JPS5877138A - Speed change control method of automatic speed changer - Google Patents

Speed change control method of automatic speed changer

Info

Publication number
JPS5877138A
JPS5877138A JP17560081A JP17560081A JPS5877138A JP S5877138 A JPS5877138 A JP S5877138A JP 17560081 A JP17560081 A JP 17560081A JP 17560081 A JP17560081 A JP 17560081A JP S5877138 A JPS5877138 A JP S5877138A
Authority
JP
Japan
Prior art keywords
engine
shift
speed change
output torque
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17560081A
Other languages
Japanese (ja)
Other versions
JPH0228698B2 (en
Inventor
Takashi Yonekawa
米川 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17560081A priority Critical patent/JPS5877138A/en
Publication of JPS5877138A publication Critical patent/JPS5877138A/en
Publication of JPH0228698B2 publication Critical patent/JPH0228698B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers

Abstract

PURPOSE:To moderate a shock at speed change time, in a speed change period before an engager device completely becomes an engaged condition, by adjusting output torque of an engine and equalizing a rotary speed of an engine side to that of a driven wheel side. CONSTITUTION:In a speed change period, before an engager device, engaged after speed change, completely becomes an engaged condition, output torque of an engine is adjusted to control a rotary speed almost equal between engine and driven wheel sides of said engager device. In case of a shift up step 58 and shift down step 60 by a kick down, the output torque of the engine is decreased, while in case of a shift down step 63 not by the kick down but by deceleration, the output torque of the engine is increased to promptly increase a rotary speed of the engine. In this way, a shock at speed change time can be moderated to perform a smooth speed change.

Description

【発明の詳細な説明】 本発門は、変速時の衝撃を緩和する自動変速機の変速制
御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shift control method for an automatic transmission that reduces shock during gear shifting.

例えばシフトアップ(減速比の減少)前には一方向クラ
ッチが係合状態′にありシフトアップ後ではその一方向
クラッチが解放状態となり他のクラッチあるいはブレー
キが係合状態となる自動変速機のシフトアップの場合で
は、シフトアップ後に係合されるクラッチあるいはブレ
ーキの機関側の回転速度が駆動輪側の回転速度より著し
く高いために、大きな衝撃が生じる。また、そのような
自動変速機のキックダウンに因るシフトダウン(減速比
の増大)の場合では、シフトダウン前に係合されでいる
クラッチあるいはブレーキの解放後、機関回転速度が急
激に」二昇するために、一方向クラッチの機関側の回転
速度が駆動輪側の回転速度より著しく高くなり、一方向
クラッチの係合時に大きな衝撃が生じる。このような衝
撃を緩和するために、クラッチあるいはブレーキの係合
あるいは解放を緩やかに行なう場合には、クラッチある
いはブレーキの耐久性が低下するという支障がある。
For example, a shift in an automatic transmission in which a one-way clutch is engaged before an upshift (reduction in reduction ratio), and after an upshift, that one-way clutch is released and other clutches or brakes are engaged. In the case of upshifting, a large impact occurs because the rotational speed on the engine side of the clutch or brake that is engaged after the upshifting is significantly higher than the rotational speed on the drive wheel side. In addition, in the case of downshifting (increase in reduction ratio) due to kickdown of such an automatic transmission, after the clutch or brake that was engaged before the downshifting is released, the engine rotational speed suddenly increases. As a result, the rotational speed on the engine side of the one-way clutch becomes significantly higher than the rotational speed on the driving wheel side, and a large impact occurs when the one-way clutch is engaged. If the clutch or brake is engaged or released slowly in order to alleviate such impact, there is a problem in that the durability of the clutch or brake decreases.

本発明の目的は、係合装置の耐久性に支障を与えること
なく、変速時の衝撃を緩和することができる自動変速機
の変速制御方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a shift control method for an automatic transmission that can reduce impact during shift without impairing the durability of an engagement device.

この目的を達成するために本発明によれば、変速後に係
合される係合装置が完全に係合状態となる以前の変速期
間において、機関の出力トルクを増減さ騒てその係合装
置における機関側の回転速度を駆動輪側の回転速度にほ
ぼ等しくなるようにする。
To achieve this object, according to the present invention, during a shift period before the engagement device that is engaged after the shift is completely engaged, the output torque of the engine is increased or decreased. The rotation speed on the engine side is made almost equal to the rotation speed on the drive wheel side.

シフトアップおよびキックダウンに因るシフトダウンの
場合では機関の出力トルクを減少させ、キックダウンに
因らず減速に因るシフトダウンの場合では機関、の出力
トルクを増大させて機関回転速度を速やかに増大させる
In the case of downshifting due to upshifting and kickdown, the output torque of the engine is decreased, and in the case of downshifting due to deceleration, not due to kickdown, the output torque of the engine is increased to quickly increase the engine rotation speed. increase to

機関の出力トルクの増減は、燃料カット(機関の出力ト
ルクの減少のみ)、空燃比、点火時期、吸気系絞り弁よ
り−L流に設けられている吸気流量制御弁の開度制御、
あるいは吸気系絞り弁を設けられている吸気通路部分に
対して並列に設けられているバイパス通路の流通断面積
の制御により行なわれ得る。
Increases and decreases in engine output torque are achieved through fuel cut (reduction in engine output torque only), air-fuel ratio, ignition timing, opening control of the intake flow rate control valve located on the -L flow from the intake system throttle valve,
Alternatively, this can be achieved by controlling the flow cross-sectional area of a bypass passage that is provided in parallel to the intake passage portion in which the intake system throttle valve is provided.

