JPS5876180A - Method of controlling injection of chlorine in water- purifying plant - Google Patents

Method of controlling injection of chlorine in water- purifying plant

Info

Publication number
JPS5876180A
JPS5876180A JP17532881A JP17532881A JPS5876180A JP S5876180 A JPS5876180 A JP S5876180A JP 17532881 A JP17532881 A JP 17532881A JP 17532881 A JP17532881 A JP 17532881A JP S5876180 A JPS5876180 A JP S5876180A
Authority
JP
Japan
Prior art keywords
chlorine
water
ratio
concentration
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17532881A
Other languages
Japanese (ja)
Inventor
Toshiaki Kobayashi
小林 敏昭
Mitsuo Maeda
満雄 前田
Junichiro Ozawa
小沢 純一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17532881A priority Critical patent/JPS5876180A/en
Publication of JPS5876180A publication Critical patent/JPS5876180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To hold the concentration of residual chlorine in purified water at a set point, by setting a reference ratio of injecting chlorine from the measured value of the quality of raw water, obtaining a ratio of injecting chlorine from the concentration of residual chlorine in the purified water, and feed-back controlling the amount of injecting chlorine. CONSTITUTION:In a water-purifying plant comprising a water intake well 1, a coagulating-mixing pool 2, a flocculating pool 3, a precipitating pool 4, a filtering pool 7, etc., oxidizable substance in raw water or the quality of the water relating to the oxidizable substance is measured by a water analyzer 16, a ratio Yf of consuming chlorine is calculated by an arithmetic unit 20, and a reference ratio CMV of injecting chlorine is set. On the other hand, the concentration of residual chlorine in purified water is measured by a densitometer 12, a ratio Yb of preinjecting chlorine is obtained from the set point of the concentration of residual chlorine, a factor for idling time corresponding to the flow amount of water, etc. by PID arithmetic unit 18, a ratio Ym of injecting chlorine is obtained by feeding back the ratio Yb to correct said reference ratio CMV of injecting chlorine with a multiplier 19, and an amount of injecting chlorine corresponding to the flow amount of water is controlled a ratio-calculating unit 11.

Description

【発明の詳細な説明】 本発明は着水井付近で塩素を注入する浄水場において、
塩素注入量を制御する塩素注入制御方法に関するもので
ある。
[Detailed Description of the Invention] The present invention provides a water treatment plant in which chlorine is injected near a receiving well.
The present invention relates to a chlorine injection control method for controlling the amount of chlorine injection.

一般に浄水場においては、取水した原水の殺菌消毒ある
いはアンモニア、マンガン、鉄イオ7等無機イオンや有
機汚濁物の酸化分解等の目的で塩素が注入されている。
Generally, in water treatment plants, chlorine is injected for the purpose of sterilizing the raw water taken, or oxidizing and decomposing inorganic ions such as ammonia, manganese, iron ions, and organic pollutants.

第1図はフィードバック注入制御方式による従来の塩素
注入制御方式である。
FIG. 1 shows a conventional chlorine injection control system using a feedback injection control system.

第1図において、原水は着水井lに導入され塩素注入機
tから着水井の所定の位置(塩素注入点9)で塩素が注
入された後原水流量計10を経て急速攪拌池コに導かれ
る。急速攪拌池コでは該池λと着水井lとの間で添加さ
れた凝集剤等が攪拌機S(Mは駆動モータ)により混和
され、生成したフロック状沈殿を含む原水はフロキュレ
ータ6を備えたフロック形成池3でフロックの生成が行
なわれた後、生長したフロックを含む水は固液分離を行
う沈殿池ダに流入し、/3で処理水採取後、沈殿池で沈
殿除去されなかった微粒子の除去が急速濾過池りで行な
われる。処理水採水点/3で採取されたサンプルは残留
塩素濃度計12により残留塩素濃度(cpv)が決定さ
れ、残留塩素設定値(CSV)との偏差が演算器/4(
で算出され、この偏差は原水流量計10からの情報と共
に前塩素比率、および注入率が比率演算器l/に入力さ
れて塩素注入装置への塩素注入量の制御が行なわれる。
In Figure 1, raw water is introduced into a landing well L, chlorine is injected from a chlorine injection machine T at a predetermined position (chlorine injection point 9) in the landing well, and then the raw water is led to a rapid stirring pond via a raw water flowmeter 10. . In the rapid stirring pond, flocculant, etc. added between the pond λ and the landing well L are mixed by a stirrer S (M is a drive motor), and the raw water containing the generated floc-like precipitate is fed to a flocculator 6. After the flocs are generated in the floc formation tank 3, the water containing the grown flocs flows into the settling tank which performs solid-liquid separation. Removal is carried out in a rapid filtration basin. The residual chlorine concentration (cpv) of the sample taken at the treated water sampling point /3 is determined by the residual chlorine concentration meter 12, and the deviation from the residual chlorine set value (CSV) is determined by the calculator /4 (
This deviation is inputted together with the information from the raw water flow meter 10, the pre-chlorine ratio, and the injection rate into the ratio calculator l/ to control the amount of chlorine injection into the chlorine injection device.

