JPS5875870A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5875870A
JPS5875870A JP17306581A JP17306581A JPS5875870A JP S5875870 A JPS5875870 A JP S5875870A JP 17306581 A JP17306581 A JP 17306581A JP 17306581 A JP17306581 A JP 17306581A JP S5875870 A JPS5875870 A JP S5875870A
Authority
JP
Japan
Prior art keywords
region
type
layer
polycrystalline silicon
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17306581A
Other languages
Japanese (ja)
Inventor
Toru Nakamura
徹 中村
Tokuo Kure
久礼 得男
Takao Miyazaki
隆雄 宮崎
Kazuo Nakazato
和郎 中里
Takahiro Okabe
岡部 隆博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17306581A priority Critical patent/JPS5875870A/en
Publication of JPS5875870A publication Critical patent/JPS5875870A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the irregularity in the base widths of lateral transistors and to decrease the parasitic capacity of a semiconductor device by applying a self- aligning method with polycrystalline silicon. CONSTITUTION:An n type silicon accumulated layer 33 is formed on an n type buried layer 32, is formed in a projection, as shown, and p type polycrystalline silicons 35, 36 are formed on the side surfaces. A thick oxidized film 34 is increased directly under the polycrystalline silicon. A p type region 37 is formed in the layer 33. A p type region 37 is an emitter region, the layers 35, 36 are collector leading electrodes, diffused regions 351, 361 which are contacted with the polycrystalline layers are collector regions. The position of a diffusion window 39 for forming the region 37 is determined by a self-aligning method. Accordingly, the base width L of the transistor can be accurately determined. Further, the parasitic capacity can be reduced using the polycrystalline silicon.

Description

【発明の詳細な説明】 本発明は、半導体装置の構造に関するものである。[Detailed description of the invention] The present invention relates to the structure of a semiconductor device.

従来の横型トランジスタの構造を第1図に示す。The structure of a conventional lateral transistor is shown in FIG.

ここではpnpトランジスタについて説明する。Here, a pnp transistor will be explained.

n型埋込層12よりシリコンn型堆積層13を設け、そ
の一部に酸化膜14を形成し分離領域とする。n型堆積
層13内にp型拡散層15.16を設け、電極11を接
続する。その結果、p型拡散層15.16をエミ、り、
コレクタ領域とし、n型層13をベース領域とする従来
の横型PnP)ランジスタが形成される。係るトランジ
スタ構造では、トランジスタ動作時、p型エミッタ領域
直下のベース領域13に、エミ、り側より注入されたキ
ャリアが蓄積し、高速動作をさまたげる。また大きなコ
レクタ領域16とベース領域がpn接合で接しているた
め、寄生容量が大きく、エミ。
A silicon n-type deposited layer 13 is provided from the n-type buried layer 12, and an oxide film 14 is formed on a part thereof to form an isolation region. P-type diffusion layers 15 and 16 are provided in the n-type deposited layer 13 and connected to the electrode 11. As a result, the p-type diffusion layers 15 and 16 are emittered,
A conventional lateral PnP transistor is formed with the collector region as the collector region and the n-type layer 13 as the base region. In such a transistor structure, when the transistor operates, carriers injected from the emitter side accumulate in the base region 13 directly below the p-type emitter region, hindering high-speed operation. Furthermore, since the large collector region 16 and the base region are in contact with each other through a pn junction, the parasitic capacitance is large and the emitter is large.

タ接地蓮断周波数!、〜lOMHz程度の値しか得られ
ない。
Ta grounding lotus cutting frequency! , ~10MHz can only be obtained.

第2図は、寄生容量を減少し、高速動作を行なわせるた
めに、引出し電極を多績晶シリコンとし、pn接合部分
を極力小さく形成した構造である。
FIG. 2 shows a structure in which the lead electrode is made of polycrystalline silicon and the pn junction is made as small as possible in order to reduce parasitic capacitance and achieve high-speed operation.