図面を参照して本発明を説明する。The present invention will be explained with reference to the drawings.

第1図は本発明が適用される電子制御機関の全体の概略
図である。エアクリーナ1から吸入された空気は、吸気
通路2を介して機関本体3の各燃焼室へ送られる。吸気
通路2には、運転室の加速ペダルに連動する絞り弁4が
設けられ、吸入空気流量を制御する。各燃焼室に対応し
て吸気管6には燃料噴射弁−7が設けられ、各燃焼室に
はまた点火プラグ8が設けられている。吸入空気流量制
御弁12は、絞り弁4より上流の吸気通路2に設けられ
、絞り弁4とは独立に吸入空気流量を制御する。バイパ
ス通路13は、絞り弁4を設けられている吸気通路部分
に対して並列に設けられ、制御弁14により流通断面積
を制御される。排気ガスは排気分岐管15を介して大気
へ放出され、周知の三元触媒を収容する触媒コンバータ
16が排気系に設けられている。自動変速機20は、サ
ンギヤ21、プラネタリピニオン22、キャリヤ23、
およびリングギヤ24を有する遊星歯車装置25を備え
、キャリヤ23は入力軸26に結合し、リングギヤ24
は、入力軸26の外周に同心的に設けられている出力歯
車27に結合している。一方向クラッチ28は、入力軸
26と出力歯車27との間の接続を制御し、出力歯車2
7が入力軸26より速く回転する場合には遊転(解放)
状態となり、ブレーキ29はサンギヤ21とハウジング
30との接続を制御し、クラッチ31はサンギヤ21と
リングギヤ24との接続を制御する。一方向クラッチ2
8が係合状態にある場合、入力軸26の回転速度と出力
歯車270回転速度との比、すなわち減速比はLOであ
り、ブレーキ29が係合状態にある場合では減速比は1
.0より小さい値、すなわちオーバドライブとなる。ク
ラッチ31はエンジンブレーキを作動させるために用い
られる。
FIG. 1 is an overall schematic diagram of an electronically controlled engine to which the present invention is applied. Air taken in from the air cleaner 1 is sent to each combustion chamber of the engine body 3 via the intake passage 2. The intake passage 2 is provided with a throttle valve 4 that is linked to an accelerator pedal in the driver's cab to control the intake air flow rate. A fuel injection valve 7 is provided in the intake pipe 6 corresponding to each combustion chamber, and a spark plug 8 is also provided in each combustion chamber. The intake air flow rate control valve 12 is provided in the intake passage 2 upstream of the throttle valve 4 and controls the intake air flow rate independently of the throttle valve 4. The bypass passage 13 is provided in parallel to the intake passage portion in which the throttle valve 4 is provided, and its flow cross-sectional area is controlled by a control valve 14. The exhaust gases are discharged to the atmosphere via an exhaust branch pipe 15, and a catalytic converter 16 containing a well-known three-way catalyst is provided in the exhaust system. The automatic transmission 20 includes a sun gear 21, a planetary pinion 22, a carrier 23,
and a planetary gear set 25 having a ring gear 24, the carrier 23 is coupled to an input shaft 26 and the ring gear 24
is coupled to an output gear 27 provided concentrically around the outer periphery of the input shaft 26. The one-way clutch 28 controls the connection between the input shaft 26 and the output gear 27, and controls the connection between the input shaft 26 and the output gear 27.
7 rotates faster than the input shaft 26, idle rotation (release)
The brake 29 controls the connection between the sun gear 21 and the housing 30, and the clutch 31 controls the connection between the sun gear 21 and the ring gear 24. one way clutch 2
8 is in the engaged state, the ratio of the rotational speed of the input shaft 26 to the rotational speed of the output gear 270, that is, the reduction ratio is LO, and when the brake 29 is in the engaged state, the reduction ratio is 1.
.. A value smaller than 0, ie, overdrive. Clutch 31 is used to operate engine brake.

スロットルスイッチ35は、絞り弁4がアイドリング開
度にある場合はオン、絞り弁4がアイドリング開度より
大きく開かれている場合はオフにある。回転速度検出器
36はクランク軸370回転から機関の回転速度を検出
し、別の回転速度検出器38は出力歯車390回転速度
を検出する。
The throttle switch 35 is on when the throttle valve 4 is at an idling opening, and is off when the throttle valve 4 is opened more than the idling opening. A rotation speed detector 36 detects the rotation speed of the engine from the rotation of the crankshaft 370, and another rotation speed detector 38 detects the rotation speed of the output gear 390.

