JPS5876571A - Detection of feather - Google Patents

Detection of feather

Info

Publication number
JPS5876571A
JPS5876571A JP17013581A JP17013581A JPS5876571A JP S5876571 A JPS5876571 A JP S5876571A JP 17013581 A JP17013581 A JP 17013581A JP 17013581 A JP17013581 A JP 17013581A JP S5876571 A JPS5876571 A JP S5876571A
Authority
JP
Japan
Prior art keywords
yarn
light
fluff
fuzz
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17013581A
Other languages
Japanese (ja)
Inventor
松村 盛二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP17013581A priority Critical patent/JPS5876571A/en
Publication of JPS5876571A publication Critical patent/JPS5876571A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は糸条の毛羽検出方法に関し、更に詳しくは走行
糸条は勿論糸条巻物表面の糸条の毛羽が安定に検出でき
る毛羽の検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting fuzz on yarn, and more particularly to a method for detecting fuzz that can stably detect not only running yarn but also yarn fuzz on the surface of a yarn roll.

従来糸条の毛羽検出方法としては、主に次の2つの方法
が用いられている。その1つは、糸条に光を照射し毛羽
な含めた糸条全体のh影をフォト−ダイオード等の受光
素子で受光して毛羽のある場合とない場合の光量質化を
検出して毛羽を検出する方法であり、他の1つは、糸条
本体の陰影は受光素子で受光せず毛羽のみの隙影を受光
素子で受けて毛羽のある場合とない場合の光量変化を検
出して毛羽な検出する方法である。
Conventionally, the following two methods have been mainly used to detect fuzz on yarn. One method is to irradiate the yarn with light and receive the shadow of the entire yarn, including the fluff, with a light-receiving element such as a photodiode, and detect the quality of the light quantity with and without fluff. The other method is to detect the change in the amount of light with and without fluff by detecting the shadow of the yarn itself with the light receiving element, but not with the light receiving element. This is a fluffy way to detect.

しかしながら、前述の従来方法においては下記する問題
がある。すなわち、両者共七羽により透過光量変化によ
り毛羽′1に検出するものであるが、通常糸鍮に発生す
る毛羽は一径数μ〜畝10μ、兼さ数簡と非常に微小で
あり受元素子で受光する毛羽のある場合とない場合の透
過光Ji変化が微小である。従って受光素子の毛羽のあ
る場合とない場合の電気出力信号の差異が微小であり8
N比(信号対ノイズ比)が低く、受光素子の出力信号処
理が離かしく女定して再現性のよい毛羽検出が蝋かしい
。又外乱光の受光或は光源ランプの光音変化等がわずか
でも発生できるものであり、パーン、チーズ等の巻糸体
の表面の毛羽検出には、適用内錐なものであった。
However, the conventional method described above has the following problems. In other words, in both cases, fuzz is detected by changes in the amount of light transmitted by seven feathers, but the fuzz that normally occurs on thread brass is extremely small, ranging from a few microns in diameter to 10 microns in ridges, and a few microns in length. The change in the transmitted light Ji with and without fluff received by the child is minute. Therefore, the difference in the electrical output signal between the light-receiving element with and without fluff is minute.
The N ratio (signal-to-noise ratio) is low, and the output signal processing of the light receiving element is delayed and determined, making it difficult to detect fuzz with good reproducibility. In addition, even slight disturbances such as disturbance light reception or changes in the light and sound of the light source lamp can occur, so that it cannot be applied to detecting fuzz on the surface of a wound product such as paan or cheese.

本発明は前記従来の毛羽検出方法の欠点を解−消すると
共に巻糸体の表面の毛羽の検出も可能な毛羽構出方法V
提供するものである。
The present invention provides a fluff forming method V which eliminates the drawbacks of the conventional fluff detection method and also enables detection of fluff on the surface of a wound yarn body.
This is what we provide.

