電力の低減を図り、製品の品質
の向上及び製品の重量のばらつきを減少させることので
きる通電装置を提供することである。
Another object of the present invention is to reduce contact resistance and its variation, thereby reducing voltage drop and its variation, reducing required power supply, improving product quality and reducing product weight variation. It is an object of the present invention to provide an energization device that can reduce the amount of electricity.

本発明の更に他の目的は、構造が簡単で且つ長期間の使
用に耐えることができ、従って保守の容易な通電装置を
提供することである。
Still another object of the present invention is to provide an energizing device that has a simple structure, can withstand long-term use, and is therefore easy to maintain.

次に本発明に係る導電体及び該導電体を使用した通電装
置を図面に即して更に詳しく説明する。
Next, a conductor according to the present invention and an energizing device using the conductor will be explained in more detail with reference to the drawings.

第1図から第3図を参照すると、通電装置1は金属塩電
解槽の側壁2の上縁部に絶縁材料、例えば碍子で形成さ
れた導体支持部材4を有する。
Referring to FIGS. 1 to 3, the current supply device 1 has a conductor support member 4 made of an insulating material, such as an insulator, at the upper edge of the side wall 2 of the metal salt electrolytic cell.

該絶縁性導体支持部材4の上面4aの一部分に、通常は
上面4aの概略中央部分に凹所6が設けられ、該凹所に
多孔質の導電体8が配置される。
A recess 6 is provided in a portion of the upper surface 4a of the insulating conductor support member 4, usually approximately at the center of the upper surface 4a, and a porous conductor 8 is disposed in the recess.

該多孔質導電体8には電解の際にアノードの一方の電力
供給端子16a及びカソードの一方の電力供給端子16
bが交互に接触載置される。
The porous conductor 8 is provided with one power supply terminal 16a of the anode and one power supply terminal 16 of the cathode during electrolysis.
b are alternately placed in contact with each other.

又アノード及びカソードの他方の電力供給端子16a’
及び16b’は直接前記絶縁性導体支持部材4の上面4
aの一部分に載置される。
Also, the other power supply terminal 16a' of the anode and cathode
and 16b' directly represent the upper surface 4 of the insulating conductor support member 4.
It is placed on a part of a.

本発明の好ましい一つの実施態様において多孔質導電体
8は、銅粉を圧縮成形焼結して形成された多孔質の銅粉
焼結体であり、その形状は任意のものであってよい。
In one preferred embodiment of the present invention, the porous conductor 8 is a porous copper powder sintered body formed by compression molding and sintering copper powder, and its shape may be arbitrary.

例えば円形断面、角形断面等を有するものがあるが図に
は円形断面を有するものを示す。
For example, some have a circular cross section, a square cross section, etc., and the figure shows one with a circular cross section.

このような多孔質の銅粉焼結体から成る導電体8を凹所
6内に配置し、次で該凹所内に、第1図に図示されるよ
うに、例えば水のような導電性液体10を注入すれば、
多孔質導電体8の内部に形成された多数の細隙による毛
管作用によって導電性液体10は吸い上げられ、電極1
6aとの接触部に供給される。
A conductor 8 made of such a porous sintered copper powder body is placed in the recess 6, and then a conductive liquid such as water is poured into the recess as illustrated in FIG. If you inject 10,
The conductive liquid 10 is sucked up by capillary action due to the large number of slits formed inside the porous conductor 8, and the conductive liquid 10 is sucked up to the electrode 1.
6a.

従って導電体8と電極16aとの接触部は常に湿潤状態
に維持される。
Therefore, the contact portion between the conductor 8 and the electrode 16a is always maintained in a wet state.

多孔質導電体8は上記説明においては中実の銅粉焼結体
とされたが、第4図に図示されるような中空の銅粉焼結
体とすることもできる。
Although the porous conductor 8 is a solid copper powder sintered body in the above description, it can also be a hollow copper powder sintered body as shown in FIG.

このような中空の多孔質導電体8を使用した場合には、
第5図に図示されるように、該導電体8の中央孔8aに
、例えばポンプP、導電性液槽S及び導管Cを具備する
循環装置12を介して導電性液体10を圧力下に送給す
ることができる。
When such a hollow porous conductor 8 is used,
As illustrated in FIG. 5, a conductive liquid 10 is fed under pressure into the central hole 8a of the conductor 8, for example via a circulation device 12 comprising a pump P, a conductive liquid tank S and a conduit C. can be provided.

これによって導電性液体10は多孔質導電体8の中央孔
8aから半径方向外方向へと毛管作用及び水圧の働きに
より進出し、導電体8と電極16aとの接触部を湿潤状
態に維持する。
As a result, the conductive liquid 10 advances radially outward from the central hole 8a of the porous conductor 8 by capillary action and water pressure, and maintains the contact area between the conductor 8 and the electrode 16a in a wet state.