電子制御装置40は、バス41を介して互いに接続され
ているマイクロプロセッサ42、ROM、 RAM等の
メモリ43、およびインタフェース44を備える。イン
タフェース44は、スロットルスイッチ35、および回
転速度検出器36 、38等から入力信号を受け、燃料
噴射弁7、吸入空気流量制御弁12、制御弁14、配電
器46、および油圧制御回路47等へ出力信号を送る。
The electronic control device 40 includes a microprocessor 42, a memory 43 such as ROM and RAM, and an interface 44, which are connected to each other via a bus 41. The interface 44 receives input signals from the throttle switch 35, rotational speed detectors 36, 38, etc., and sends them to the fuel injection valve 7, intake air flow control valve 12, control valve 14, power distributor 46, hydraulic control circuit 47, etc. Send output signal.

配電器46の出力端子は各燃焼室の点火プラグ8へ接続
されており、油圧制御回路47はブレーキ29等の油圧
サーボへの油圧の供給、排出を制御する。
The output terminal of the power distributor 46 is connected to the spark plug 8 of each combustion chamber, and the hydraulic control circuit 47 controls the supply and discharge of hydraulic pressure to hydraulic servos such as the brake 29.

第2図は第1図の自動変速機20を拡大して示している
。入力軸26は、アップドライブ装置の出力軸に結合し
ており、アップドライブ装置を介して機関の動力を受け
る。出力歯車27を固定されている中空軸49は軸受5
0を介してハウジング31に回転可能に支持され、出力
歯車27は、伝動軸51の歯車52にかみ合い、機関動
力は伝動軸51を介して差動装置、さらにアクヌル軸へ
送られる。
FIG. 2 shows an enlarged view of the automatic transmission 20 of FIG. The input shaft 26 is coupled to the output shaft of the updrive device and receives engine power via the updrive device. The hollow shaft 49 to which the output gear 27 is fixed is a bearing 5
The output gear 27 is rotatably supported by the housing 31 via the transmission shaft 51, and the output gear 27 meshes with the gear 52 of the transmission shaft 51, and the engine power is sent to the differential gear and further to the actuator shaft via the transmission shaft 51.

第3図は本発明を開ループ制御により実施するコンピュ
ータプログラムのフローチャートである。ステップ56
では絞り弁4がアイドリング開度にあるか否か、すなわ
ちスロットルスイッチ35がオンかオフかを判別し、オ
ンであればステップ62へ、オフであればステップ57
へ進む。
FIG. 3 is a flowchart of a computer program implementing the present invention using open loop control. Step 56
Then, it is determined whether the throttle valve 4 is at the idling opening, that is, whether the throttle switch 35 is on or off. If it is on, the process proceeds to step 62; if it is off, the process proceeds to step 57.
Proceed to.

ステップ57ではシフトアップかシフトダウンかを判別
し、シフトアップであればステップ58へ、シフトダウ
ンであればステップ60へ進む。ステップ58ではトル
クダウン開始時期を設定する。
In step 57, it is determined whether to shift up or down. If the shift is up, the process proceeds to step 58; if the shift is down, the process proceeds to step 60. In step 58, the torque down start timing is set.

トルクダウン開始時期は例えば絞り弁40開度と車速と
に関係して生じる変速信号の発生時刻を基準として設定
される。シフトアップにより解放される摩擦係合装置が
ある場合には変速信号の発生とともにその摩擦係合装置
の油圧が変□ 化し、それから所定時間後に、シフトアップにより係合
される摩擦係合装置の油圧ハ変化する。
The torque down start timing is set, for example, based on the generation time of a shift signal that is generated in relation to the opening degree of the throttle valve 40 and the vehicle speed. If there is a friction engagement device that is released by upshifting, the oil pressure of that friction engagement device changes with the generation of the gear shift signal, and after a predetermined period of time, the oil pressure of the friction engagement device that is engaged by upshifting changes. Ha changes.

また、シフトアップにより解放される摩擦係合装置がな
くシフトアップにより係合される摩擦係合装置のみある
場合には変速信号の発生とともに、シフトアップにより
係合される摩擦係合装置の油圧が変化する。さらにトル
クダウンの開始時期は、シフトアップの種類(例えば第
1速から第2速へのシフトアップ、第2速から第3速へ
のシフトアップ)に関係して適切な値に設定されている
。ステップ59ではトルクダウン量を設定する。トルク
ダウン量は制御因子および制御時間により適切な値に設
定することができる。制御因子としては燃料カット、空
燃比、点火時期、吸入空気流量制御弁120開度、バイ
パス通路13の流通断面積等があり、これらのうちいず
れか1つを制御因子として採用することができる。燃料
カットの場合、燃料カット時間が長くなる程、トルクダ
ウン量は増大する。第4図は空燃°比と機関の出力トル
クとの関係を示している。aは出力空燃比、すなわち最
大トルクを発生する空燃比、bは理論空燃比である。
In addition, if there is no friction engagement device that is released by upshifting, but only a friction engagement device that is engaged by upshifting, the oil pressure of the friction engagement device that is engaged by upshifting will be reduced along with the generation of the gear shift signal. Change. Furthermore, the start timing of torque down is set to an appropriate value in relation to the type of upshift (for example, upshifting from 1st gear to 2nd gear, or upshifting from 2nd gear to 3rd gear). . In step 59, a torque down amount is set. The torque down amount can be set to an appropriate value based on the control factor and control time. Control factors include fuel cut, air-fuel ratio, ignition timing, opening degree of intake air flow control valve 120, flow cross-sectional area of bypass passage 13, and any one of these can be adopted as a control factor. In the case of fuel cut, the longer the fuel cut time, the more the torque down amount increases. FIG. 4 shows the relationship between the air-fuel ratio and the output torque of the engine. a is the output air-fuel ratio, that is, the air-fuel ratio that generates the maximum torque, and b is the stoichiometric air-fuel ratio.