係るトランジスタ構造では、p型多結晶引出し電極25
.26の直下に、厚い酸化膜24が形成されているため
、n型ベース愕域23に注入されるキャリアは非常に少
くなる。しかし、横型トランジスタのベース幅りは、多
結晶シリコン25及び26から拡散されたp型領域25
及び26によりてはさまれた幅となる。その結果多結晶
層25及び2.6と単結晶層23との接続点間の距離の
バラツキとp型領域25.26の拡散深さのバラツキと
によって、トランジスタのベース幅が変化するため、素
子特性の電流増幅率のバラツキが大きくなる欠点がある
In such a transistor structure, the p-type polycrystalline lead electrode 25
.. Since the thick oxide film 24 is formed directly under the n-type base region 26, the number of carriers injected into the n-type base excitation region 23 is extremely small. However, the base width of the lateral transistor is limited to the p-type region 25 diffused from the polycrystalline silicon 25 and 26.
and 26. As a result, the base width of the transistor changes due to the variation in the distance between the connection points between the polycrystalline layers 25 and 2.6 and the single crystal layer 23 and the variation in the diffusion depth of the p-type region 25.26. There is a drawback that the characteristic current amplification factor varies widely.

本発明の目的は、上記の欠点を無くし、横型トランジス
タのベース幅のバラツキを少なくシ、かつ寄生容量の少
ない素子構造を提案することにあるO 本発明では、横型トランジスタ寄生容量を多結晶シリコ
ンを用いて低減し、声らに自己整合法を含む素子製造技
術によって、上記の目的を達成したO 以下、本発明の実施例を述べる。
An object of the present invention is to eliminate the above-mentioned drawbacks, reduce variations in the base width of lateral transistors, and propose an element structure with less parasitic capacitance. In the following, embodiments of the present invention will be described, in which the above objects have been achieved by device fabrication techniques including a self-alignment method.

第3図は1本発明による素子構造断面図である。FIG. 3 is a sectional view of an element structure according to the present invention.

n型埋込層32にn型シリコン堆積層33を形成し1図
の様に凸型の形状にしてその側面にp型多結晶シリコン
35.36を形成する。なお、多結晶シリコン直下には
厚い酸化膜34が挿入されている。またn型層33内に
は、p型領域37が形成されている。本発明の構造にお
いて、p型領域37はエミッタ領域、多結晶層35.3
6はコレクタ引出し電極、多結晶層に接した拡散領域3
5゜36はコレクタ領域である。なお、p型領域37を
形成するための拡散窓39の位置は、自己整合法により
定められる。そのため、トランジスタのベース幅りを正
確に決めることができる。
An n-type silicon deposit layer 33 is formed on the n-type buried layer 32, and as shown in FIG. Note that a thick oxide film 34 is inserted directly under the polycrystalline silicon. Furthermore, a p-type region 37 is formed within the n-type layer 33 . In the structure of the present invention, the p-type region 37 is an emitter region, and the polycrystalline layer 35.3
6 is a collector extraction electrode, and a diffusion region 3 in contact with the polycrystalline layer
5°36 is a collector area. Note that the position of the diffusion window 39 for forming the p-type region 37 is determined by a self-alignment method. Therefore, the base width of the transistor can be determined accurately.

第4図は、第3図に示した構造を実現するための製造工
程を示す。a)〜e)にしたぷ゛りて説明する。
FIG. 4 shows a manufacturing process for realizing the structure shown in FIG. 3. A detailed explanation will be given of a) to e).

a):n型埋込層42を有する基板にn型堆積層43を
形成し、・酸化膜410、シリコンちり化膜(813N
、 ) 411 、酸化膜41’2を形成する。
a): An n-type deposited layer 43 is formed on a substrate having an n-type buried layer 42, and an oxide film 410 and a silicon dust film (813N
) 411, an oxide film 41'2 is formed.

次に、通常の写真蝕刻法、及びドライエ、チング法を用
いて酸化膜、ちり化膜、酸化膜。
Next, an oxide film, a dust film, and an oxide film are formed using the usual photolithography method, and drying and etching methods.