すなわち本@明は、毛羽のみを照射するように糸条の近
接領域をレーザー光で照射し、毛羽による販レーザー光
の散乱光により糸条の毛羽を検知することを特徴とする
毛羽検出方法である。
In other words, this fuzz detection method is characterized by irradiating an area close to the yarn with a laser beam so as to irradiate only the fuzz, and detecting the fuzz on the yarn by the light scattered by the laser beam caused by the fuzz. be.

以下本発明を図面により説明する。第1図は本発明の詳
細な説明する説明図、第2図(a)、(b)は本発明を
糸巻体の毛羽検出に適用した実施例の全体図と1Fmd
l明図である。
The present invention will be explained below with reference to the drawings. FIG. 1 is a detailed explanatory diagram of the present invention, and FIGS. 2(a) and 2(b) are an overall diagram of an embodiment in which the present invention is applied to detecting fuzz on a bobbin body, and 1Fmd.
This is a clear diagram.

まず、糸条の毛羽検出方法をg1図によって説明する。First, a method for detecting yarn fuzz will be explained using diagram g1.

Yは図の紙面に垂直方向に走行中の糸条、lは走行中の
糸条Yに存在する構出対象である毛羽、2はHe −N
eレーザーからなるレーザー光源、3はレーザー光源2
より発射される巣光された細いビーム状の照射レーザー
光である。照射レーザー光3は照射レーザー光3か毛羽
2のみを照射し糸条Yを直接照射しないように糸条Yの
近接領域を照射するようになしである。4は糸条Yの毛
羽1をレーザー光3が照射した際に発生する毛羽lによ
る散乱i5を検出する光電変換手段であるフォトダイオ
ードであり、糸条YK対してレーザー光源2と同じ側に
設けである。
Y is a yarn running in the direction perpendicular to the paper plane of the figure, l is a fluff that is a construction target existing on the running yarn Y, and 2 is He −N
Laser light source consisting of e laser, 3 is laser light source 2
It is a narrow beam of laser light that is emitted from the center. The irradiation laser beam 3 is so arranged that it irradiates only the fluff 2 and does not irradiate the yarn Y directly, but instead irradiates a region close to the yarn Y. 4 is a photodiode which is a photoelectric conversion means for detecting the scattering i5 caused by the fluff 1 generated when the fluff 1 of the yarn Y is irradiated with the laser beam 3, and is provided on the same side as the laser light source 2 with respect to the yarn YK. It is.

上記構成において、糸条Yに毛羽lか存在しない場合、
照射レーザー光3は糸条Yの近接領域を通過するのみで
散乱光5が発生しない(散乱光5は照射レーザー光3が
毛羽lを照射した時のみ、従って毛羽lがある時のみ発
生する)。
In the above configuration, if there is no fuzz l on the yarn Y,
The irradiated laser beam 3 only passes through the vicinity of the yarn Y, and the scattered light 5 is not generated (the scattered light 5 is generated only when the irradiated laser beam 3 irradiates the fluff 1, and therefore only when the fluff 1 is present). .

従って、フォトダイオード4に散乱光5が入党せず、フ
ォトダイオード4はバックグラウンド光に対応する小さ
な電気信号を発信する。なお、このバックグラウンド光
は検出部を暗箱構成にすることにより非常に小さくで′
きる。
Therefore, the scattered light 5 does not enter the photodiode 4, and the photodiode 4 emits a small electrical signal corresponding to the background light. Note that this background light can be made very small by using a dark box configuration for the detection unit.
Wear.