第5図は点火時期と機関の出力トルクとの関係を示して
いる。CはM、 B、 T、 (minimun ad
vancetar best torque  )であ
り、点火時期の単位は’BTDC(爆発行程上死点前の
クランク角)である。第6図は吸入空気流量制御弁12
の開度と機関の出力トルクとの関係を示している。また
、バイパス通路13の流通断面積を増減することにより
吸入空気流量、したがっ℃燃料噴射量も増減し、この結
果、出力トルクも増減する。ステップ60では、すなわ
ち加速ペダルを大きく踏込むキックダウンによるシフト
ダウンの場合では、ステップ58と同様に、トルクダウ
ンの開始時期を設定する。ステップ61ではステップ5
9と同様にトルクダウン量を設定する。ステップ62で
は、シフトダウンか否かを判別し、判別結果が正であれ
ばステップ63へ、否であればステップ65へ進む。ス
テップ63では、すなわち絞り弁4がアイドリング開度
に保持されている期間の減速に因るシフトダウンでは、
シフトダウン開始時期を設定する。シフトダウン開始時
期はステップ58と同様に変速信号の発生時刻を基準と
し、シフトダウンの種類に応じて適切な値を設定する。
FIG. 5 shows the relationship between ignition timing and engine output torque. C is M, B, T, (minimun ad
Vancetar Best Torque), and the unit of ignition timing is 'BTDC (crank angle before top dead center of the explosion stroke). Figure 6 shows the intake air flow rate control valve 12.
shows the relationship between the opening degree of the engine and the output torque of the engine. Furthermore, by increasing or decreasing the flow cross-sectional area of the bypass passage 13, the intake air flow rate, and therefore the degree of fuel injection amount, also increases or decreases, and as a result, the output torque also increases or decreases. In step 60, in the case of downshifting by kickdown in which the accelerator pedal is depressed greatly, the start timing of torque down is set in the same manner as in step 58. In step 61, step 5
Set the torque down amount in the same way as in step 9. In step 62, it is determined whether or not the shift is down, and if the determination result is positive, the process proceeds to step 63; otherwise, the process proceeds to step 65. In step 63, in other words, in the downshift due to deceleration during the period when the throttle valve 4 is held at the idling opening,
Set the downshift start time. As in step 58, the downshift start timing is based on the generation time of the shift signal, and is set to an appropriate value depending on the type of downshift.

ステップ64ではトルクアップ量を設定する。トルクア
ップ量は制御因子および制御時間により適切な値に設定
可能である。ステップ65では、以上において設定され
たトルクダウンあるいはトルクアップの開始時間、トル
ク変化量、および制御時間に基づいて、出力トルクの開
ループ制御を行なう。
In step 64, the amount of torque increase is set. The amount of torque increase can be set to an appropriate value based on the control factor and control time. In step 65, open-loop control of the output torque is performed based on the torque-down or torque-up start time, torque change amount, and control time set above.

第7図はシフトアップの場合の車両前後方向の加速度お
よび機関回転速度の時間変化を、従来(a)と本発明(
b)とを対比して示している。
FIG. 7 shows the temporal changes in vehicle longitudinal acceleration and engine rotational speed during upshifting, in the conventional (a) and in the present invention (a).
b) is shown in comparison.

なお車両の前方向の加速度を正とする。従来、(a)で
はトルクダウンの制御を行なうことなくシフトアップが
行なわれているので、ブレーキ29の係合に伴って機関
回転速度が急激に低下し、大きな加速度が生じている。
Note that the acceleration in the forward direction of the vehicle is assumed to be positive. Conventionally, in (a), an upshift is performed without performing torque down control, so the engine rotational speed suddenly decreases as the brake 29 is engaged, resulting in a large acceleration.

これに対し本発明ではトルクダウン制御が行なわれ、機
関回転速度が緩やかに減少し、ブレーキ29の機関側と
駆動輪側との回転速度が均衡貝、衝撃が緩和され、円滑
なシフトアップが行なわれ、変速後の加速も円滑となる
In contrast, in the present invention, torque down control is performed, the engine rotational speed is gradually reduced, the rotational speeds of the engine side of the brake 29 and the driving wheel side are balanced, the impact is alleviated, and a smooth upshift is performed. As a result, acceleration after shifting becomes smoother.

