JPS5874903A - Confluence circuit for fluid pressure driver - Google Patents

Confluence circuit for fluid pressure driver

Info

Publication number
JPS5874903A
JPS5874903A JP56174026A JP17402681A JPS5874903A JP S5874903 A JPS5874903 A JP S5874903A JP 56174026 A JP56174026 A JP 56174026A JP 17402681 A JP17402681 A JP 17402681A JP S5874903 A JPS5874903 A JP S5874903A
Authority
JP
Japan
Prior art keywords
valve
pilot
pump
pressure
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56174026A
Other languages
Japanese (ja)
Other versions
JPH0237483B2 (en
Inventor
Hirokatsu Sakamoto
阪本 弘克
Masanobu Sato
正信 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP56174026A priority Critical patent/JPH0237483B2/en
Publication of JPS5874903A publication Critical patent/JPS5874903A/en
Publication of JPH0237483B2 publication Critical patent/JPH0237483B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3122Special positions other than the pump port being connected to working ports or the working ports being connected to the return line
    • F15B2211/3127Floating position connecting the working ports and the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/36Pilot pressure sensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To reduce the size and cost of a fluid pressure driver, by composing a confluence circuit of a check valve, a pilot valve, etc. CONSTITUTION:In a check valve 55, a poppet 59 is put in contact with a valve seat 60 by a spring 58 in a spring chamber 57 to disconnect a primary port 61 and a secondary port 62 from each other. The poppet 59 is stepped at the tip so that the pressure at the primary port 61 and that at the secondary port 62 are both applied to the poppet. The primary port 61 is connected to the pumping line 2 of a pump 1 through a passage 63. The secondary port 62 is connected to the pumping line 13 of a pump 12 through a passage 64. The spring chamber 57 is connected to a pilot valve 56 through a passage 65. The secondary port of a shuttle valve 67 for selecting the higher pressure side of pilot chambers 43, 44 of a changeover valve 4 is connected to a pilot chamber 66 at one end of the pilot valve 56. The secondary port of another shuttle valve 69 for selecting the higher pressure side of pilot chambers 33, 34 of another changeover valve 15 is connected to a pilot chamber 68 at the other end of the pilot valve 56.

Description

【発明の詳細な説明】 本発明は、2台以上のポンプにそれぞれ切換弁を介して
アクチェエータを接続した流体圧駆動装置の合流回路に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a merging circuit for a fluid pressure drive device in which actuators are connected to two or more pumps through respective switching valves.

この種の合流回路を備えるものとして、例えば第1図に
示す如き油圧ショベルがある。このものは、可変容量形
ポンプ(1)のポンプライン(2)に、アーム作動用シ
リンダ(3)を接続した切換弁(4)、左走行用液圧モ
ータ(5)を接続した切換弁(6)、旋回用液圧モータ
(7)を接続した切換弁(8)およびブーム合流用切換
弁(9)を並列に接続し、原動機0υによシ可変容量形
ポンプ(1)、定容量形ポンプOIと同時駆動される可
変容量形ポンプα2のポンプライン(13にはブーム作
動用シリンダDIを接続した切換弁0511右走行用液
圧モータQQを接続した切換弁αη、パケット作動用シ
リンダ(11を接続した切換弁Hおよびアーム合流用切
換弁翰を並列に接続すると共に、切換弁(4) 、(6
)t (8)はこれと対応するパイロット操作弁Qυ、
@、(ハ)により、また、切換弁(15)、 07)、
 (11はこれと対応するパイロット操作弁c24J、
(ハ)、@により、当該切換弁のパイロット室にポンプ
α1からのパイロット圧を導いて切換えるようにしてい
る。一方、ブーム合流用切換弁(9)のアクチェエータ
ボートは流路@#(ハ)により切換弁a!19とシリン
ダα4とをつなぐ流路■、OIに接続すると共に、ブー
ム合流用切換弁(9)のパイロット室Gυ#03と切換
弁Q9のパイロット室(至)、(財)とを通路(至)t
clIによシ連通し、また、アーム合流用切換弁■のア
クチェエータボートは流路(3’n、c!aにより切換
弁(4)とシリンダ(3)とをつなぐ流路C(I、 (
40に接続すると共に、アーム合流用切換弁■のパイロ
ット室(4υ、(4のと切換弁(4)のパイロット室(
43,(44)とを通路(4■(ハ)によシ連通して合
流回路を構成しヤいる。また、各パイロット操作弁から
の各パイロット圧は各々チェック弁を介してポンプ(1
)または(13の傾転量を制御するレギュレータ(52
または(至)に導くようにしている。いま、パイロット
操作弁Qυの操作レバー(47)を中立位置から例えば
右方に操作すると、減圧弁(4蹄が作動しポンプα1の
吐出通路θ1をパイロット通路(至)につなぐ・ので、
ポンプ(IQ 本らのパイロット圧はパイロット室(4
4と(4のに作用し切換弁(4)、■は共に位置Aに切
換わる。
For example, a hydraulic excavator as shown in FIG. 1 is equipped with this type of merging circuit. This one consists of a switching valve (4) connected to the pump line (2) of the variable displacement pump (1), a switching valve (4) connected to the arm actuation cylinder (3), and a switching valve (4) connected to the left travel hydraulic motor (5). 6), A switching valve (8) connected to a swing hydraulic motor (7) and a boom merging switching valve (9) are connected in parallel, and a variable displacement pump (1) and a fixed displacement type are connected to the prime mover 0υ. The pump line of the variable displacement pump α2 that is driven simultaneously with the pump OI (13 is the switching valve 0511 to which the cylinder DI for boom operation is connected; the switching valve αη to which the hydraulic motor QQ for right travel is connected; the cylinder for packet operation (11 The switching valves H connected to the arm merging switching valves (4) and (6) are connected in parallel.
)t (8) is the corresponding pilot operated valve Qυ,
@, (c) also allows switching valves (15), 07),
(11 is the corresponding pilot operated valve c24J,
(c) With @, the pilot pressure from the pump α1 is guided to the pilot chamber of the switching valve for switching. On the other hand, the actuator boat of the boom merging switching valve (9) is connected to the switching valve a! by the flow path @# (c). 19 and cylinder α4, connect to OI, and connect the pilot chamber Gυ#03 of the boom merging switching valve (9) to the pilot chamber (to) of the switching valve Q9, )t
In addition, the actuator boat of the arm merging switching valve ■ is connected to the flow path C (I , (
40, and the pilot chamber (4υ, (4) of the arm merging switching valve ■ and the pilot chamber of the switching valve (4)
43, (44) are connected through the passage (4) (c) to form a confluence circuit. In addition, each pilot pressure from each pilot operating valve is connected to the pump (1) via a check valve.
) or (regulator (52) that controls the amount of tilting of (13)
or (to). Now, if the operating lever (47) of the pilot operating valve Qυ is operated, for example, to the right from the neutral position, the pressure reducing valve (4 lobes) will operate and connect the discharge passage θ1 of the pump α1 to the pilot passage (to).
Pump (IQ) The main pilot pressure is in the pilot chamber (4
4 and (4), switching valves (4) and (2) are both switched to position A.