これに対して、走行中の糸条Yに毛羽1が存在する場合
毛羽1が照射レーザー光3を横切る狩に照射レーザー光
3は図示の如(毛羽IKより散乱され、散乱光5が発生
する。この散乱光5は白熱灯、螢光灯等の普通光源を用
いる場合は微弱でありかつ光源自身によるバックグラウ
ンド光も不可避のため、殆んど検知できないが、レーザ
ー光を用いる本例では、散乱光5は藺単に検知できる非
常に輝度の尚いものとなる。具体的に示すと、上述のレ
ーザー光3による散乱光5の強さの機成は、走行中の糸
条Yが目視により見えない程MILKパックグラウンド
元を小さくした状態で目視により観察した時毛羽1は勿
−のこと毛羽1近傍の走行中の糸条Yが光分欽祭できる
@度であった。そして、レーザー光3たりのエネルギー
が非常に大きいためと考えられる。なお、レーザー光は
バックグラウンド光とはならないので、検出感度の向上
にも非常に効果かある。
On the other hand, when the fluff 1 exists on the running yarn Y, when the fluff 1 crosses the irradiated laser beam 3, the irradiated laser beam 3 is scattered by the fluff IK as shown in the figure, and scattered light 5 is generated. This scattered light 5 is weak when using an ordinary light source such as an incandescent lamp or a fluorescent lamp, and is almost undetectable because background light from the light source itself is unavoidable, but in this example using laser light, The scattered light 5 has a very low brightness that can be easily detected.Specifically, the intensity of the scattered light 5 due to the laser beam 3 described above is determined by the fact that the running yarn Y can be visually observed. When visually observed with the MILK pack ground made so small that it could not be seen, not only the fluff 1 but also the yarn Y running near the fluff 1 was at a level where it could be illuminated by the laser beam. This is thought to be because the energy of the laser beam is very large.In addition, since the laser light does not become background light, it is also very effective in improving detection sensitivity.

そして、散乱光5はフォトダイオード4により受光され
る。前述の通り散乱光5は非常に強いので、フォトダイ
オード4は前述の毛羽1のないバックグラウンド光のみ
の場合に比し非常に大きい電気信号を発信する。従って
、フォトターイオード4からの電気信号を周知の比軟回
路(図示せず)等に導きそのレベルV監視し所定のレベ
ル以上になった時パルス状の毛羽検知信号を出力するよ
うになすことにより、毛羽1の自1Ijj検出が藺単に
できる。この際、前述の通り光11kKレーザー光を用
いているので、バックグラウンド光と散乱光5とKよる
フォトダイオード4からの電気信号のレベル差が太き(
、従って検出感度を非常に尚くできる上り現性の良い安
定な検出ができる。出力1 raw、照射レーザー光3
のビーム径0.5一つHe −Neレーザーを用いて、
径が2〜3μmφで長さが1一程度の毛羽lか確実に検
出できた。
The scattered light 5 is then received by the photodiode 4. As described above, the scattered light 5 is very strong, so the photodiode 4 emits a much larger electrical signal than in the case of only the background light without the fluff 1 described above. Therefore, the electrical signal from the photodiode 4 is guided to a well-known specific soft circuit (not shown) or the like, and its level V is monitored, and when it reaches a predetermined level or higher, a pulsed fluff detection signal is output. This makes it easy to detect the fluff 1 itself. At this time, as mentioned above, since 11kK laser light is used, the level difference in the electrical signal from the photodiode 4 due to background light, scattered light 5, and K is large (
Therefore, detection sensitivity can be greatly improved, and stable detection with good reproducibility can be achieved. Output 1 raw, irradiation laser light 3
Using a He-Ne laser with a beam diameter of 0.5,
It was possible to reliably detect fluff l with a diameter of 2 to 3 μmφ and a length of about 11.

なお、上記の毛羽恢知信号は毛羽1毎に発生するので、
1毛羽検知信号を公知のカウンタU路(図示省略)に導
き!を歓させれば、糸条Yの単位長当りの毛羽数等も簡
単に得ることができる。
In addition, since the fluff detection signal mentioned above is generated for each fluff,
1 Guide the fluff detection signal to a known counter U path (not shown)! By determining the number of fuzz per unit length of yarn Y, etc., can be easily obtained.

以上本発明の原理を走行糸条な例に説明した。The principle of the present invention has been explained above using an example of running yarn.