第1図において、急速攪拌池コ、フロック形成池3、沈
殿池qは水中の懸濁物質を除去するためにそれぞれ凝集
剤の添加、フロック形成、固液分離を行なうプロセスで
あり、処理法の性質上着水井から沈殿池出口までは少な
くとも2〜3時間の滞留時間がある。したがって、原水
水質が変動し塩素消費量が変動しても、その結果が現わ
れるには少なくとも2〜3時間の時間遅れが生じていた
In Figure 1, rapid stirring tank ko, flocculation tank 3, and settling tank q are processes in which flocculant addition, floc formation, and solid-liquid separation are performed to remove suspended solids in water, respectively. Due to its nature, there is a residence time of at least 2 to 3 hours from the landing well to the settling tank outlet. Therefore, even if the raw water quality fluctuates and the chlorine consumption fluctuates, there is a time delay of at least 2 to 3 hours before the results appear.

一方、前塩素注入率はオペレータが1日1回手分析で塩
素要求量やアンモニア性窒素濃度を測定することにより
設定されている。また、塩素注入率の修正は沈殿池出口
付近の残留塩素濃度と目標値との偏差を目視で求めるか
または演算器lダで求め、流量計10からの取水量と共
に比率演算器/lなどで求めることによって行なわれて
いる。
On the other hand, the pre-chlorine injection rate is set by an operator manually measuring the chlorine demand and ammonia nitrogen concentration once a day. In addition, the chlorine injection rate can be corrected by visually determining the deviation between the residual chlorine concentration near the settling tank outlet and the target value, or by using a calculator, and then using a ratio calculator, etc., along with the amount of water intake from the flow meter 10. It is done by asking.

原水中の塩素消費物質の1.濃度の時間変動が小さい場
合には従来の方法で残留塩素濃度を一定に保つことも可
能である。しか・しながら、河川等取水源の汚濁が進行
している今日では多くの河川水において塩素消費物質の
時間変動がある。たとえば、都市部の浄水場では上流側
に下水処理場やし尿処理場があり、それら施設から完全
に処理“されていない汚濁物が放流されたり、家庭から
洗濯排水や厨房排水などが未処理で放流されたりしてい
る。
1. Chlorine consuming substances in raw water. If the concentration changes over time are small, it is also possible to keep the residual chlorine concentration constant using conventional methods. However, nowadays, as water intake sources such as rivers become increasingly polluted, there are temporal fluctuations in chlorine-consuming substances in many river waters. For example, water treatment plants in urban areas have sewage treatment plants and human waste treatment plants upstream, and these facilities discharge pollutants that have not been completely treated, and untreated laundry and kitchen wastewater from households. It is sometimes released into the river.

また農村部においても家畜の集中飼育等が進み、養豚場
などから有−汚濁物を大量に含む排水が河川に放流され
ている場合がある。このような場合に1日1回程鹿の原
水水質分析による前塩素注入率の設定では当然ながら残
留塩素濃度の変動が大きい。
In addition, in rural areas, intensive livestock breeding has progressed, and wastewater containing large amounts of pollutants from pig farms and the like is sometimes discharged into rivers. In such a case, if the pre-chlorine injection rate is set by analyzing the deer raw water quality once a day, the residual chlorine concentration will naturally fluctuate greatly.