従って、ポンプライン(2)、切換弁(4)、流路OI
を流れるポンプ(1)からの流体に、ポンプラインa〜
、切換弁■、流路07)を流れる′ポンプQ2からの流
体が流路C11f合流してシリンダ(3)に流入する。
Therefore, the pump line (2), the switching valve (4), the flow path OI
The fluid from the pump (1) flowing through the pump line a~
, the switching valve (2), and the flow path 07), the fluid from the pump Q2 joins the flow path C11f and flows into the cylinder (3).

′同様に、パイロット操作弁(財)を操作して例えば減
圧弁6υを作動させポンプQlからのパイロット圧を切
換弁α−のパイロット室(財)と切換弁(9)のパイロ
ット室CI3に導き、切換弁(t!9t (9)を共に
位置Aに切換えると、ポンプライン(131,切換弁a
9、流路(至)を流れるポンプa3の吐出流体に、ポン
プライン(2)、切換弁(9)、流路(至)を流れるポ
ンプ(1)からの流体が流路(至)で合流してシリンダ
Iに流入する。
'Similarly, operate the pilot operating valve (material) to operate, for example, the pressure reducing valve 6υ, and guide the pilot pressure from the pump Ql to the pilot chamber (material) of the switching valve α- and the pilot chamber CI3 of the switching valve (9). , switching valve (t!9t (9)) to position A, the pump line (131, switching valve a
9. The fluid discharged from pump a3 flowing through the flow path (to), the pump line (2), the switching valve (9), and the fluid from pump (1) flowing through the flow path (to) join together at the flow path (to). and flows into cylinder I.

しかし、前記合流回路は、2個の合流用切換弁(9)、
 (21とこれらの切換弁をアクチュエータに接続する
4本の流路が必要となるので、装置が大型化すると共に
、コスト高となる欠点があった。
However, the merging circuit includes two merging switching valves (9),
(21) and four flow paths connecting these switching valves to the actuator are required, which has the drawback of increasing the size of the device and increasing cost.

本発明は、前記の点に鑑み、合流用切換弁より一段と小
型のチェック弁とパイロット弁等を用いてコンパクトな
合流回路とすることにより、装置の小型化とコスト低減
を図ることを目的としている。
In view of the above points, the present invention aims to reduce the size and cost of the device by creating a compact merging circuit using a check valve, a pilot valve, etc. that are even smaller than the merging switching valve. .