次に第2図により舎糸体の表面の毛羽を検出する場合に
適用した例について説明する。
Next, an example applied to detecting fuzz on the surface of a thread body will be described with reference to FIG.

図において、Pは糸条巻取機で形成された糸巻体、1は
検出すべき糸巻体PO)表向の毛羽、2は前例と同様H
e −Neレーザーを用いたレーサー光源、3は前例と
同様な照射レーザー光、4は毛羽1による照射レーサー
光3の散乱光5V慣出する光電f供手段であるフォトダ
イオードであり、散乱光5のうち反射分を検出するよう
に糸巻体Pに対し照射レーザー光3の上流側に設けであ
る。
In the figure, P is the bobbin formed by the thread winder, 1 is the fluff on the surface of the bobbin to be detected (PO), and 2 is H as in the previous example.
A racer light source using an e-Ne laser, 3 the same irradiated laser beam as in the previous example, 4 a photodiode which is a photoelectric f supply means for emitting 5V of scattered light of the irradiated racer light 3 by the fluff 1; It is provided on the upstream side of the irradiated laser beam 3 with respect to the bobbin body P so as to detect the reflected portion.

そして、■射し−ザーjt3はその放gIJ面が糸巻体
Pの軸と平行になるよ5に配置された放物ElIIMか
らなる走査ミラー12と走査ミラー12の放物面の焦点
位置に配置された所定の走査角f11を所定の走査速g
Vで走査する振動ミラー11とにより、糸巻体Pの表面
の近接領域をその軸と直交方向に無射しつつ軸方向に移
動して走査するようにしである。なお、走査角FIIL
ρは走査中Wが糸巻体Pの食中をカバーするに充分な大
きさに選定しである。また、照射レーザー光3は第2因
(b)に示すように糸巻体Pの表面から間隔!より長い
毛羽1が存在する場合、照射レーダー光3は走査ミ2−
12のa点からb点まで走査する闇に毛羽IKより散乱
され、散乱光5が発生する。従って、第2図(a)の場
合は手前と実測の2@の毛羽1により時系列的に散乱光
5が2(ロ)発生する。この散乱光5は第1図の例と同
様にフォトダイオード4により電気信号に変換され、図
示省略した比421!ll!1路、カウンタ回路寺で処
坤され所望の糸巻体毎の毛羽数等として表示される。な
H1上記醐定にRいて糸巻体Pは回転手股(図示−1i
略)で支持され軸回りに走査速度しに対応した所定速度
で回転させられる。
Then, the radiation laser jt3 is placed at the focal position of the paraboloid of the scanning mirror 12 and the scanning mirror 12 made of a paraboloid ElIIM placed at 5 so that its radiation gIJ plane is parallel to the axis of the pincushion P. The predetermined scanning angle f11 is set to a predetermined scanning speed g.
The vibrating mirror 11, which scans at V, is configured to move and scan in the axial direction while non-radiating a nearby area on the surface of the bobbin body P in a direction orthogonal to the axis. In addition, the scanning angle FIIL
ρ is selected to be large enough to cover the portion W of the bobbin P during scanning. Furthermore, the irradiated laser beam 3 is spaced from the surface of the bobbin body P as shown in the second factor (b). If a longer fuzz 1 is present, the irradiated radar light 3 will pass through the scanning mirror 2-
12, the light is scattered by the fluff IK in the darkness scanning from point a to point b, and scattered light 5 is generated. Therefore, in the case of FIG. 2(a), 2 (b) scattered lights 5 are generated in chronological order by the 2 @ fluffs 1 in the front and in the actual measurement. This scattered light 5 is converted into an electric signal by the photodiode 4 as in the example of FIG. 1, and the ratio 421! ll! 1, it is processed in a counter circuit and displayed as the desired number of fuzz for each bobbin. When H1 is R at the above-mentioned position, the bobbin body P is rotated between the rotating arms (Illustrated-1i
) and is rotated around the axis at a predetermined speed corresponding to the scanning speed.