多孔質導電体8を構成する銅粉焼結体は銅単味の焼結体
である必要はなく、場合によっては銅主体に他の元素を
混合した焼結体又はカーボン焼結体をも使用可能である
The copper powder sintered body constituting the porous conductor 8 does not need to be a sintered body made of only copper, and in some cases, a sintered body consisting mainly of copper mixed with other elements or a carbon sintered body may be used. It is possible.

通常の電解槽に使用される導電体は長さが数メートルに
もなるために多孔質導電体8として上記のごとき焼結体
を製造するには大型のプレス、金型及び焼結炉が必要と
なる。
The conductors used in ordinary electrolytic cells are several meters long, so large presses, molds, and sintering furnaces are required to produce the above-mentioned sintered bodies as porous conductors 8. becomes.

従ってこのような場合には、多孔質導電体8は第6図及
び第7図に図示されるように、長手方向に延在する銅の
圧延材のような長尺通電体14の上に例えば100mm
程度の長さを持った複数の焼結体81,82,83,8
4等を所定間隔にて配置し、圧延材14と各焼結体81
〜84とは熔接18にて一体的に結合して構成すること
ができる。
Therefore, in such a case, the porous conductor 8 is placed on a longitudinally extending elongated current carrying body 14, such as a rolled copper material, as shown in FIGS. 6 and 7, for example. 100mm
A plurality of sintered bodies 81, 82, 83, 8 having a length of approximately
4 etc. are arranged at predetermined intervals, and the rolled material 14 and each sintered body 81
- 84 can be integrally joined by welding 18.

電極、即ち、電力供給端子16a,16bは各焼結体8
1〜84上に載置され、該導電体8と電極16a,l6
bとの接触部は前記諸実施態様と同じく湿潤状態に維持
される。
Electrodes, that is, power supply terminals 16a, 16b are connected to each sintered body 8.
1 to 84, and the conductor 8 and the electrodes 16a, l6
The contact area with b is maintained in a wet state as in the previous embodiments.

本発明に係る通電装置1に使用される多孔質導電体8は
、前述の如き焼結体に限定されるものではなく、他の実
施態様としては第8図に図示されるように、例えば銅線
のような金属細線20を多数束ねて、より合せることに
よって構成することもできる。
The porous conductor 8 used in the current-carrying device 1 according to the present invention is not limited to the sintered body as described above, but as another embodiment, as shown in FIG. It can also be constructed by bundling a large number of thin metal wires 20 and twisting them together.

導電性液体10は各心線間の細隙を介して通水し、電極
16a,16bとの接触部を湿潤状態に維持することが
できる。
The conductive liquid 10 can flow through the slits between the core wires and maintain the contact portions with the electrodes 16a and 16b in a wet state.

また第9図に図示されるように銅のような金属の薄板を
多数層状に重ねて束ねた積層体とし、各各の薄板の間の
細隙を利用して、電極と導電体との接触部の湿潤状態を
維持させるような金属薄板の層状積層体からなる導電体
の使用も可能である。
In addition, as shown in Figure 9, a laminate is formed by stacking and bundling many thin plates of metal such as copper, and the gaps between each thin plate are used to make contact between the electrode and the conductor. It is also possible to use an electrical conductor consisting of a layered laminate of metal sheets, which maintains the wet state of the parts.

表■は銅45g/1、遊離硫酸200g/lを含有する
銅電解液を用いて浴温60℃、電流密度250A/m2
の条件下で電解精錬を行なった場合の多孔質導電体と電
極との間の接触電圧及び中実銅棒と電極との間の接触電
圧を測った結果を示す。
Table ① uses a copper electrolyte containing 45 g/l of copper and 200 g/l of free sulfuric acid at a bath temperature of 60°C and a current density of 250 A/m2.
The results of measuring the contact voltage between the porous conductor and the electrode and the contact voltage between the solid copper rod and the electrode when electrolytic refining was performed under the following conditions are shown.

表1より多孔質導電体を湿潤状態にて使用した場合に、
銅棒を使用した場合より約20mVの接触電圧の低下が
期待できることが理解されるであろう。
From Table 1, when the porous conductor is used in a wet state,
It will be appreciated that approximately 20 mV of lower contact voltage can be expected than when using copper rods.

20mVの接触電圧の低下は電解に必要な総電力の1割
強の電力減に寄与するものである。
A drop in contact voltage of 20 mV contributes to a power reduction of over 10% of the total power required for electrolysis.