以下本発明の実施例を図面について説明する。第2図に
おいて、可変容量形ポンプ(1)のポンプライン(2)
にはアーム作動用シリンダ(3)を接続した切換弁(4
)、左行用液圧モータ(図示せず)を接続した切換弁(
6)、旋回用液圧モータ(図示せず)を接続した切換弁
(8)を並列に接続し、可変容量形ポンプ(1)、定容
量形ポンプQlと共に原動機aυで駆動される可変容量
形ポンプa3のポンプライン0にはブーム作動用シリン
ダIを接続した切換弁(15+、右走行用液圧モータ(
図示せず)を接続した切換弁面、パケット作動用シリン
ダ(図示せず)を接続した切換弁四を並列に接iすると
共に、切換弁(4)はパイロット操作弁Qυにより、切
換弁09はパイロット操作弁@によシ、切換弁のパイロ
ット室にポンプ01からのパイロット圧を導いて切換え
るようにしており、また、切換弁(6)、 (8)、α
η、 (IIもそれぞれパイロット操作、弁C19と同
じ構成のパイロット操作弁(図示せ゛ず)により切換え
るようにしている。なお、その際のパイロット圧は切換
弁を切換えると同時に、チェック弁を介して切換弁切換
え側と々るポンプ+0またはaりのレギュレータa2ま
たは鰻に導きポンプ傾転量を制御するようにしている。
Embodiments of the present invention will be described below with reference to the drawings. In Figure 2, the pump line (2) of the variable displacement pump (1)
is a switching valve (4) connected to an arm actuation cylinder (3).
), a switching valve connected to a left-hand hydraulic motor (not shown) (
6), a switching valve (8) connected to a swing hydraulic motor (not shown) is connected in parallel, and a variable displacement pump (1) and a constant displacement pump Ql are driven by a prime mover aυ. Pump line 0 of pump a3 has a switching valve (15+) connected to cylinder I for boom operation, and a hydraulic motor for right travel (
The switching valve surface connected to the switching valve (not shown) and the switching valve 4 connected to the packet actuation cylinder (not shown) are connected in parallel, and the switching valve (4) is controlled by the pilot operated valve Qυ, The pilot operated valve is designed to guide the pilot pressure from pump 01 into the pilot chamber of the switching valve for switching, and the switching valves (6), (8), α
η, (II is also pilot operated and switched by a pilot operated valve (not shown) having the same configuration as valve C19.In addition, the pilot pressure at that time is controlled via a check valve at the same time as switching the switching valve. The switching valve is connected to regulator a2 or eel of pump +0 or a on the switching side to control the amount of pump tilting.

以上の構成は第1図に示した従来装置と同じ構成である
The above configuration is the same as the conventional device shown in FIG.

ところで本実施例の合流回路には、第1図に示すり個の
合流用切換弁よシ一段と小型のチェック弁(至)とパイ
ロット弁(至)を使用している。チェック弁15ツは、
ばね室67)のばね艶によりボペツ) 15値を弁座−
に当接して1次ポート11)と2次ボート−〇連通を断
つ構成であり、ボペツ) 69は先端部を段付きにして
1次ポート日と2次ポー) 13の両圧力を作用させる
ようにしている。1次ボート11)は流路、I3により
ポンプ(1)のポンプライン(2)に接続し、2次ボー
) 13は流路−によりポンプ(13のポンプライン0
に接続し、ばね室6ηは流路151によシパイロット弁
(至)K接続している。このパイロット弁は、一端のノ
々イロット室輸に切換弁(4)のパイロット室(43,
(441の高圧側を選択するシャトル弁1?)の2次ボ
ートをつなぎ、他端のパイロット室岐に切換弁051の
ノ(イロット室(至)、(財)の高圧側を選択するシャ
トル弁四の2次ボートをつ力いで、切換位置においては
ノ(イロット圧で切換わる側のポンプラインを流路−に
連通し、中立位置においてはポンプライン(2)。
By the way, the merging circuit of this embodiment uses a check valve (to) and a pilot valve (to) which are much smaller than the merging switching valves shown in FIG. 15 check valves are
Due to the spring gloss of the spring chamber 67), the value of 15) is lowered to the valve seat.
69 has a stepped tip so that both the pressure of the primary port 11) and the secondary port 13 are applied. I have to. The primary boat 11) is connected to the pump line (2) of the pump (1) by a channel I3, and the secondary boat 13 is connected to the pump line 0 of the pump (13) by a channel I3.
The spring chamber 6η is connected to the flow path 151 to the pilot valve K. This pilot valve has a pilot chamber (43,
(Shuttle valve 1 to select the high pressure side of 441) is connected to the pilot chamber branch at the other end of the switching valve 051 (pilot chamber (to), shuttle valve to select the high pressure side of (foundation) In the switching position, the pump line on the switching side is connected to the flow path by applying pressure to the secondary boat (4), and in the neutral position, the pump line (2) is connected to the flow path.

03のうち高圧側をシャトル弁σ〔によって選択してこ
れを流路65)K接続している。
The high pressure side of 03 is selected by shuttle valve σ and connected to flow path 65)K.

第3図は本発明のいま一つの実施例を示す。FIG. 3 shows another embodiment of the invention.

この実施例では、合流回路以外の構成は第2図に示す実
施例と同じであるので、第2図に示す部分と対応する部
分は同符号によって重復説明を省略している。
In this embodiment, the configuration other than the merging circuit is the same as the embodiment shown in FIG. 2, so parts corresponding to those shown in FIG. 2 are designated by the same reference numerals, and redundant explanation will be omitted.