ところで、本例では従来方法と異なり指向性の鋭いレー
ザー光を用いているので、前記間隔lか非常に小さくw
j足できる上、小さな毛−Ulによっても検出に光分な
光電の散乱光5が得られるので、高感度で安定した検出
が可能となった。前例と同様に本例においても、出力1
 my。
By the way, in this example, unlike the conventional method, a laser beam with sharp directivity is used, so the above-mentioned interval l is very small w.
In addition, even small hairs (U1) can provide enough scattered photoelectric light 5 for detection, making it possible to perform highly sensitive and stable detection. As in the previous example, in this example as well, the output 1
my.

ビーム径0−5 wdf) He −N6レーザーを用
いて、径が数μ購φで長さが1u根嵐の毛羽が充分確実
に検出できた。
Using a He-N6 laser (beam diameter: 0-5 wdf), fluff with a diameter of several μm and a length of 1 μm could be detected with sufficient certainty.

以上本発明を実施例に基いてH51明したが本発明はか
かる実M例に限定されるものではない。
Although the present invention has been explained above based on Examples, the present invention is not limited to such actual examples.

レーザー光臨として、He −Neレーf−に用いたも
のを示したが、他のレーザーf源(半専体レーザー、C
偽レーザー、Nレーザー等)も適用できることは云うま
でもない。
Although the laser source used for He-Ne laser f- is shown, other laser f sources (semi-dedicated laser, C
It goes without saying that false lasers, N lasers, etc.) can also be applied.

構成の最も簡単な走行糸条の片面のみを検査するものを
示したか、反射鋭でレーザー光を折返し両面検量するよ
うになすこと、あるいはレーザー光源を2個用いて前記
両面検査構成にして4ffi慣食するようになすこと等
により、検出漏れの少ないものとすることができる。
The simplest configuration is one that inspects only one side of the traveling yarn. Alternatively, the laser beam can be reflected back with a reflector to measure both sides, or two laser light sources can be used to configure the double-sided inspection configuration to achieve 4FFI standard. By doing so, it is possible to reduce the number of missed detections.

又毛羽数が確実に検出できるものとして糸巻体をその軸
と直交するレーザー光で軸方向に走査するものを示した
が、軸方向にレーザー光を照射し糸巻体Pv@(ロ)り
に(ロ)転させるようにすれば、光学走査機構は全く不
要となり、大巾に簡略化できる。なお、走査機構も*施
例に限定するものではなく、振動ミラーの反射光でその
1ま走査するよ5にしても良く、他の公知の走査機構が
適用できる。
In addition, we have shown a method in which the number of fuzz can be reliably detected by scanning the bobbin body in the axial direction with a laser beam perpendicular to the axis of the bobbin body. (b) If the optical scanning mechanism is rotated, an optical scanning mechanism is not required at all, and the structure can be greatly simplified. Incidentally, the scanning mechanism is not limited to the example described above, and may be configured such that scanning is performed by the reflected light of the vibrating mirror, or other known scanning mechanisms may be used.

史に、散乱光をフォトダイオード等の充電変換素子で電
気信号にf供するものを示したか、散乱光か可視光とな
るHe  Neレーザーの如きレーザー光#iを用いれ
ば、目視による検出も可能である。この場合、前述のよ
うに散乱光は非常にAいので検査作業が非常圧容易とな
りかつ横置ミスか大巾に減少する。
History has shown that scattered light is converted into an electrical signal using a charging conversion element such as a photodiode, and visual detection is also possible by using a laser beam #i such as a He Ne laser that generates scattered light or visible light. be. In this case, as mentioned above, the scattered light is very bright, so the inspection work becomes extremely easy and the possibility of horizontal placement errors is greatly reduced.