シリコン単結晶領域を図の櫟な凸型の形に残す。熱酸化
及びちり化膜を堆積し−た後、再びドライエ、チング法
を用いて、酸化膜413、ちり化4・14を凸型形状の
側面に残す。
The silicon single crystal region is left in the rectangular convex shape shown in the figure. After thermally oxidizing and depositing the dust film, dry etching and etching methods are again used to leave the oxide film 413 and dust films 4 and 14 on the side surfaces of the convex shape.

b);熱酸化を行い、厚い酸化膜44を形成し、ちり化
膜414.酸化膜413を除去して、凸型形状の側面の
シリコン領を露出する。次に多結晶シリコン層を堆積し
、凸型の上面部の多結晶シリコン層のみを選択的に除去
し、多結晶シリコン層45.46を残す。なお、多結晶
シリコン層を選択的に除去するには、たとえば、凹型平
面部にホトレジストを埋込み、霧出した凸面上部の多結
晶シリコンを除去する。次に多結晶シリコン層から、p
型不純物を拡散して、p型コレクタ領域451,461
を形成する。
b); Perform thermal oxidation to form a thick oxide film 44, and form a dust film 414. The oxide film 413 is removed to expose the silicon region on the side surface of the convex shape. Next, a polycrystalline silicon layer is deposited, and only the polycrystalline silicon layer on the upper surface of the convex shape is selectively removed, leaving polycrystalline silicon layers 45 and 46. Note that, in order to selectively remove the polycrystalline silicon layer, for example, a photoresist is buried in the concave plane portion, and the polycrystalline silicon on the upper part of the convex surface that has been sprayed out is removed. Next, from the polycrystalline silicon layer, p
By diffusing type impurities, p-type collector regions 451 and 461 are formed.
form.

C):ちり化膜411を側面より160〜180℃に加
熱したリン酸溶液を用いてエツチングする。
C): Etch the dust film 411 from the side using a phosphoric acid solution heated to 160 to 180°C.

d):酸化膜412を除去し、多結晶シリコンをノくタ
ーノニングし、熱酸化を行うと、多結晶シリコン層44
.45及び単結晶層43上に酸化膜415が形成される
。このとき最初もこ形成された酸化膜410との膜厚差
を充分にとる。   ゛ e):ちり化膜411を除去し、薄し1酸化膜410を
除去してpH,不純物を拡散し、p型領域47を形成し
、エミ、り領域をつくる。
d): When the oxide film 412 is removed, the polycrystalline silicon is finely turned, and thermal oxidation is performed, the polycrystalline silicon layer 44 is removed.
.. An oxide film 415 is formed on the single crystal layer 45 and the single crystal layer 43. At this time, a sufficient difference in film thickness from the oxide film 410 that was initially formed is taken. (e): Remove the dust film 411, remove the thin mono-oxide film 410, diffuse pH and impurities, form a p-type region 47, and create an emitter region.

酸化膜415の一部を開口し、多結晶シリコン及びpm
!領域47に接して、金属電極48を形成する。
A part of the oxide film 415 is opened and polycrystalline silicon and pm
! A metal electrode 48 is formed in contact with region 47 .

以上の製造工程により、本発明の素子力を形成できるが
、ちり化膜のサイドエツチング法を利用して、p型コレ
クタ領域451,461とエミッタ領域47との間を定
めているため、制御性力l良く。
Through the above manufacturing process, the device force of the present invention can be formed, but since the side etching method of the dust film is used to define the space between the p-type collector regions 451, 461 and the emitter region 47, controllability is improved. Good strength.

ベース幅を正確に定めることができる。Base width can be determined accurately.

第5図は1本発明による素子構造で、ベース端子を素子
近傍にとり出した実施例の断面図である。
FIG. 5 is a sectional view of an embodiment of an element structure according to the present invention in which the base terminal is taken out near the element.