第3図に示す合流回路には、第1図に示す合流用切換弁
の代りにこれより一段と小型の2個のチェック弁aυ、
σのと2個の2位置3ボートのパイロット弁ff3.υ
→を使用している。チェック弁ffυの1次ポート(ハ
)は流路ffQにより可変容量形ポンプa3のポンプラ
イン03に、2次ボートffηは流路fflによシ可変
容量形ポンプ(1)のポンプライン(2)に、ばね室σ
傷は流路■によシパイロット弁0に接続している。この
パイロット弁は、切換弁(4)のパイロット室(ハ)、
 ’ (44) f)うちシャトル弁6ηによって選択
された高圧側のパイロット圧で切換わってばね室6!J
をポンプ(1)のポンプライン(2)に接続し、パイロ
ット圧がない場合にはばね室fflを1次ボートσ嘔に
接続するものである。チェック弁aりの1次ボート@0
は流路@3. ff1lによシポンプ(11のポンプラ
イン(2)に連通し、2次ボート(ハ)は流路(財)、
σeによりポンプazのポンプライン(13に連通し、
ばね室輸は流路−によりパイロット弁ff4)に接続し
ている。このパイロット弁は、切換弁051のパイロッ
ト室(至)、(財)のうちシャトル弁1によって選択さ
れた高圧側のパイロット圧で切換わってばね室(ハ)を
ポンプQ5のポンプライン(131につなぎ、パイロッ
ト圧がない場合にはばね室@9を1次ボー)(81)に
接続するものである。
In place of the merging switching valve shown in Fig. 1, the merging circuit shown in Fig. 3 includes two check valves aυ, which are much smaller than the merging switching valve shown in Fig. 1.
σ and two 2-position 3-boat pilot valves ff3. υ
→ is used. The primary port (c) of the check valve ffυ is connected to the pump line 03 of the variable displacement pump a3 through the flow path ffQ, and the secondary port ffη is connected to the pump line (2) of the variable displacement pump (1) through the flow path ffl. , the spring chamber σ
The wound is connected to the pilot valve 0 through the flow path ■. This pilot valve is a pilot chamber (c) of a switching valve (4),
(44) f) The spring chamber 6 is switched by the pilot pressure on the high pressure side selected by the shuttle valve 6η! J
is connected to the pump line (2) of the pump (1), and when there is no pilot pressure, the spring chamber ffl is connected to the primary boat σ. Primary boat with check valve a @0
is the flow path @3. The secondary boat (c) is connected to the pump line (2) of ff1l (connected to the pump line (2) of 11),
σe connects the pump az pump line (13),
The spring chamber inlet is connected to the pilot valve ff4) by a flow path. This pilot valve switches the spring chamber (c) to the pump line (131) of the pump Q5 by switching with the pilot pressure on the high pressure side selected by the shuttle valve 1 among the pilot chamber (to) of the switching valve 051. This connects the spring chamber @9 to the primary baud (81) when there is no pilot pressure.

次に、本実施例による合流回路の動作につき説明する。Next, the operation of the confluence circuit according to this embodiment will be explained.

第2図において、パイロイト操作弁Qυ、(2滲が図示
中立状態にあるときは、チェック弁6つのばね室6ηに
ポンプ(1)* (2)のうち高圧側のポンプ吐出圧力
がシャトル弁σ〔を経て導かれているので、この圧力と
ばね(至)とによるポペット押付力はポペット69の先
端に作用するポンプ(1)、 (121の吐出圧力によ
るポペット押上げ力よシ大となりポペット15Iは弁座
−に当接している。いま、パイロット操作弁(21)の
操作レバー(47)を図示中立位置から例えば右方に操
作すると、減圧弁(ハ)が作動しポンプ(IIの吐出通
路(至)をパイロット通路−につなぐので、パイロット
圧は切換弁(4)のパイロット室θaと、シャトル弁I
T)を経てパイロット弁(至)のパイロット室−とに作
用し、切換弁(4)とパイロット弁(至)は共に位置A
に切換わシ、チェック弁65)のばね室6?)にはポン
プ(1)の吐出圧力が作用する。また、同時に、パイロ
ット圧はチェック弁を介してポンプ(1)および(J2
)のレギユレータ“63.(へ)に導かれ、ポンプの傾
転量、を増大させる。従って、チェック弁−01次ポー
ト6υとばね室希は同圧となシ、一方、2次ボートI3
にはポンプa3の圧力が導かれているから、2次ボー)
 13の圧力がばね室6?)の圧力、即ち、ポンプ(1
)の圧力とばね(至)の力との和に打ち勝つと、ポペッ
ト6傷は開きポンプazからの流体が2次ポー) 13
から1次ボート旬、流路−を経てポンプライン(2)に
入り、ポンプ(1)からの流体と−合流して切換弁(4
)を通シシリング(3)へ流れる。このとき、2次ボー
) (621の圧力が1次ボート@0の圧力より低い場
合には、ポペット(5glは弁座−に押し付けられ1次
ボートI])から2次ボートI21への逆流は起らない
。即ち、この場合にチェック弁5つは通常のチェック弁
として作用する。ここで)パイロット操作弁(20の操
作レバー(4?)を中立位置に戻すと、いままでパイロ
ット室(44)96119に作用していたパイロット圧
がなくなるので、切換弁(4)およびパイロット弁(至
)は内装するばねによ〜 り中立位置に復帰し、シリンダ(3)は作動を停止する
。一方、チェック弁69のばね室61)にはシャトル弁
(7〔によりポンプライン(2)、 (13のいずれか
高い方の圧力が導かれているので、ポペット6鵡は閉じ
1次ボート6υと2次ボー) 13の連通を断つ。
In Fig. 2, when the pilot operating valve Qυ, (2) is in the neutral state shown, the discharge pressure of the high pressure side pump (1) * (2) of the shuttle valve σ is applied to the spring chamber 6η of the six check valves. [Since this pressure and the force of pushing the poppet due to the spring (to) are larger than the push-up force of the poppet due to the discharge pressure of the pump (1) and (121) acting on the tip of the poppet 69, the poppet 15I is in contact with the valve seat -.Now, if the operating lever (47) of the pilot operating valve (21) is operated, for example, to the right from the neutral position shown in the figure, the pressure reducing valve (c) will operate and the discharge passage of the pump (II) will be operated. (to) is connected to the pilot passage -, so the pilot pressure is between the pilot chamber θa of the switching valve (4) and the shuttle valve I.
The switching valve (4) and the pilot valve (to) are both at position A.
The spring chamber 6 of the check valve 65) is switched to ? ) is affected by the discharge pressure of the pump (1). At the same time, the pilot pressure is applied to pump (1) and (J2) via the check valve.
) to the regulator "63. (to), which increases the amount of tilting of the pump. Therefore, the check valve-01 primary port 6υ and the spring chamber No. 6 are at the same pressure. On the other hand, the secondary port I3
Since the pressure of pump a3 is guided to , the secondary baud)
13 pressure is spring chamber 6? ), i.e., the pressure of the pump (1
) and the force of the spring (to), the poppet 6 wound opens and the fluid from pump az flows into the secondary po) 13
The primary boat enters the pump line (2) via the flow path, merges with the fluid from the pump (1), and enters the switching valve (4).
) flows to Siciling (3). At this time, the backflow from the poppet (5gl is pressed against the valve seat and the primary boat I]) to the secondary boat I21 is In other words, in this case, the five check valves act as normal check valves.If the operating lever (4?) of the pilot operating valve (20) is returned to the neutral position, the pilot chamber (44? ) 96119 disappears, the switching valve (4) and the pilot valve (to) return to the neutral position by the internal spring, and the cylinder (3) stops operating.Meanwhile, Since the pressure of either the pump line (2) or (13), which is higher, is guided by the shuttle valve (7) to the spring chamber 61 of the check valve 69, the poppet 6 is closed and the primary boat 6υ and the secondary Bo) Cut off communication with 13.