塩素注入率は必要以上に多いと、給水末端でカルキ臭の
強い水道水となり、また薬品費が増大して不経済となる
ばかりでなく、有機汚濁物質と過剰な塩素との反応によ
りトリハロメタン等有害物質の生成量が増大する。逆に
塩素注入率が必要量に満たないと殺菌消毒が完全に行な
われず微生物が水中に生存していたり、アンモニア等が
分解されずに残るなど衛生面で問題となる。
If the chlorine injection rate is higher than necessary, tap water will have a strong chlorine odor at the end of the water supply, and not only will chemical costs increase and become uneconomical, but the reaction between organic pollutants and excess chlorine will cause harmful substances such as trihalomethane. The amount of substance produced increases. On the other hand, if the chlorine injection rate is less than the required amount, sterilization and disinfection will not be completed completely, causing hygiene problems such as microorganisms remaining in the water and ammonia remaining undecomposed.

このように従来の塩素注入率設定は原水取水量および7
日7回程鹿の原水の塩素消費量等の手分析またはオペレ
ータの経験やカンで行なわれ、また処理効果の評価は沈
殿池出口等における残留塩素濃度と目標値の差異を求め
て修正しているが、この方法では原水水質の変動に対し
て適正な塩素注入を行なうことは困難であり、よって残
留塩素濃度を設定値に保持することができなかった。
In this way, the conventional chlorine injection rate setting is based on the amount of raw water intake and
The chlorine consumption of raw deer water is analyzed 7 times a day by hand or based on the operator's experience and intuition, and the evaluation of treatment effectiveness is corrected by determining the difference between the residual chlorine concentration at the outlet of the settling tank and the target value. However, with this method, it is difficult to properly inject chlorine in response to fluctuations in raw water quality, and it is therefore not possible to maintain the residual chlorine concentration at the set value.

この発明は上記のような従来法の欠点を改善するために
なされたもので、原水中に含まれる塩素消費物質の濃度
に応じた前塩素注入率をフィードフォワード的に設定し
、かつ処理水中の残留塩素濃度と設定値との偏差からP
より演算等によりフィードバック的に塩素注入率を修正
することにより、残留塩素濃度を一定に保ち浄水プロセ
スを安定化することのできる塩素注入制御方法を提供す
ることを目的としている。
This invention was made to improve the drawbacks of the conventional method as described above, and it sets the pre-chlorine injection rate in a feedforward manner according to the concentration of chlorine-consuming substances contained in raw water, and P from the deviation between the residual chlorine concentration and the set value
It is an object of the present invention to provide a chlorine injection control method that can keep the residual chlorine concentration constant and stabilize the water purification process by correcting the chlorine injection rate in a feedback manner using calculations or the like.

上述の目的を達成するために、原水水質に対する塩素注
入処理について検討を行なった結果次の点に着目した。
In order to achieve the above objectives, we investigated the chlorine injection treatment for raw water quality and focused on the following points.

塩素を消費する物質としては、還元態の鉄イオン、マン
ガンイオン等の金属イオンやアンモニア性窒素、亜硝酸
性窒素等の無機イオン、および有機炭素化合物等の有機
汚濁物質がある。これらの水質項目について、連続的に
自動計器で測定することはこれら水質計器が充分に開発
されていない今日不可能である。また、塩素消費量はこ
れら水中に含まれる物質のトータル量で求められるため
個々の物質を分析する必要はなく、塩素消費量さえ求め
られれば実用上問題はない。
Substances that consume chlorine include metal ions such as reduced iron ions and manganese ions, inorganic ions such as ammonia nitrogen and nitrite nitrogen, and organic pollutants such as organic carbon compounds. It is currently impossible to continuously measure these water quality items using automatic instruments, as these water quality instruments have not been sufficiently developed. Furthermore, since the amount of chlorine consumed is determined by the total amount of these substances contained in the water, there is no need to analyze each individual substance, and there is no practical problem as long as the amount of chlorine consumed is determined.