本実施例で、p型基板51内に形成されてI/するn型
埋込層52のペース領域は、n11.′多結晶層56か
らn型層5.3に拡散されたn型領域561を通して表
面から取り出されている。なお、エミ、り及びコレクタ
領域は、絶縁膜54上のp型多結晶シリコン層55より
拡散されたp型領域551または、上面より拡散された
p型領域57のいずれでも良い。本実施例では、素子近
傍から、ベース端子が取り出されているため、ベース抵
抗が低減され、また微細化した素子が実現できる。
In this embodiment, the space region of the n-type buried layer 52 formed in the p-type substrate 51 and serving as I/I is n11. 'It is taken out from the surface through an n-type region 561 which is diffused from the polycrystalline layer 56 into the n-type layer 5.3. Note that the emitter, rib and collector regions may be either the p-type region 551 diffused from the p-type polycrystalline silicon layer 55 on the insulating film 54 or the p-type region 57 diffused from the top surface. In this embodiment, since the base terminal is taken out from the vicinity of the element, the base resistance is reduced and a miniaturized element can be realized.

第6図は、第3図に示した本発明の実施例で、さらに高
速化を追求した素子断面構造図である。
FIG. 6 is a cross-sectional structural diagram of an element according to the embodiment of the present invention shown in FIG. 3, which pursues even higher speed.

本実施例では、導電型及び断面形状は、第3図の実施例
と同一であるが、やや濃度の高いn型領域616がp型
エミ、り領域の周辺に拡散されている。n型領域616
とp型領域67とは、同一開口部より拡散されている。
In this embodiment, the conductivity type and cross-sectional shape are the same as those in the embodiment of FIG. 3, but a slightly higher concentration n-type region 616 is diffused around the p-type emitter region. n-type region 616
and p-type region 67 are diffused through the same opening.

そのため、エン、夕領域より注入されたキャリアは61
6領域で加速電界を受けてコレクタ領域に入るため、高
速となる。
Therefore, the carriers injected from the en and yen regions are 61
6 region receives an accelerating electric field and enters the collector region, resulting in high speed.

11:′・ 以上述べた如く1本発明1′こよれば、横型トランジス
タのベース幅を制御性良く定めることができるので、素
子特性変動低減、高速で微細な素子の実現に効果が大き
い。
11:'- As described above, according to the present invention 1', the base width of a lateral transistor can be determined with good controllability, which is highly effective in reducing variations in device characteristics and realizing high-speed and fine devices.

なお1本文中でp型領域とn型領域とを変えた構造でも
、素子特性については同一であることはいうまでもない
It goes without saying that even in structures where the p-type region and the n-type region are changed in one text, the device characteristics are the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の横型トランジスタの断面構造図、第2図
は高周波特性を抜食した従来の横型トランジスタの断面
構造図、第3図は本発明による素子断面構造図、第4図
は第3図の素子を実現する各製造工程毎の断面構造図、
第5図は本発明による素子構造で、ベース電極を直接表
面に接続した構造の断面図、第6図は第3図の素子をよ
り高速にした構造の断面図である。 ・32:n型埋込層 33:n型層 34:絶縁膜 35.36:多結晶層 37:p型層 38:電極 第1図 5 第2図 第3図 亮6起
FIG. 1 is a cross-sectional structure diagram of a conventional lateral transistor, FIG. 2 is a cross-sectional diagram of a conventional lateral transistor with high frequency characteristics omitted, FIG. 3 is a cross-sectional diagram of a device according to the present invention, and FIG. Cross-sectional structure diagrams for each manufacturing process to realize the device shown in the figure,
FIG. 5 is a cross-sectional view of an element structure according to the present invention, in which the base electrode is directly connected to the surface, and FIG. 6 is a cross-sectional view of a structure in which the element of FIG. 3 is made faster.・32: N-type buried layer 33: N-type layer 34: Insulating film 35. 36: Polycrystalline layer 37: P-type layer 38: Electrode Fig. 1 5 Fig. 2 Fig. 3 Ryo 6

Claims (1)