第8図はキックダウンによるシフトダウンの場合の車両
前後方向の加速度および機関の回転速度の時間変化を、
従来(a)と本発明(b)とを対比して示している。従
来(a)ではトルクダウンの制御を行なうことなくシフ
トダウンが行なわれるので、ブレーキ29の解放に伴っ
て機関回転速度は急激に増大し、一方向クラッチ28の
係合時に大きな加速度が生じている。これに対し本発明
では所定のトルクダウンが行なわれるので、一方向クラ
ッチ28の両側における回転速度が均衡し、衝撃が緩和
される。
Figure 8 shows the temporal changes in vehicle longitudinal acceleration and engine rotational speed in the case of downshifting due to kickdown.
The conventional method (a) and the present invention (b) are shown in comparison. In conventional (a), the downshift is performed without torque down control, so the engine rotational speed increases rapidly as the brake 29 is released, and a large acceleration occurs when the one-way clutch 28 is engaged. . In contrast, in the present invention, a predetermined torque reduction is performed, so the rotational speeds on both sides of the one-way clutch 28 are balanced, and the impact is alleviated.

第9図は絞り弁4がアイドリング開度に保持される減速
期間におけるシフトダウンの場合の車両の前後方向の加
速度および機関回転速度の時間変化を、従来(a)と本
発明(b)とを対比して示している。従来(a)ではト
ルクアップの制御を行なうことなくシフトダウンが行な
わ、れるので、一方向グラフ′f−28における機関側
の回転速度が駆動輪側の回転速度より非常に低く、太き
な衝撃が生じる。これに対し本発明ではトルクアップに
より機関回転速度が増大するので、一方向クラッチ28
0両′側における回転速度が均衡し、衝撃は緩和される
FIG. 9 shows the temporal changes in the longitudinal acceleration of the vehicle and the engine rotational speed during a downshift during the deceleration period in which the throttle valve 4 is held at the idling opening for the conventional method (a) and the present invention (b). It is shown in comparison. In conventional method (a), the downshift is performed without controlling the torque up, so the rotational speed on the engine side in the one-way graph 'f-28' is much lower than the rotational speed on the driving wheel side, resulting in a large impact. occurs. On the other hand, in the present invention, since the engine rotational speed increases due to the torque increase, the one-way clutch 28
The rotational speeds on both 0' sides are balanced and the impact is alleviated.

第10図は変速時の機関の出力トルクを帰還制御を行な
うプログラムのフローチャートを示している。ステップ
70は第3図のステップ59 、61゜64の次に実施
される。ステップ7oでは機関の出力トルクを増減する
。ステップ71では変速の種類に関係してΔNを設定す
る。ΔNは自動変速機の入力軸の回転速度N1と出力軸
の回転速度N2との差の目標値として設定されている。
FIG. 10 shows a flowchart of a program for performing feedback control of the output torque of the engine during gear shifting. Step 70 is performed after steps 59, 61 and 64 in FIG. In step 7o, the output torque of the engine is increased or decreased. In step 71, ΔN is set in relation to the type of speed change. ΔN is set as a target value of the difference between the rotation speed N1 of the input shaft and the rotation speed N2 of the output shaft of the automatic transmission.

ステップ72ではNl −N2の絶対値lNl−N21
がΔNより小さいか否かを判別し、判別結果が正であれ
ばステップ74へ進み、否であればステップ70へ戻っ
て出力トルクの制御をさらに行なう。なおNl 、 N
2は回転速度検出器36 、38等の入力から検出され
る。
In step 72, the absolute value lNl-N21 of Nl-N2
It is determined whether or not ΔN is smaller than ΔN. If the determination result is positive, the process proceeds to step 74; if not, the process returns to step 70 to further control the output torque. Note that Nl, N
2 is detected from the inputs of rotational speed detectors 36, 38, etc.

ステップ72における判別結果が正であることは、今回
の変速後に係合される摩擦係合装置が係合しても、発生
する衝撃が小さいごとを意味する。
A positive determination result in step 72 means that even if the frictional engagement device that is engaged after the current shift is engaged, the generated impact is small.

ステップ74ではサンギヤ21を固定するためにクラッ
チ29を係合する。
In step 74, the clutch 29 is engaged to fix the sun gear 21.