そこで、原水水中の塩素消費物質の連続自動測定計器と
して、塩素要求量計または塩素消費量と相関のある水質
項目測定器たとえば過マンガン酸カリウム消費量計、C
OD計、ヨウ素消費量計、酸化還元電位計、電気伝導度
計、UV計を設置する。
Therefore, as a continuous automatic measuring instrument for chlorine consuming substances in raw water, we recommend using a chlorine demand meter or a water quality item measuring device that correlates with chlorine consumption, such as a potassium permanganate consumption meter, C
Install an OD meter, iodine consumption meter, redox potential meter, electrical conductivity meter, and UV meter.

これらの計器のうちで、各浄水場の実情に応じた計器を
選定し原水水質のモニタリングを行なう。
Among these instruments, instruments appropriate to the actual situation of each water treatment plant will be selected to monitor the quality of raw water.

塩素消費量(Yf)と上記の計器で求めた分析値(X)
の関係は、あらかじめ手分析またはプラントの実績によ
り(1)式のように求め′ておく。
Chlorine consumption (Yf) and analysis value obtained with the above meter (X)
The relationship is determined in advance by manual analysis or plant experience as shown in equation (1).

Yf= a−X −1−b  −−−−−−−−−−−
−−−−−一−−−−−−−−(1)(1)式において
、係数a、bは各浄水場において特定の水質計器に対し
て求められる定数である。また、水温や季節によって塩
素消費量が変動する場合には係数a、bを水温等の関数
として設定することにより各浄水場の特性に応じた塩素
消費量計算式を求めることができる。一方、処理水残留
塩素計を塩素注入点より下流側に設置し、残留塩素濃度
設定値からの偏差をプロセスのムダ時間を考慮したPよ
り演算によりフィードバックさせて、塩素注入率を修正
する機能を付加している。
Yf= a−X −1−b −−−−−−−−−−
-------1-----(1) In equation (1), coefficients a and b are constants determined for a specific water quality meter in each water purification plant. Furthermore, when the amount of chlorine consumed varies depending on the water temperature or the season, by setting the coefficients a and b as a function of the water temperature, etc., it is possible to obtain a chlorine consumption calculation formula according to the characteristics of each water purification plant. On the other hand, a treated water residual chlorine meter is installed downstream of the chlorine injection point, and the deviation from the residual chlorine concentration setting value is fed back by calculation from P, which takes into account waste time in the process, to correct the chlorine injection rate. It is added.

このように、本発明の特徴とするところは、塩素注入率
決定にあたり原水中の塩素消費物質濃度またはこれと相
関めある水質分析値によるフィードフォワード環と残留
塩素濃度測定によるフィードバック環を組み合わせて行
なうようにしたことにある。
As described above, a feature of the present invention is that, in determining the chlorine injection rate, a feedforward ring based on the concentration of chlorine consuming substances in raw water or a water quality analysis value that correlates therewith is combined with a feedback ring based on the measurement of the residual chlorine concentration. That's what I did.

以下、本発明の一実施′例を第一図に基づいて説明する
。第2図において、/Aは水質分析器であり塩素注入点
デより上流側の地点/Sの水質を測定するものであり、
演算器2.20によって塩素消費率(Yf)が計算され
る。ioは原水流量計であり、この値は前塩素注入比例
演算器、//および時間遅れ要素演算器/7へ入力され
る。/2は残留塩素濃度計であり、採水地点13は塩素
注入点?より下流側で濾過池7より上流側の任意の地点
である。
Hereinafter, one embodiment of the present invention will be explained based on FIG. In Figure 2, /A is a water quality analyzer that measures the water quality at point /S upstream from the chlorine injection point D.
The chlorine consumption rate (Yf) is calculated by the calculator 2.20. io is a raw water flow meter, and this value is input to the pre-chlorine injection proportional calculator// and the time delay element calculator/7. /2 is a residual chlorine concentration meter, and water sampling point 13 is a chlorine injection point? This is an arbitrary point on the downstream side and upstream of the filtration basin 7.

itはPより演算器、/9は乗算器である。It is an arithmetic unit from P, and /9 is a multiplier.

