JPS5874801A - Mechanism for automatically adjusting flow quantity of gas turbine cooling air - Google Patents

Mechanism for automatically adjusting flow quantity of gas turbine cooling air

Info

Publication number
JPS5874801A
JPS5874801A JP17276281A JP17276281A JPS5874801A JP S5874801 A JPS5874801 A JP S5874801A JP 17276281 A JP17276281 A JP 17276281A JP 17276281 A JP17276281 A JP 17276281A JP S5874801 A JPS5874801 A JP S5874801A
Authority
JP
Japan
Prior art keywords
cooling air
vane
seal
gas turbine
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17276281A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kumada
和彦 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17276281A priority Critical patent/JPS5874801A/en
Publication of JPS5874801A publication Critical patent/JPS5874801A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air

Abstract

PURPOSE:To maintain the temperatures in the vicinities of the root portions of moving vanes at a predetermined value to maintain high efficiency of the titled mechanism by utilizing a bimetal in a seal fin material, in the titled mechanism provided with seal fins for adjusting the flow quantity of cooling air between the rotary body side and the stationary body side. CONSTITUTION:In the cooling air system of the gas turbine, cooling air 2 flowing on the front side of a first stage moving vane 1, is adjusted by a seal fin 5 mounted on a support ring 4 on the inner side of a first stage moving vane 10, and after cooling the vane root portion, cooling air 2 is causted to flow out to the gas path. In addition, cooling airs 6 and 7 flowing on the rear side of the first stage stationary vane 1 and the front side of the second stage moving vane 10 similar cool the root portions of the respective vanes, and then flow out to the gas path. In this case, a bimetal is used as a material for seal fins 5 and 9 provided in the support ring 4 and the second stage stationary vane diaphragm 8 is used, and changes gaps 12 between the vane root portions and seal rands 13 to constantly make optimum the flow quantity of cooling air in accordance with the temperature at the vane root portion.

Description

【発明の詳細な説明】 本発明に回転体側と静止体側との間に冷却空気流量の調
節のためのシールフィンを設けたガスタービンに係り、
特に、冷却空気流量の多少呼よるシールフィンの温度差
を′利用し、部品の温度を一定に保つよう、冷却空気流
量を自動調節する機構に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas turbine provided with seal fins for adjusting the flow rate of cooling air between a rotating body side and a stationary body side,
In particular, the present invention relates to a mechanism that automatically adjusts the cooling air flow rate so as to maintain a constant temperature of parts by utilizing the temperature difference of the seal fins depending on the cooling air flow rate.

従来のガスタービ/では、タービン部に流れ込む流体を
ガスバス部に封じ込め、各部品を許容温度以下に保つた
め、冷却空気を流す構造となっている。特に、最近のガ
スタービンの高効率化のため、りiビン入口流体温度が
高くなる傾向にあり、冷却空気がより重要になってさて
いる。
Conventional gas turbines have a structure in which the fluid flowing into the turbine is contained in a gas bath, and cooling air is flown in order to keep each component at a permissible temperature or lower. In particular, as the efficiency of recent gas turbines has increased, the temperature of the i-bin inlet fluid has tended to increase, making cooling air more important.

ガスタービン回転体の冷却のうち動翼翼根部は安全面か
らもより重量であり、冷却空気流量はサイクル空気を利
用し、どんな状態でも、燃焼ガスの逆流が発生しないよ
うに考慮し、設計されている。また、ガスタービンの運
転量は常に翼根部近辺め流体温度を監視し、設定値以上
となった場合、警報及び停止する保護装置が取付けられ
ている。
The rotor blade roots of the gas turbine rotating body are heavier for safety reasons, and the cooling air flow rate uses cycle air, which is designed to prevent backflow of combustion gas from occurring under any conditions. There is. In addition, the gas turbine is equipped with a protection device that constantly monitors the fluid temperature near the blade root and issues an alarm and shuts down if the temperature exceeds a set value.