又、散乱光のうち最も預い反射散乱光を検出するように
測定糸条に対して光#!側に光電検出手段を設けたもの
をボしたが、前述し゛たようにバックグラウンド光を小
さくすれば、糸条(ロ)りのあらゆる場所で検出可能で
あり、充電検出手段の設it場所は特に限定しない。
In addition, light #! is applied to the measurement yarn so that the most concentrated reflected and scattered light among the scattered light is detected. Although we have used a device with a photoelectric detection means installed on the side, if the background light is reduced as mentioned above, detection can be made at any location on the yarn, and the location where the charge detection means is installed can be adjusted. Not particularly limited.

なお、レーザー光を照射さゼる糸条の近轍懺域は、毛羽
の存在する領域であり、レーザー光が糸条を直接照射し
ない範囲で糸条に近い根、検出できる毛羽長が短かく検
出感縦が上昇するか、糸帰れ等による一慎出が増加する
ので、通常の毛羽長との魚ね合いで遇定する必賛かある
。゛以上説明した遡り、本発明では、糸条の近襞頒坂を
レーザー光により照射し、ばレーザー光の毛羽による散
乱光により毛羽な8j川するよ5にしたので、微小な毛
羽でも非常に大元菫の散乱光で検出でき、非常に8N比
が向上した。従って、従来法に比軟し、非常に簡単な構
成で、検出感匿の^い、極めて再現性、g!軸性の良い
毛調検出方法が得られた。その上、本発明ものは、糸巻
体の表面の毛羽憤fKも適用でざるものである。
Note that the near-rut area of the yarn that is irradiated with laser light is an area where fuzz exists, and as long as the laser light does not directly irradiate the yarn, roots that are close to the yarn and the length of the fuzz that can be detected are short. Since the length of detection increases or the number of threads coming out due to thread return increases, it is necessary to determine the balance between the length and the normal fluff length.゛Returning to the above explanation, in the present invention, the near pleat slope of the yarn is irradiated with a laser beam, and the scattered light from the fluff of the laser beam makes it look fluffy. It can be detected by the scattered light of Omoto violet, and the 8N ratio has been greatly improved. Therefore, it is softer than the conventional method, has a very simple configuration, has no detection sensitivity, is extremely reproducible, and has a high g! A hair texture detection method with good axiality was obtained. Furthermore, the present invention is not applicable to fluff fK on the surface of the thread wound body.

【図面の簡単な説明】[Brief explanation of the drawing]

爾1図は本発明を走行糸条に適用した例の説明図、第2
図(a)、(b)は本発明を糸巻体に通用した例の全体
説明図と*sWi明図である。 に毛羽、2:レーザー光源、3:照射レーザー光、4:
フォトダイオード、5:散乱光、Y:糸条、P:糸巻体
Figure 1 is an explanatory diagram of an example in which the present invention is applied to a traveling yarn;
Figures (a) and (b) are an overall explanatory diagram and *sWi clear diagram of an example in which the present invention is applied to a thread wound body. fluff, 2: laser light source, 3: irradiation laser light, 4:
Photodiode, 5: Scattered light, Y: Yarn, P: Thread wound body.

Claims (1)