次に、パイロット操作弁c!滲の操作レバー蚊を図示中
立位置から例えば右方へ操作すると、減圧弁6υが作動
しポンプOIの吐出通路(41をパイロット通路(ハ)
につなぐので、パイロット圧は切換弁09ノパイロツト
室(財)と、シャトル弁四を経てパイロット弁鏝のパイ
ロット室輸とに作用し、切換弁α9とパイロット弁(5
eは共に位置Bに切換わり、チェック弁551のばね室
67)にはポンプ(12+の吐出圧力が作用する。また
、同時にこのパイロット圧はチェック弁を介してポンプ
02)および(1)のレギュレータ631. (53に
導かれポンプ傾転量を増大させる。従って、チェック弁
651のばね室67)と2次ボー) I2が同圧となり
、一方、1次ボー)If)にはポンプ(1)の吐出圧力
が導かれているから、1次ポート旬の圧力がばね室6η
の圧力、即ちポンプ02の圧力とばね6υの力との和に
打ち勝つと、ボペッ) 151は開きポンプ(1)から
の流体が1次ボτ)11)から2次ボート關、流路−を
経てポンプラインQ31に入シ、ポンプaカからの流体
と合流して切換弁(IJを通りシリンダa4へ流れる。
Next, pilot operated valve c! When the operation lever of the pump is operated, for example, to the right from the neutral position shown in the figure, the pressure reducing valve 6υ is activated, and the discharge passage (41) of the pump OI is connected to the pilot passage (c).
Since the pilot pressure is connected to the pilot chamber of the pilot valve 09 and the pilot chamber of the pilot valve trowel via the shuttle valve 4, the pilot pressure acts on the pilot chamber of the pilot valve α9 and the pilot valve (5).
e are both switched to position B, and the discharge pressure of the pump (12+) acts on the spring chamber 67) of the check valve 551. At the same time, this pilot pressure is applied to the pump 02) and the regulator (1) via the check valve. 631. (The spring chamber 67 of the check valve 651) and the secondary bow) I2 become the same pressure, while the primary bow) If) has the same pressure as the discharge of the pump (1). Since the pressure is guided, the pressure at the primary port is the spring chamber 6η.
, that is, the sum of the pressure of pump 02 and the force of spring 6υ, 151 opens and the fluid from pump (1) flows from the primary boat τ) 11) to the secondary boat and the flow path. The fluid then enters the pump line Q31, joins the fluid from the pump a, and flows through the switching valve (IJ) to the cylinder a4.

このとき、1次ボート6υの圧力が2次ボー) 12の
圧力よシ低い場合にはポペット(5Iは弁座■に押し付
けられ2次ボー) 11から1次ボート伯υへの逆流は
起らない。
At this time, if the pressure of the primary boat 6υ is lower than the pressure of the secondary boat 12, the backflow from the poppet (5I is pressed against the valve seat ■ and the secondary boat) 11 to the primary boat υ does not occur. do not have.