このように本発明によれば変速後に係合される摩擦係合
装置が完全に係合状態となる以前の変速期間において燃
料カット等により機関の出力トルクが制御されて、変速
後に係合状態となる摩擦係合装置の両側における回転速
度が均衡し、衝撃が緩和されて、円滑な変速が行なわれ
る。
As described above, according to the present invention, the output torque of the engine is controlled by fuel cut or the like during the gear shifting period before the frictional engagement device that is engaged after shifting becomes completely engaged, so that the frictional engagement device that is engaged after shifting is brought into the engaged state. The rotational speeds on both sides of the frictional engagement device are balanced, the impact is alleviated, and a smooth gear change is performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される電子制御機関の全体の概略
図、第2図は第1図の自動変速機を拡大して示す図、第
3図は開ループ制御により本発明を実施する実施例とし
てのプログラムのフローチャート、第4図は空燃比と機
関の出力トルクとの関係を示すグラフ、第5図は点火時
期と機関の出力トルクとの関係を示すグラフ、第6図は
吸入空気流量制御弁の開度と機関の出力トルクとの関係
を示すグラフ、第7図、第8図、および第9図はそれぞ
れシフトアップ、キツクダウンに因るシフトダウン、お
よび減速に因るシフトダウンの場合の車両の前後方向の
加速度および機関の回転速度の変化を示す図、第10図
は帰還制御により本発明を実施する実施例としてのプロ
グラムのフローチャートである。 7・・・燃料噴射弁、12・・・吸入空気流量制御弁、
13・・・バイパス通路、20・・・自動変速機、28
・・・一方向クラッチ、29・・・ブレーキ、40・・
・電子制御装置、46・・・配電器。 特許出願人  トヨタ自動車工業株式会社第1図 第4図 空燃比 第5図 点火時期じBTDC〕 第6図 吸入空気離着制御弁の開度し%1 第7図 第8図 第10図
FIG. 1 is an overall schematic diagram of an electronically controlled engine to which the present invention is applied, FIG. 2 is an enlarged view of the automatic transmission in FIG. Flowchart of the program as an example, Figure 4 is a graph showing the relationship between air-fuel ratio and engine output torque, Figure 5 is a graph showing the relationship between ignition timing and engine output torque, Figure 6 is intake air Graphs 7, 8, and 9 showing the relationship between the opening degree of the flow control valve and the output torque of the engine show upshifts, downshifts due to kickdown, and downshifts due to deceleration, respectively. FIG. 10 is a flowchart of a program as an embodiment of the present invention using feedback control. 7...Fuel injection valve, 12...Intake air flow rate control valve,
13... Bypass passage, 20... Automatic transmission, 28
...One-way clutch, 29... Brake, 40...
-Electronic control unit, 46...power distribution device. Patent applicant: Toyota Motor Corporation Figure 1 Figure 4 Air-fuel ratio Figure 5 Ignition timing BTDC Figure 6 Opening degree of intake air separation control valve %1 Figure 7 Figure 8 Figure 10

Claims (1)

【特許請求の範囲】 1 変速後に係合される係合装置が完全に停台状態とな
る以前の変速期間において、機関の出力トルクを増大さ
せることを特徴とする、自動変速機の変速制御方法。 2 減速比を減少させる変速の場合、およびキックダウ
ンにより減速比を増大させる変速の場合では、前記機関
の出力トールクを減少させることを特徴とする特許請求
の範囲第1項記載の変速制御方法。 3 吸気系絞り弁がアイドリンク開度にある期間におい
て減速比を増大させる変速の場合では、前記機関出力を
増大さ昼ることを特徴とする特許請求の範囲第1項ある
いは第2項記載の変速制御方法。 4 前記機関の出力トルクの減少を燃料カット  ;に
より行なうことを特徴とする特許請求の範囲第2項記載
の変速制御方法。 5 前記機関の出力トルクの増減な空燃比制御により行
なうことを特徴とする特許請求の範囲第1項記載の変速
制御方法。 6 前記機関の出力トルクの増減を点火時期制御により
行なうことを特徴とする特許請求の範囲第1項記載の変
速制御方法。 7、 吸気系絞り弁より上流の吸気通路に吸入空気流量
制御弁を設け、前記機関の出力トルクの増減を前記吸入
空気流量制御弁の開度制御により行なうことを特徴とす
る特許請求の範囲第1項記載の変速制御方法。 8 吸気系絞り弁を設けられている吸気通路部分に対し
て並列にバイパス通路を設け、前記機関の出力トルクの
増減をバイパス通路の流通断面積の増減により行なうこ
とを特徴とする特許請求の範囲第1項記載の変速制御方
法。
[Claims] 1. A shift control method for an automatic transmission, characterized in that the output torque of the engine is increased during a shift period before the engagement device that is engaged after the shift is completely stopped. . 2. The shift control method according to claim 1, wherein the output torque of the engine is reduced in the case of a shift that reduces the reduction ratio and in the case of a shift that increases the reduction ratio by kickdown. 3. The engine output according to claim 1 or 2 is characterized in that in the case of a shift that increases the reduction ratio during a period when the intake system throttle valve is at the idle link opening, the engine output is increased. Shift control method. 4. The speed change control method according to claim 2, characterized in that the output torque of the engine is reduced by a fuel cut. 5. The speed change control method according to claim 1, wherein the speed change control method is performed by controlling the air-fuel ratio by increasing or decreasing the output torque of the engine. 6. The speed change control method according to claim 1, characterized in that the output torque of the engine is increased or decreased by ignition timing control. 7. An intake air flow rate control valve is provided in the intake passage upstream of the intake system throttle valve, and the output torque of the engine is increased or decreased by controlling the opening degree of the intake air flow rate control valve. The speed change control method according to item 1. 8. Claims characterized in that a bypass passage is provided in parallel to the intake passage portion where the intake system throttle valve is provided, and the output torque of the engine is increased or decreased by increasing or decreasing the flow cross-sectional area of the bypass passage. 1. The speed change control method according to item 1.
JP17560081A 1981-11-04 1981-11-04 Speed change control method of automatic speed changer Granted JPS5877138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17560081A JPS5877138A (en) 1981-11-04 1981-11-04 Speed change control method of automatic speed changer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17560081A JPS5877138A (en) 1981-11-04 1981-11-04 Speed change control method of automatic speed changer