次にかかる構成における塩素注入制御方法について説明
する。塩素注入点?より上流側の点/Sより取水原水を
サンプリングして水質分析計76で塩素消費量と相関の
ある水質項目の分析をたとえば70分、30分、1時間
に/同根度行ない、その分析値(X)を演算器20に入
力する。演算器20には水質指標の分析値(x)とそれ
に対応する塩素消費率の関数式(1)式が組み込まれて
おり、各浄水場の実情に応じた塩素消費量(Yf)が計
算される。演算器−〇で用いる係数a、bは運転員また
は計算機の自己回帰分析等により入力され任意に設定変
更が可能である。塩素注入後の処理水中の残留塩素は残
留塩素濃度計lコで測定し、この残留塩素濃度(cpv
)と設定濃度(C8V)および時間遅れ要素演算器/7
によって取水流量に応じたプロセスのムダ時間がPより
演算器/1に入力される。Pより演算による前塩素注入
率(Yb)は(2):f、および(3)式で求める。
Next, a chlorine injection control method in this configuration will be explained. Chlorine injection point? The intake raw water is sampled from a point /S on the upstream side, and water quality items correlated with chlorine consumption are analyzed using a water quality analyzer 76 at, for example, 70 minutes, 30 minutes, and 1 hour at the same frequency, and the analysis value ( X) is input to the arithmetic unit 20. The calculator 20 incorporates the analytical value (x) of the water quality index and the corresponding functional formula (1) of the chlorine consumption rate, and calculates the chlorine consumption (Yf) according to the actual situation of each water treatment plant. Ru. The coefficients a and b used in the arithmetic unit -0 are inputted by an operator or by autoregressive analysis of a computer, and can be changed as desired. Residual chlorine in the treated water after chlorine injection is measured using a residual chlorine concentration meter, and this residual chlorine concentration (cpv
), set concentration (C8V) and time delay element calculator/7
The waste time of the process according to the water intake flow rate is input from P to the calculator/1. The pre-chlorine injection rate (Yb) calculated from P is obtained from equation (2):f and equation (3).

EV 、、= OPV −csv  −−−−−−−−
−−−−−−−−−m−−−−−(,7)ここで、比例
ゲイン(H工)、積分時間(TI)、微分時間(TD)
および制御周期等は各浄水場の特性に応じてシミュレー
ションまたは実プラントにおける運転結果等によりプロ
セスの運用に適切な値を設定しておく。また、これらの
ゲインはCRT等の装置により入力され任意に設定変更
することが可能である。
EV ,, = OPV −csv −−−−−−−−
−−−−−−−−−m−−−−−(,7) Here, proportional gain (H), integral time (TI), differential time (TD)
For the control period, etc., values appropriate for process operation are set based on simulation or actual plant operation results, etc., depending on the characteristics of each water purification plant. Further, these gains can be inputted by a device such as a CRT and can be changed as desired.

このようにフィードバックによって求められた塩素注入
率(Yb)は、フィードフォワードで求められた塩素注
入率(Yf)および基準塩素注入率((CMV)ととも
に演算器/qに入力される。演算器19においては、(
り)式のように実際の塩素注入率(Ym)を計算する。
The chlorine injection rate (Yb) obtained by feedback in this way is input to the calculator /q together with the chlorine injection rate (Yf) obtained by feedforward and the reference chlorine injection rate ((CMV). Arithmetic unit 19 In (
Calculate the actual chlorine injection rate (Ym) using the following formula.

Y、 = CMV −4−WIF−Yf−1−WB@Y
b−−一−−−−−−−−−(41)ここで、WFはフ
ィードフォワード環の重み係数、VBはフィードバック
環の重み係数であり、これらの数値もオペレータ等によ
り任意に設定値変更が可能である。(り)式によって演
算された塩素注入率(Ym)は、比率演算器/lで取水
流量に応じた塩素注入量に変換され、塩素注入機gのバ
ルブ開度等を制御することにより適正な塩素注入量に保
持することができる。
Y, = CMV-4-WIF-Yf-1-WB@Y
b−−−−−−−−−−(41) Here, WF is the weighting coefficient of the feedforward ring, and VB is the weighting coefficient of the feedback ring, and these values can also be arbitrarily changed by the operator etc. is possible. The chlorine injection rate (Ym) calculated by the formula (R) is converted into the chlorine injection amount according to the water intake flow rate using a ratio calculator/l, and the appropriate amount is determined by controlling the valve opening of the chlorine injection machine g. The amount of chlorine injection can be maintained.