【特許請求の範囲】 1、 糸条の毛羽検出方法において、毛羽のみを照射す
るように糸条の近接愉域をレーザー光で照射し、毛羽に
よる該レーザー光の散乱光により糸条の毛羽を検出する
ことを特徴とする毛羽検出方法。 2、前記散乱光な光電変換して検出する特許請求の範囲
第1項記載の毛羽検出方法。 3、前記光電変換な糸条に対して前記レーザー光の光源
側に設けた光電変換手段で行なう特許請求の範囲第2項
記載の毛羽検出方法。 4o  前記糸条が走行糸条である特許請求の輔曲第1
項、第2埃、若しくは第3槍記載の毛羽検出方法。 5、前記糸条が光巻体の表面の糸条である特許II′l
IXの範囲第1狽、第2項、若しくは第3槍記載の毛羽
検出方法。
[Claims] 1. In a method for detecting fuzz on a yarn, a laser beam is irradiated to a nearby area of the yarn so that only the fuzz is irradiated, and the fuzz on the yarn is detected by the light scattered by the laser beam by the fuzz. A fluff detection method characterized by detecting fluff. 2. The fluff detection method according to claim 1, wherein the scattered light is detected by photoelectric conversion. 3. The fluff detection method according to claim 2, wherein the method for detecting fuzz is carried out using a photoelectric conversion means provided on the light source side of the laser beam with respect to the photoelectric conversion yarn. 4o Arrangement No. 1 of the patent claim in which the yarn is a running yarn
2. The fluff detection method described in Section 2, Second Dust, or Third Spear. 5. Patent II'l, wherein the thread is a thread on the surface of the light wrapper.
The fuzz detection method described in the first, second, or third range of IX.
JP17013581A 1981-10-26 1981-10-26 Detection of feather Pending JPS5876571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17013581A JPS5876571A (en) 1981-10-26 1981-10-26 Detection of feather

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17013581A JPS5876571A (en) 1981-10-26 1981-10-26 Detection of feather

Publications (1)

Publication Number Publication Date
JPS5876571A true JPS5876571A (en) 1983-05-09

Family

ID=15899304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17013581A Pending JPS5876571A (en) 1981-10-26 1981-10-26 Detection of feather

Country Status (1)

Country Link
JP (1) JPS5876571A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214577A (en) * 1982-06-07 1983-12-13 東レ株式会社 Detection of feather of running yarn
JP2008256539A (en) * 2007-04-05 2008-10-23 Konica Minolta Holdings Inc Optical measuring device and optical measuring method
JP2014145660A (en) * 2013-01-29 2014-08-14 Mecc Co Ltd Defect inspection device and defect inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214577A (en) * 1982-06-07 1983-12-13 東レ株式会社 Detection of feather of running yarn
JPH0415304B2 (en) * 1982-06-07 1992-03-17 Toray Industries
JP2008256539A (en) * 2007-04-05 2008-10-23 Konica Minolta Holdings Inc Optical measuring device and optical measuring method
JP2014145660A (en) * 2013-01-29 2014-08-14 Mecc Co Ltd Defect inspection device and defect inspection method

Similar Documents

Publication Publication Date Title
US4555179A (en) Detection and imaging of objects in scattering media by light irradiation
US4277178A (en) Web element concentration detection system
US4166960A (en) Smoke detector
JPH07501397A (en) Measuring method and device
US6239710B1 (en) Smoke detector
US4063822A (en) System for detecting a first light transmissive substance, such as for instance blood, in a second light transmissive, different substance
JPH0628585B2 (en) Method and apparatus for detecting the presence or absence of defects in rod-shaped articles in the tobacco processing industry
CN107561042A (en) A kind of spot shaping optical system for fluorescence analyser
US3712743A (en) Apparatus for detecting and measuring yarn defects and irregularities
JP4101351B2 (en) Weft detection device on weft measuring drum
JPS5876571A (en) Detection of feather
EP0370231B1 (en) Optical device for checking the cigarette tips
US3932763A (en) Detector for tubular transparent article
JPH03150451A (en) Sheet inspection method and apparatus
EP3759425B1 (en) Apparatus for detecting coating on wire and a method to use such apparatus
CN207779902U (en) Raman spectrum detection device based on reflected optical power
WO2019235260A1 (en) Distance measuring device
JPS63154943A (en) Filamentous fluorescent substance detector
JP3251396B2 (en) Photoelectric detector
JPH08209527A (en) Device for detecting abnormality of linear material
JPH06258232A (en) Defect inspection device for glass substrate
JPS59157512A (en) Optical position detector
JPH083474B2 (en) Tape defect detector
JPH1164231A (en) Method and apparatus for detecting bubble streak of glass tube
JPH08178830A (en) Detector