Publications (2)

Publication Number Publication Date
JPS5877138A true JPS5877138A (en) 1983-05-10
JPH0228698B2 JPH0228698B2 (en) 1990-06-26

Family

ID=15998918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17560081A Granted JPS5877138A (en) 1981-11-04 1981-11-04 Speed change control method of automatic speed changer

Country Status (1)

Country Link
JP (1) JPS5877138A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248445A (en) * 1984-05-24 1985-12-09 Nissan Motor Co Ltd Speed change shock releasing device for speed change gear mounted car
DE3446572A1 (en) * 1983-12-21 1986-01-16 Nissan Motor Co., Ltd., Yokohama, Kanagawa METHOD AND DEVICE FOR SMOOTHING THE GEAR SHIFT WHEN CHANGING GEARS IN A MOTOR VEHICLE
JPS61112850A (en) * 1984-11-07 1986-05-30 Toyota Motor Corp Method for controlling speed change of automatic speed change gear for vehicle
JPS61113525A (en) * 1984-11-07 1986-05-31 Toyota Motor Corp Speed change controlling device for automatic transmission for car
JPS6195637U (en) * 1984-11-30 1986-06-19
JPS61132462U (en) * 1985-02-07 1986-08-19
JPS61188237A (en) * 1985-02-16 1986-08-21 Mitsubishi Motors Corp Method of controlling speed change of automatic speed change gear
DE3617330A1 (en) * 1985-05-24 1986-11-27 Toyota Jidosha K.K., Toyota, Aichi SYSTEM FOR CONTROLLING THE TORQUE OF AN INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE WITH AN AUTOMATIC TRANSMISSION
US4680988A (en) * 1984-11-22 1987-07-21 Nissan Motor Co., Ltd. Control for shock-free shift in an automatic transmission
JPS6394038A (en) * 1986-10-08 1988-04-25 Mazda Motor Corp Engine control device in vehicle provided with automatic transmission
US4841447A (en) * 1985-05-22 1989-06-20 Toyota Jidosha Kabushiki Kaisha System for controlling idling speed in internal combustion engine for vehicle with automatic transmission
JPH023545A (en) * 1989-01-10 1990-01-09 Toyota Motor Corp Speed change control device for automatic speed change gear for vehicle
US5016494A (en) * 1988-08-08 1991-05-21 Nissan Motor Co., Ltd. Jolt control for drive system
US5033328A (en) * 1988-08-01 1991-07-23 Nissan Motor Co., Ltd. Power train control sensor malfunction detection and control arrangement
US5047936A (en) * 1988-07-28 1991-09-10 Nissan Motor Co., Ltd. Gear shift control for power train
US5078112A (en) * 1988-06-02 1992-01-07 Nissan Motor Co., Ltd. Apparatus and method for improving the jolt control in a motor vehicle drive system
US5101786A (en) * 1990-03-26 1992-04-07 Nippondenso Co., Ltd. Control system for controlling output torque of internal combustion engine
US5142945A (en) * 1988-08-01 1992-09-01 Nissan Motor Company, Limited Power train control sensor malfunction detection and control arrangement
JP2005226836A (en) * 2004-02-13 2005-08-25 Luk Lamellen & Kupplungsbau Beteiligungs Kg Method and device for controlling gear change

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5058420A (en) * 1972-03-09 1975-05-21
JPS51146670A (en) * 1975-06-11 1976-12-16 Aisin Seiki Co Ltd Exhaust brake controlling device
JPS5442535A (en) * 1977-09-09 1979-04-04 Nissan Motor Co Ltd Air fuel ratio changer for electronically controlled fuel injection engine
JPS5569738A (en) * 1978-11-09 1980-05-26 Bosch Gmbh Robert Method and device for controlling internal combustion engine
JPS55156230A (en) * 1979-05-25 1980-12-05 Nissan Motor Co Ltd Suction air controller
JPS5654243U (en) * 1979-10-04 1981-05-12

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142219A (en) * 1974-10-03 1976-04-09 Kubota Ltd Torakutano yuatsukuratsuchisochi

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5058420A (en) * 1972-03-09 1975-05-21
JPS51146670A (en) * 1975-06-11 1976-12-16 Aisin Seiki Co Ltd Exhaust brake controlling device
JPS5442535A (en) * 1977-09-09 1979-04-04 Nissan Motor Co Ltd Air fuel ratio changer for electronically controlled fuel injection engine
JPS5569738A (en) * 1978-11-09 1980-05-26 Bosch Gmbh Robert Method and device for controlling internal combustion engine
JPS55156230A (en) * 1979-05-25 1980-12-05 Nissan Motor Co Ltd Suction air controller
JPS5654243U (en) * 1979-10-04 1981-05-12