【特許請求の範囲】 1、第1導電型の凸型部を有する半導体基体と、前記基
体の凸型領域以外に設けられた絶縁膜と。 前記絶縁膜上に設けられ、前記基体に接した前記第1導
電型と反対導電型の第2導電型半導体層の第1領域と、
第1領域に接し、前記基体内に設けられた第2導電型の
第2領域と、前記基体内に設けられた第2導電型の第3
領域とを有することを特徴とする半導体装置。 2、上記第2領域を第1導電型の第4領域と、第2導電
型の第5領域とに分割したことを特徴とする特許請求の
範囲第1項記載の半導体装置。 3、上記第3領域の周辺に第1導電型の第6領域を追加
して形成したことを特徴とする特許請求の範囲第1項記
載の半導体装置。
[Claims] 1. A semiconductor substrate having a convex portion of a first conductivity type, and an insulating film provided on a portion other than the convex region of the substrate. a first region of a second conductivity type semiconductor layer of a conductivity type opposite to the first conductivity type provided on the insulating film and in contact with the base;
a second region of the second conductivity type provided within the base and in contact with the first region; and a third region of the second conductivity type provided within the base.
A semiconductor device characterized by having a region. 2. The semiconductor device according to claim 1, wherein the second region is divided into a fourth region of the first conductivity type and a fifth region of the second conductivity type. 3. The semiconductor device according to claim 1, further comprising a sixth region of the first conductivity type formed around the third region.
JP17306581A 1981-10-30 1981-10-30 Semiconductor device Pending JPS5875870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17306581A JPS5875870A (en) 1981-10-30 1981-10-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17306581A JPS5875870A (en) 1981-10-30 1981-10-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5875870A true JPS5875870A (en) 1983-05-07

Family

ID=15953553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17306581A Pending JPS5875870A (en) 1981-10-30 1981-10-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5875870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045065A (en) * 1983-08-04 1985-03-11 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of producing lateral transistor
US4805065A (en) * 1986-10-29 1989-02-14 Eastman Kodak Company Particulate magnetic recording media having an areally controlled recording characteristics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126961A (en) * 1980-03-03 1981-10-05 Ibm Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126961A (en) * 1980-03-03 1981-10-05 Ibm Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045065A (en) * 1983-08-04 1985-03-11 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of producing lateral transistor
US4805065A (en) * 1986-10-29 1989-02-14 Eastman Kodak Company Particulate magnetic recording media having an areally controlled recording characteristics

Similar Documents

Publication Publication Date Title
JP2728671B2 (en) Manufacturing method of bipolar transistor
JPS63140571A (en) Bipolar transistor and manufacture thereof
JPH0123949B2 (en)
JP2002299620A (en) Method for manufacturing silicon carbide semiconductor device
JPH025432A (en) Semiconductor device and its manufacture
JPS60202965A (en) Method of producing improved oxide defined transistor and structure obtained as its result
JPS5875870A (en) Semiconductor device
JPS63244775A (en) Semiconductor device and manufacture of the same
JPS5989457A (en) Manufacture of semiconductor device
JPH0478178B2 (en)
JP2528559B2 (en) Method for manufacturing lateral bipolar transistor
JPS60216580A (en) Manufacture of semiconductor device
JPH03205831A (en) Bipolar transistor
JP2915002B2 (en) Bipolar semiconductor integrated circuit device and method of manufacturing the same
JPS62183558A (en) Manufacture of bipolar transistor
JPS6295871A (en) Manufacture of semiconductor device
JPS6346773A (en) Manufacture of mos transistor
JPS63138764A (en) Semiconductor integrated circuit and manufacture thereof
JPH04359434A (en) Manufacture of semiconductor integrated circuit device
JPS6319870A (en) Semiconductor integrated circuit
JPH02246338A (en) Semiconductor device
JPH03225833A (en) Manufacture of semiconductor device
JPH04233234A (en) Semiconductor device and its manufacture
JPS6060759A (en) Semiconductor device
JPH08274113A (en) Manufacture of semiconductor integrated circuit device