次に、第6図に示す合流回路の動作につき説明する。図
において、パイロット操作弁Qυ、 C)4)の操作レ
バー(4η、 (87)が中立位置にある図示状態にお
いては;チェック弁ffυのばね室σ優にはポンプ(+
3の吐出圧力が導かれており、チェック弁a3のばね室
(ハ)にはポンプ(1)の吐出圧力が導かれている。従
って、チェック弁συ、621の押上げ側圧力(1次ポ
ート圧力)と押付は側圧力(ばね室圧力)とは同圧にな
シ、ポペットa3.a:lは共にばね−、(9υによシ
弁座614)、I51に当接し、弁は閉じている。いま
、操作レバー(4ηを図示中立位置から例えば右方に操
作すると、減圧弁(48が作動しポンプOIの吐出通路
(41をパイロット通路(至)につなぐので、パイロッ
ト圧は切換弁(4)のパイロット室(4荀と、シャトル
弁17)を経てパイロット弁−σjのパイロット室(図
示せず)とに作用し、切換弁(4)とパイロット弁σ罎
は位置Bに切換わり、チェック弁aυのばね室fflに
はポンプ(1)の吐出圧力が作用する。また、同時にこ
のパイロット圧はチェック弁を介してポンプ(11およ
びaりのレギュレータ52.63に導かれ、ポンプ傾転
量を増大させる。この場合、ポンプθ2の吐出圧力によ
るポペット押上げ力がばね−とばね室σ傷の圧力、即ち
ポンプ(1)の吐出圧力によるポペット押付は力より大
であると、ボペッ) (921は開きポンプ(1のから
の流体が1次ボートCl5)から2次ポートσD1流路
ff均を経てポンプライン(2)に流入し、ポンプ(1
)からの流体と合流して切換弁(4)を通りシリンダ(
3)に流入する。このとき、1次ボートσ9の圧力が2
次ボートσηの圧力より低ければポペット(93は閉じ
2次ボートσηから1次ボー) Cl5)への逆流を阻
止する。一方、チェック弁σ邊は、パイロット弁ff4
が図示位置にあるので1次ボート@Dとばね室−が同圧
であってポペット(93はばねaυにより弁座(ホ)に
当接している。ここで、操作レバー +47)を中立位
置に戻すと、パイロット圧はなくなシ切換弁(4)は中
立位置に戻り、シリンダ(3)は作動を停止し、パイロ
ット弁ff、llは位置Aに切換わってばね室σ傷にポ
ンプ03の吐出圧力を導くので、ばね室fflと1次ボ
ー)ff!ila同圧となり、ボペット(93はばね翰
によシ弁座(財)に当接する。
Next, the operation of the merging circuit shown in FIG. 6 will be explained. In the figure, in the illustrated state where the operating lever (4η, (87)) of the pilot operated valve Qυ, C) 4) is in the neutral position; the spring chamber σ of the check valve ffυ is in the pump (+
The discharge pressure of pump (1) is guided to the spring chamber (c) of check valve a3. Therefore, the push-up side pressure (primary port pressure) of the check valve συ, 621 and the push-side pressure (spring chamber pressure) are not the same pressure, and the poppet a3. Both a:l are in contact with the spring -, (9υ valve seat 614), and I51, and the valve is closed. Now, when the operating lever (4η) is operated, for example, to the right from the neutral position shown in the figure, the pressure reducing valve (48) is activated and connects the discharge passage (41) of the pump OI to the pilot passage (to), so the pilot pressure is changed to the switching valve (4). The switching valve (4) and the pilot valve σj are switched to position B, and the check valve σj is switched to the position B. The discharge pressure of the pump (1) acts on the spring chamber ffl of aυ.At the same time, this pilot pressure is led to the pump (11) and the regulators 52 and 63 of a through the check valve, and controls the amount of pump displacement. (921 is opened, and fluid from the pump (1) flows from the primary boat Cl5 through the secondary port σD1 channel ff into the pump line (2), and the fluid from the pump (1) flows into the pump line (2) through the secondary port
) and passes through the switching valve (4) into the cylinder (
3). At this time, the pressure of the primary boat σ9 is 2
If the pressure is lower than the pressure of the secondary boat ση, the poppet (93 is closed) prevents the backflow from the secondary boat ση to the primary boat (Cl5). On the other hand, the check valve σ is the pilot valve ff4
is in the position shown, the pressure in the primary boat @D and the spring chamber - is the same, and the poppet (93 is in contact with the valve seat (E) by the spring aυ.Here, the operating lever +47) is moved to the neutral position. When the pilot pressure is returned, the pilot pressure disappears and the switching valve (4) returns to the neutral position, the cylinder (3) stops operating, and the pilot valves ff and 11 switch to position A, causing the spring chamber σ damage to the pump 03. Since the discharge pressure is guided, the spring chamber ffl and the primary bow) ff! The pressure becomes the same, and the boppet (93) comes into contact with the valve seat due to the spring wire.