本発明の制御方法の運用例として重み係数WF。A weighting factor WF is used as an operational example of the control method of the present invention.

WBはCRT等により任意に設定できるため、たとえば
水質計器16が故障した場合にはWF=O。
Since WB can be set arbitrarily using a CRT or the like, for example, if the water quality meter 16 breaks down, WF=O.

WB=/、(7というように修正することによりプラン
トへの影響を小さくおさえることができる。逆に、上流
にあるダムの放流や集中豪雨、あるいは上流にある下水
処理場等からの未処理水のオーバーフロー等による水質
急変時にはフィードフォワードの重みをたとえばWF 
= /、0とし、フィードバックを無視することにより
水質の突変に速やかに対応することができる。
By modifying WB=/, (7), the impact on the plant can be minimized.On the other hand, untreated water from upstream dam discharge, localized heavy rain, or upstream sewage treatment plants, etc. When water quality suddenly changes due to overflow, etc., the feedforward weight is changed to WF
By setting = /, 0 and ignoring feedback, it is possible to quickly respond to sudden changes in water quality.

上述の塩素注入制御方式は浄水場以外にも下水処理場や
し尿処理場の三次処理等における塩素注入プロセスで同
様に運用することができる。また、工業プラントの冷却
水などの工業用水製造等のプロセスにも適用できる。一
方、酸化消毒剤として塩素を用いずに例えばオゾンを利
用した同様のプロセスにおいても同様の手法で行なうこ
とができる。
The above-mentioned chlorine injection control method can be similarly operated in the chlorine injection process in tertiary treatment of sewage treatment plants, human waste treatment plants, etc. in addition to water treatment plants. It can also be applied to processes such as manufacturing industrial water such as cooling water for industrial plants. On the other hand, a similar process using ozone instead of chlorine as an oxidizing disinfectant can also be carried out in a similar manner.

以上のように、この発明によればフィードフォワード演
算とフィードバック演算とを組み合わせ、さらに両方の
重み係数を外部から設定できるように構成したので、水
質の変動に対して応答性良く塩素注入率を設定すること
ができる。また、処理水水質のフィードバックはPより
制御によって行なうため制御性が向上するため、原水水
質の測定頻度は7時間に1同根度でも残留塩素濃度を安
定して設定値近傍に保持することができる。
As described above, according to the present invention, the feedforward calculation and the feedback calculation are combined, and the weighting coefficients for both can be set from the outside, so that the chlorine injection rate can be set with good responsiveness to changes in water quality. can do. In addition, since the feedback of the treated water quality is performed by control rather than P, controllability is improved, so even if the raw water quality is measured once every 7 hours, the residual chlorine concentration can be stably maintained near the set value. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の塩素注入制御方法を示す構成図、第2図
はこの発明の一実施例による塩素注入制御方法を示す構
成図である。 l・・着水井 コ・・急速攪拌池 3@・フロック形成
池 ダ・・沈殿池 !・・ミキサー 6・・フロキュレ
ータ 7・・急速ヂ過池 g・・塩素注入装置 9・φ
塩素注入点 10・・取水流量計 l/・・比率演算器
 /−・・残留塩素濃度計 /3拳・処理水採水点 l
lI・・演算器/S・・原水採水点 16・・水質分析
計 /7代理人   葛  野  信  −′
FIG. 1 is a block diagram showing a conventional chlorine injection control method, and FIG. 2 is a block diagram showing a chlorine injection control method according to an embodiment of the present invention. L... Landing well Co... Rapid stirring pond 3 @ Flock formation pond Da... Sedimentation pond!・・Mixer 6・・Floculator 7・・Rapid pond g・・Chlorine injection device 9・φ
Chlorine injection point 10...Water intake flow meter l/...Ratio calculator /-...Residual chlorine concentration meter/3 fists/Water sampling point l
lI...Calculator/S...Raw water sampling point 16...Water quality analyzer/7 Agent Shin Kuzuno -'

Claims (1)