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3446572A1 (en) * 1983-12-21 1986-01-16 Nissan Motor Co., Ltd., Yokohama, Kanagawa METHOD AND DEVICE FOR SMOOTHING THE GEAR SHIFT WHEN CHANGING GEARS IN A MOTOR VEHICLE
JPS60248445A (en) * 1984-05-24 1985-12-09 Nissan Motor Co Ltd Speed change shock releasing device for speed change gear mounted car
JPH0425168B2 (en) * 1984-05-24 1992-04-30 Nissan Motor
JPS61112850A (en) * 1984-11-07 1986-05-30 Toyota Motor Corp Method for controlling speed change of automatic speed change gear for vehicle
JPS61113525A (en) * 1984-11-07 1986-05-31 Toyota Motor Corp Speed change controlling device for automatic transmission for car
JPH0425169B2 (en) * 1984-11-07 1992-04-30 Toyota Motor Co Ltd
US4680988A (en) * 1984-11-22 1987-07-21 Nissan Motor Co., Ltd. Control for shock-free shift in an automatic transmission
JPS6195637U (en) * 1984-11-30 1986-06-19
JPS61132462U (en) * 1985-02-07 1986-08-19
JPS61188237A (en) * 1985-02-16 1986-08-21 Mitsubishi Motors Corp Method of controlling speed change of automatic speed change gear
US4841447A (en) * 1985-05-22 1989-06-20 Toyota Jidosha Kabushiki Kaisha System for controlling idling speed in internal combustion engine for vehicle with automatic transmission
DE3617330A1 (en) * 1985-05-24 1986-11-27 Toyota Jidosha K.K., Toyota, Aichi SYSTEM FOR CONTROLLING THE TORQUE OF AN INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE WITH AN AUTOMATIC TRANSMISSION
JPS6394038A (en) * 1986-10-08 1988-04-25 Mazda Motor Corp Engine control device in vehicle provided with automatic transmission
US5078112A (en) * 1988-06-02 1992-01-07 Nissan Motor Co., Ltd. Apparatus and method for improving the jolt control in a motor vehicle drive system
US5047936A (en) * 1988-07-28 1991-09-10 Nissan Motor Co., Ltd. Gear shift control for power train
US5033328A (en) * 1988-08-01 1991-07-23 Nissan Motor Co., Ltd. Power train control sensor malfunction detection and control arrangement
US5142945A (en) * 1988-08-01 1992-09-01 Nissan Motor Company, Limited Power train control sensor malfunction detection and control arrangement
US5016494A (en) * 1988-08-08 1991-05-21 Nissan Motor Co., Ltd. Jolt control for drive system
JPH023545A (en) * 1989-01-10 1990-01-09 Toyota Motor Corp Speed change control device for automatic speed change gear for vehicle
JPH0543528B2 (en) * 1989-01-10 1993-07-01 Toyota Motor Co Ltd
US5101786A (en) * 1990-03-26 1992-04-07 Nippondenso Co., Ltd. Control system for controlling output torque of internal combustion engine
JP2005226836A (en) * 2004-02-13 2005-08-25 Luk Lamellen & Kupplungsbau Beteiligungs Kg Method and device for controlling gear change

Also Published As

Publication number Publication date
JPH0228698B2 (en) 1990-06-26

Similar Documents

Publication Publication Date Title
JPS5877138A (en) Speed change control method of automatic speed changer
JP4228789B2 (en) Vehicle control device
JPS6226130A (en) Method for controlling speed change for automatic transmission for vehicle
JP2005009395A (en) Vehicular control device
US6749534B2 (en) Apparatus for controlling vehicle drive system including drive power source and automatic transmission
JP3012542B2 (en) Automatic transmission kickdown control method and device
US6432025B1 (en) Apparatus for increasing vehicle drive power source output upon accelerator redal operation during vehicle coasting with automatic transmission in released state
JPH06201027A (en) Automatic trasnmission and automatic speed change method for automobile
JPH01290932A (en) Device for controlling engine of vehicle with automatic transmission
JP2595661B2 (en) Transmission control device
US6735509B2 (en) Apparatus for controlling vehicle drive system including drive power source and automatic transmission
WO2017033900A1 (en) Control device for automatic transmission
JP4000967B2 (en) Torque down control device during downshift
JP2005016439A (en) Controller of vehicle
JP3395548B2 (en) Control device for automatic transmission
JP3352781B2 (en) Control device for engine and automatic transmission
JP2779801B2 (en) Restoring device for coasting control of automatic transmission for vehicles
JP2853062B2 (en) Control device for automatic transmission with lean burn engine
JP2797217B2 (en) Vehicle transmission
JP2797214B2 (en) Vehicle transmission
JP2003155941A (en) Comprehensive control device for vehicle
JP2517933B2 (en) Control method of continuously variable transmission for vehicle
JPS61112846A (en) Method of controlling speed change of automatic speed change gear unit in vehicle
JP2780812B2 (en) Engine control device for vehicle with automatic transmission
JP2602283B2 (en) Engine control device for vehicle with automatic transmission