又導電性液体は若干酸性にするのが好ましく、pH1〜
2程度とされる。
It is also preferable that the conductive liquid be slightly acidic, with a pH of 1 to
It is said to be around 2.

このように導電性液体を酸性にすることによって導電体
と電極との間の接触部の酸化物を取除くこともでき接触
抵抗を著しく低減せしめることができる。
By making the conductive liquid acidic in this manner, oxides at the contact portion between the conductor and the electrode can be removed, and the contact resistance can be significantly reduced.

本発明に係る通電装置は以上の如くに構成されるために
、通電時の導電体接触部における接触抵抗を著しく低下
せしめ、所要電力の節減を図ると共に、構造が簡単で、
頻繁に取換えを必要とするような消耗品も有さず、製造
、取扱い及び保守が容易であるといった効果を有してい
る。
Since the current-carrying device according to the present invention is constructed as described above, it can significantly reduce the contact resistance at the conductor contact portion during current-carrying, reduce the required power, and have a simple structure.
It has the advantage that it does not have consumables that require frequent replacement, and is easy to manufacture, handle, and maintain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る通電装置の概略断面図である。 第2図は第1図の通電装置の部分平面図である。 第3図は第1図の通電装置の概略分解斜視図である。 第4図は多孔質導電体の他の実施態様を表わす断面図で
ある。 第5図は第4図の多孔質導電体を使用した場合の導電性
液体の循環態様を示す説明図である。 第6図は本発明に係る通電装置の他の実施態様の概略断
面図である。 第7図は第6図の線■一■に取った断面図である。 第8図および第9図は多孔質導電体の更に他の実施態様
を表わす断面図である。 2:電解槽側壁、4:絶縁性導体支持部材、6:凹所、
8:多孔性導電体、10:導電性液体、12:導電性液
体循環装置、14:通電体、16a,16b:電力供給
端子(電極)。
FIG. 1 is a schematic cross-sectional view of an energizing device according to the present invention. FIG. 2 is a partial plan view of the energizing device of FIG. 1. FIG. 3 is a schematic exploded perspective view of the energizing device shown in FIG. 1. FIG. 4 is a sectional view showing another embodiment of the porous conductor. FIG. 5 is an explanatory diagram showing the manner in which a conductive liquid circulates when the porous conductor shown in FIG. 4 is used. FIG. 6 is a schematic sectional view of another embodiment of the current supply device according to the present invention. FIG. 7 is a sectional view taken along line 1--2 in FIG. FIGS. 8 and 9 are cross-sectional views showing still other embodiments of the porous conductor. 2: Electrolytic cell side wall, 4: Insulating conductor support member, 6: Recess,
8: porous conductor, 10: conductive liquid, 12: conductive liquid circulation device, 14: current carrying body, 16a, 16b: power supply terminal (electrode).

Claims (1)