また、パイロット操作弁(24)の操作レバー@ηを図
示中立位置から例えば左方へ操作すると、減圧弁(ト)
が作動しポンプa1の吐出通路O1をパイロット通路(
資)につなぐので、パイロット圧は切換弁O5のパイロ
ット室(至)と、シャトル弁−を経てパイロット弁σ菊
のパイロット室(図示せず)とに作用し、切換弁a5と
パイロット弁ffくは位置Bに切換わシ、チェック弁f
f3のばね型缶にポンプ0δの吐出圧力が作用する。ま
た、同時にこのパイロット圧はチェック弁を介してポン
プαaおよび(1)のレギュレータ(53,62)に導
かれポンプ傾転量を増大させる。この場合、ポンプ(1
)と連通する1次ボート@Dの圧力によるポペット押上
げ力がばね0υとばね型缶の圧力即ちポンプaりの吐出
圧力によるポペット押付は力より大であるとポペット(
93は開き、ポンプ(1)からや流体が1次ポート抑か
ら2次ボート日、流路(財)、 fff9−を経てポン
プライン(3)に流入し、ポンプa3からの流体と合流
して切換弁QSを通りシリンダIへ流れる。
In addition, when the operating lever @η of the pilot operating valve (24) is operated from the neutral position shown in the figure, for example, to the left, the pressure reducing valve (t)
is activated and the discharge passage O1 of pump a1 is connected to the pilot passage (
Since the pilot pressure is connected to the pilot chamber (not shown) of the switching valve O5 and the pilot chamber (not shown) of the pilot valve σ through the shuttle valve is switched to position B, check valve f
The discharge pressure of pump 0δ acts on the spring type can f3. At the same time, this pilot pressure is introduced to the pump αa and the regulator (53, 62) of (1) via the check valve to increase the pump displacement amount. In this case, the pump (1
) The poppet pushing force due to the pressure of the primary boat @D communicating with the spring 0υ is greater than the force pushing the poppet due to the pressure of the spring type can, that is, the discharge pressure of the pump a, the poppet (
93 opens, and fluid from the pump (1) flows from the primary port to the secondary boat, through the flow path, fff9-, into the pump line (3), and merges with the fluid from pump a3. It flows to cylinder I through switching valve QS.

このとき、1次ボート@Dの圧力が2次ボート(ハ)の
圧力より低ければポペット6)3は閉じ2次ボート缶か
ら1次ボー)@1)への逆流を阻止する。一方、チェッ
ク弁ffυは、パイロット弁ff3が図示位置にあるの
で、1次ポート四とばね室fflは同圧であってボペク
ト盤はばね園によシ弁座(財)に当接している。ここで
、操作レバー−を中立位置に戻すとパイロット圧はなく
なり、切換弁(15)は中立位置に戻りシリンダIは作
動を停止する。
At this time, if the pressure in the primary boat @D is lower than the pressure in the secondary boat (c), the poppet 6) 3 closes to prevent backflow from the secondary boat can to the primary boat (c). On the other hand, in the check valve ffυ, since the pilot valve ff3 is in the illustrated position, the primary port 4 and the spring chamber ffl are at the same pressure, and the spring chamber is in contact with the valve seat. When the operating lever is returned to the neutral position, the pilot pressure disappears, the switching valve (15) returns to the neutral position, and the cylinder I stops operating.

一方、パイロット弁ff4)は位置Aに切換わってばね
室(へ)にポンプ(1)の吐出圧力を導くので、1次ボ
ート@Dとばね型缶は同圧となり、ポペット(至)はば
ねaDによ〕弁座(ホ)に当接する。
On the other hand, the pilot valve ff4) switches to position A and guides the discharge pressure of the pump (1) to the spring chamber (to), so the primary boat @D and the spring type can have the same pressure, and the poppet (to) aD] comes into contact with the valve seat (E).

以上説明した如く本発明においては、一方のポンプに1
次ポートを連通し他方のポンプに2次ボートを連通し些
チェック弁と、このチェック弁のばね室に両ポンプの吐
出圧力木選択的に導くパイロット弁を用いて合流回路を
構成したから、従来の大きな2個の合流用切換弁および
2個の合流用切換弁をア、クチュエータに接続する4本
の流路が不要となって装置を小型化することができ、ま
た、コストを低゛減できる効果を有する。
As explained above, in the present invention, one pump has one
A confluence circuit is constructed using a small check valve that connects the secondary port to the other pump, and a pilot valve that selectively guides the discharge pressure of both pumps to the spring chamber of this check valve. The two large merging switching valves and the four flow paths connecting the two merging switching valves to the actuator are no longer required, making the device more compact and reducing costs. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の油圧回路図、第2図および第3図は
それぞれ本発明の実施例を示す油圧回路図である。 1.12・・・可変容量形ポンプ、3・・・アーム作動
用シリンダ、4,6.8,15,17.19・・・切換
弁、10・・・定容量形ポンプ、14・・・ブーム作動
用シリンダ、21.24・・・パイロット操作弁、48
,51.96・・・減圧弁、52.53・・・レギユレ
ータ、55− 71− 72・・・チェック弁、56,
73,74・・・パイロット弁、57゜79.85・・
・ばね室、61,75,81・・・1次ボー)、62,
77.83・・・2次ボート、67.69,70・・・
シャトル弁。 特許出願人  川崎重工業株式−会社 式 環1人  弁理士太 1)鴫(
FIG. 1 is a hydraulic circuit diagram of a conventional device, and FIGS. 2 and 3 are hydraulic circuit diagrams each showing an embodiment of the present invention. 1.12... Variable displacement pump, 3... Arm actuation cylinder, 4, 6.8, 15, 17.19... Switching valve, 10... Fixed displacement pump, 14... Boom actuation cylinder, 21.24... Pilot operation valve, 48
, 51.96...Pressure reducing valve, 52.53...Regulator, 55- 71-72...Check valve, 56,
73,74...Pilot valve, 57°79.85...
・Spring chamber, 61, 75, 81...1st bow), 62,
77.83...Secondary boat, 67.69,70...
Shuttle valve. Patent applicant: Kawasaki Heavy Industries, Ltd. - Company style Tamaki: 1 Patent attorney: Ta 1) Shizuku (