【特許請求の範囲】[Claims] 凝集剤または凝集助剤の注入前の原水に塩素を注入する
浄水場において、取水原水中の被酸化性物質または被酸
化性物質と相関゛のある水質を測定する水質計器により
塩素消費率を塩素注入前に求め、基準塩素注入率を設定
し、さらに塩素注入後の処理水中の残留塩素濃度の測定
により残留塩素濃度設定値からの偏差と、時間遅れ要素
とから前塩素注入率を求め、この前塩素注入率をフィー
ドバックして基準塩素注入率を修正することによって残
留塩素濃度を設定値番こ保持することを特徴とする浄水
場の塩素注入制御方法。
At water treatment plants where chlorine is injected into raw water before the injection of flocculants or flocculant aids, the chlorine consumption rate is measured using water quality meters that measure oxidizable substances in the intake raw water or water quality that correlates with oxidizable substances. The standard chlorine injection rate is determined before injection, and the pre-chlorine injection rate is determined from the deviation from the residual chlorine concentration set value by measuring the residual chlorine concentration in the treated water after chlorine injection and the time delay factor. A chlorine injection control method for a water purification plant, characterized in that a residual chlorine concentration is maintained at a set value by feeding back a previous chlorine injection rate and correcting a reference chlorine injection rate.
JP17532881A 1981-10-30 1981-10-30 Method of controlling injection of chlorine in water- purifying plant Pending JPS5876180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17532881A JPS5876180A (en) 1981-10-30 1981-10-30 Method of controlling injection of chlorine in water- purifying plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17532881A JPS5876180A (en) 1981-10-30 1981-10-30 Method of controlling injection of chlorine in water- purifying plant

Publications (1)

Publication Number Publication Date
JPS5876180A true JPS5876180A (en) 1983-05-09

Family

ID=15994148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17532881A Pending JPS5876180A (en) 1981-10-30 1981-10-30 Method of controlling injection of chlorine in water- purifying plant

Country Status (1)

Country Link
JP (1) JPS5876180A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780799A (en) * 2009-01-19 2010-07-21 株式会社爱德克斯 Acceleration control apparatus for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780799A (en) * 2009-01-19 2010-07-21 株式会社爱德克斯 Acceleration control apparatus for vehicle
JP2010163122A (en) * 2009-01-19 2010-07-29 Advics Co Ltd Longitudinal acceleration control device
US8364368B2 (en) 2009-01-19 2013-01-29 Advics Co., Ltd. Acceleration control apparatus for vehicle

Similar Documents

Publication Publication Date Title
CA2989452C (en) Process and device for the treatment of a fluid containing a contaminant
Assmann et al. Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization
JP5775296B2 (en) Operation support apparatus and operation support method for sewage treatment plant
JP4334317B2 (en) Sewage treatment system
JP4145717B2 (en) Water quality monitoring and control system
JP2009214037A (en) Water treatment method and apparatus
JP2010155189A (en) Water treatment method and apparatus
JPS5876180A (en) Method of controlling injection of chlorine in water- purifying plant
JP3321876B2 (en) Ozone treatment apparatus, ozone treatment method, and water purification treatment method
JPH09122681A (en) Water quality controlling apparatus
ATE138280T1 (en) METHOD FOR OPERATING A WASTEWATER TREATMENT PLANT AND DEVICE FOR FEEDING A PHOSPHATE precipitant
JP3195495B2 (en) Coagulation sedimentation method and equipment
JPS58137488A (en) Method for controlling injection of chlorine in water purifying plant
Aarinen et al. Experiences on instrumentation and control of activated sludge plants—a microprocessor application
Ratnaweera et al. Coagulant dosing control–a review
Kobylinski et al. On line control strategies for disinfection systems: Success and failure
JP3213657B2 (en) Wastewater treatment method and apparatus
JPH0215278B2 (en)
JPS5939388A (en) Method for controlling injection of ozone in water disposal plant
Shamrukh et al. Chlorination and optimal chlorine dosage for Nile water
KR100957119B1 (en) Automatic apparatus for water treatment process
JPH09192680A (en) Treatment of water with ozone and device therefor
JPH04256498A (en) Method and device for controlling water treatment
JP2000061481A (en) Control method for ozone injection
JPH11207368A (en) Ozone injection controlling method