【特許請求の範囲】 1 アノード又はカソードの電力供給端子を担持し且つ
該電力供給端子に電力を供給するための多孔質材料で形
成された金属塩電解槽用導電体。 2 多孔質導電体は銅、銅と他の元素、又はカーボンを
素材とした焼結体から成る特許請求の範囲第1項記載の
金属塩電解槽用導電体。 3 多孔質導電体は金属細線を束ね、より合せて構成さ
れる特許請求の範囲第1項記載の金属塩電解槽用導電体
。 4 多孔質導電体は複数の金属薄板を層状に束ねて構成
される特許請求の範囲第1項記載の金属塩電解槽用導電
体。 5 金属塩電解槽の側壁上部に絶縁性導体支持部材を配
置し、該絶縁性導体支持部材の上面の一部分に凹所を形
成し、該凹所内には電解の際にアノード又はカソードの
電力供給端子と接触するための多孔質の導電体を配置せ
しめ、ここで前記多孔質導電体に導電性液体を供給する
ことにより、該多孔質導電体と電力供給端子との接触部
に導電性液体が供給され常に該接触部に湿潤状態に維持
するようにした金属塩電解槽用通電装置。 6 多孔質導電体は銅、銅と他の元素、又はカーボンを
素材とした焼結体から成る特許請求の範囲第5項記載の
金属塩電解槽用通電装置。 7 多孔質導電体は金属細線を束ね、より合せて構成さ
れる特許請求の範囲第5項記載の金属塩電解槽用通電装
置。 8 導電体は複数の金属薄板を層状に束ねて構成される
特許請求の範囲第5項記載の金属塩電解槽用通電装置。 9 多孔質導電体は導電性通電体上に複数の焼結体を一
体的に隔設して構成される特許請求の範囲第6項記載の
金属塩電解槽用通電装置。 10 焼結体は中実棒であり、導電性液体は凹所に流入
される特許請求の範囲第6項記載の金属塩電解槽用通電
装置。 11 焼結体は中空棒であり、導電性液体は該焼結体の
貫通孔に流入される特許請求の範囲第6項記載の金属塩
電解槽用通電装置。
[Scope of Claims] 1. A conductor for a metal salt electrolytic cell formed of a porous material for supporting a power supply terminal of an anode or a cathode and for supplying power to the power supply terminal. 2. The conductor for a metal salt electrolytic cell according to claim 1, wherein the porous conductor is a sintered body made of copper, copper and other elements, or carbon. 3. The conductor for a metal salt electrolytic cell according to claim 1, wherein the porous conductor is constructed by bundling and twisting thin metal wires. 4. The conductor for a metal salt electrolytic cell according to claim 1, wherein the porous conductor is constructed by bundling a plurality of thin metal plates in a layered manner. 5. An insulating conductor support member is arranged on the upper side wall of the metal salt electrolytic cell, a recess is formed in a part of the upper surface of the insulating conductor support member, and the anode or cathode power supply is provided in the recess during electrolysis. By arranging a porous conductor to make contact with the terminal and supplying a conductive liquid to the porous conductor, the conductive liquid is applied to the contact portion between the porous conductor and the power supply terminal. An energizing device for a metal salt electrolytic cell, which is supplied with electricity to keep the contact portion in a moist state at all times. 6. The energizing device for a metal salt electrolytic cell according to claim 5, wherein the porous conductor is a sintered body made of copper, copper and other elements, or carbon. 7. The energizing device for a metal salt electrolytic cell according to claim 5, wherein the porous conductor is constructed by bundling and twisting thin metal wires. 8. The current supply device for a metal salt electrolytic cell according to claim 5, wherein the conductor is constructed by bundling a plurality of thin metal plates in a layered manner. 9. The current supply device for a metal salt electrolytic cell according to claim 6, wherein the porous conductor is constructed by integrally disposing a plurality of sintered bodies on a conductive current supply body. 10. The energizing device for a metal salt electrolytic cell according to claim 6, wherein the sintered body is a solid rod, and the conductive liquid flows into the recess. 11. The energizing device for a metal salt electrolytic cell according to claim 6, wherein the sintered body is a hollow rod, and the conductive liquid flows into the through hole of the sintered body.
JP9871480A 1980-07-21 1980-07-21 Conductor and energizing device for metal salt electrolyzer Expired JPS587717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9871480A JPS587717B2 (en) 1980-07-21 1980-07-21 Conductor and energizing device for metal salt electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9871480A JPS587717B2 (en) 1980-07-21 1980-07-21 Conductor and energizing device for metal salt electrolyzer

Publications (2)

Publication Number Publication Date
JPS5726185A JPS5726185A (en) 1982-02-12
JPS587717B2 true JPS587717B2 (en) 1983-02-10

Family

ID=14227180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9871480A Expired JPS587717B2 (en) 1980-07-21 1980-07-21 Conductor and energizing device for metal salt electrolyzer

Country Status (1)

Country Link
JP (1) JPS587717B2 (en)

Also Published As

Publication number Publication date
JPS5726185A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
CA1235737A (en) Unitary plate electrode
US3536535A (en) Electric power source with movable anode means
EP0198978B1 (en) Formation of an adherent metal deposit on an exposed surface of an electrically-conducting ceramic
KR920702033A (en) Conductive Parts Containing Conductive Metal Oxides
US7341806B2 (en) Battery having carbon foam current collector
JPS62237668A (en) Lead accumulator cathode
GB1508011A (en) Electrochemical cells
JPS62501248A (en) Electrochemical cell with wound electrode structure
KR101009300B1 (en) Battery Including Carbon Foam Current Collectors
US3364071A (en) Fuel cell with capillary supply means
US6287433B1 (en) Insoluble titanium-lead anode for sulfate electrolytes
US3124487A (en) Gas depolarized cell
JPS587717B2 (en) Conductor and energizing device for metal salt electrolyzer
CN116508181A (en) Tubular solid oxide fuel cell with cathode current collector and method of forming the same
JPS6226555B2 (en)
US1602915A (en) Dry cell
JPH04505990A (en) Electrochemical treatment method for battery electrode plate materials and related products
SU1049574A1 (en) Graphite anode for electrolysis of solutions of alkali metal hylogenides
US1627334A (en) Dry cell
US415329A (en) Electrode for secondary batteries
US412323A (en) Method of electrolytically reducing plates for secondary batteries
JP2007048960A (en) Formation method and formation device
JPS6344457Y2 (en)
JPH0696771A (en) Gas diffusive electrode
US1351886A (en) Electrolytic cell