Claims (2)

【特許請求の範囲】[Claims] 1.2台のポンプにそれぞれ切換弁を介してアクチュエ
ータを接続した流体圧駆動装置において、1次ボートを
一方のポンプに、2次ポートを他方のポンプにそれぞれ
接続した少なくとも1個のチェック弁と、2台のポンプ
の吐出ラインとを接続する流路の途中に介装さ  [れ
、合流信号を検知して自動的に前記チェック弁のばね室
と2次ポートを連通し、合流信号を検知しないとき前記
チェック弁のばね室と1次ボートを連通ずるパイロット
弁とを配設したことを特徴とする流体圧駆動装置の合流
回路。
1. In a fluid pressure drive system in which an actuator is connected to two pumps through switching valves, at least one check valve is connected to the primary port to one pump, and the secondary port to the other pump. , is installed in the middle of the flow path that connects the discharge lines of the two pumps, detects the merging signal, automatically connects the spring chamber of the check valve with the secondary port, and detects the merging signal. A merging circuit for a fluid pressure drive device, characterized in that a pilot valve is provided that communicates the spring chamber of the check valve with the primary boat when the check valve is not in operation.
2.2台のポンプにそれぞれ切換弁を介してアクチュエ
ータを接続した流体圧駆動装置において、1次ボートを
一方のポンプに、2次ポートを他方のポンプに接続した
1個のチェック弁と、2台のポンプの吐出ラインを接続
する流路の途中に介装され、合流信号を検知して自動的
に合流をうける声のポンプ吐出ラインを前記チェック弁
のばね室に連通させる3位置パイロット弁と、このパイ
ロット弁が中立位置にあるとき2つのポンプのうち高い
方の圧力を検出しこの圧力を前記チェック弁のばね室に
導くシャトル弁とを配設したことを特徴とする流体圧駆
動装置の合流回路。
2. In a fluid pressure drive system in which an actuator is connected to two pumps through switching valves, one check valve connects the primary boat to one pump, the secondary port to the other pump, and the two pumps. a 3-position pilot valve that is interposed in the middle of a flow path connecting the discharge lines of the two pumps and connects the pump discharge lines that automatically merge upon detection of a merge signal to the spring chamber of the check valve; and a shuttle valve that detects the higher pressure of the two pumps when the pilot valve is in the neutral position and guides this pressure to the spring chamber of the check valve. confluence circuit.
JP56174026A 1981-10-29 1981-10-29 RYUTAIATSUKUDOSOCHINOGORYUKAIRO Expired - Lifetime JPH0237483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56174026A JPH0237483B2 (en) 1981-10-29 1981-10-29 RYUTAIATSUKUDOSOCHINOGORYUKAIRO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56174026A JPH0237483B2 (en) 1981-10-29 1981-10-29 RYUTAIATSUKUDOSOCHINOGORYUKAIRO

Publications (2)

Publication Number Publication Date
JPS5874903A true JPS5874903A (en) 1983-05-06
JPH0237483B2 JPH0237483B2 (en) 1990-08-24

Family

ID=15971331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56174026A Expired - Lifetime JPH0237483B2 (en) 1981-10-29 1981-10-29 RYUTAIATSUKUDOSOCHINOGORYUKAIRO

Country Status (1)

Country Link
JP (1) JPH0237483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201577A (en) * 1983-04-30 1984-11-15 Fuji Xerox Co Ltd Lighting fixture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59201577A (en) * 1983-04-30 1984-11-15 Fuji Xerox Co Ltd Lighting fixture
JPH0137907B2 (en) * 1983-04-30 1989-08-10 Fuji Xerox Co Ltd

Also Published As

Publication number Publication date
JPH0237483B2 (en) 1990-08-24

Similar Documents

Publication Publication Date Title
JP3689211B2 (en) Flow confluence device for heavy equipment
EP0262604B1 (en) Hydraulic circuit for hydraulic construction machine
US4147034A (en) Hydraulic system with priority control
JPS5874903A (en) Confluence circuit for fluid pressure driver
JP2799045B2 (en) Hydraulic circuit for crane
JPH0463933B2 (en)
JP4229872B2 (en) Hydraulic control device
JP3139792B2 (en) Straight running circuit for construction vehicles
JPS5940002A (en) Controlling circuit for oil pressure
JP2001050209A (en) Hydraulic circuit for construction vehicle
JP3798187B2 (en) Hydraulic drive
JP3458434B2 (en) Hydraulic equipment
JP3662623B2 (en) Load sensing circuit
JPH0337642B2 (en)
JP3072804B2 (en) Vehicle straight-running control circuit
JP3186827B2 (en) Vehicle straight-running control circuit
JPH07197906A (en) Load sensing circuit
KR890007173Y1 (en) Remote control-type excavator having sequence valve
JPS6322930A (en) Hydraulic circuit for construction machine
JP3330385B2 (en) Straight running device for construction vehicles
JPH0442562Y2 (en)
JP3487367B2 (en) Pressure oil supply control device
JP2000192904A (en) Relief pressure control device of relief valve
JPH06185503A (en) Hydraulic circuit for construction machine
JPH0337641B2 (en)