回転体翼根部への燃焼ガスの逆流を防ぎ、温度を許容値
以下に保つためには、翼根部近辺の冷却空気の圧力を一
定に保ち、常に、ガスパス側へ流れるようにする必要が
ある。
In order to prevent the backflow of combustion gas to the rotor blade root and keep the temperature below an allowable value, it is necessary to keep the pressure of the cooling air near the blade root constant so that it always flows toward the gas path.

第1図に従来のガスタービンの回転体側翼根部の冷却空
気系統を示す;本図は従来のガスタービンの冷却空気系
統のうち1段、2段動翼前後の冷却空気系統を示す。1
段動翼1の前側を流れる冷却空気2は1段静翼3゛の内
側に位置するサポートリング4に取付けられたシールフ
ィン5によシ調節され、翼根部を冷却した後、ガスパス
部に流れ込む。1段動翼1の後側を流れる冷却空気6ホ
2段静翼7を通り、2段静翼ダイヤフラム8出口で分岐
し、2段静翼ダイヤフラム8に取付けられたシールフィ
ン9により調節され、ガスパス部に流れ込む。2段動翼
10の前側を流れる冷却空気11は2段静翼ダイヤフラ
ム8出口で冷却空気6と分岐した空気が使用される。第
1図に示す空気の流れが常に、いかなる状態の場合でも
安定するためには、必要量の冷却空気が常に流れるよう
に、シールフィン5.9前後の圧力差及び動翼シールラ
ンドとの間隙量12をある比率で設定する必要がある。
FIG. 1 shows a cooling air system for the rotor side blade root of a conventional gas turbine; this figure shows the cooling air system before and after the first and second stage rotor blades in the conventional gas turbine cooling air system. 1
Cooling air 2 flowing in front of the stage rotor blade 1 is adjusted by a seal fin 5 attached to a support ring 4 located inside the first stage stationary blade 3', cools the blade root, and then flows into the gas path part. Cooling air 6 flowing behind the first-stage rotor blade 1 passes through the second-stage stator blade 7, branches at the outlet of the second-stage stator blade diaphragm 8, is regulated by a seal fin 9 attached to the second-stage stator blade diaphragm 8, and flows into the gas path section. The cooling air 11 flowing in front of the second-stage rotor blade 10 is air that is branched from the cooling air 6 at the outlet of the second-stage stator blade diaphragm 8 . In order for the air flow shown in Fig. 1 to be stable at all times and under any conditions, the pressure difference before and after the seal fin 5.9 and the gap between the rotor blade seal land and the rotor blade seal land must be maintained so that the necessary amount of cooling air always flows. It is necessary to set the amount 12 at a certain ratio.

第2図に冷却空気流量を一定とした場合のシールフィン
前後の圧力比とシールフィン間隙との関係を示す。
FIG. 2 shows the relationship between the pressure ratio before and after the seal fin and the seal fin gap when the cooling air flow rate is constant.

従来のガスタービンにおいては、回転体熱伸び遠心力伸
び、静止体熱伸びを考慮し、いかなる運転条件のもとで
も接触しないように第1図における間隙量12を設定し
、次に、その間隙量の場合でも燃焼ガスが逆流しないよ
うに、冷却空気流量及び各部圧力を設定する。これらの
関係に、一度設定した後に、動かすことができず、運転
中何らかの原因で動翼翼根部近辺の温度が設定値以上に
なった場合、ガスタービンを停止することとなる。
In conventional gas turbines, the gap amount 12 in FIG. Set the cooling air flow rate and pressure at each part so that combustion gas does not flow backwards even if the Once these relationships are set, if they cannot be changed and the temperature near the rotor blade root exceeds the set value for some reason during operation, the gas turbine will be stopped.

また、温度高となりづらいように冷却空気流量をあらか
じめ多めに設定することもあり、効率の面からも大きな
損失となる。
Additionally, the flow rate of cooling air may be set in advance to be relatively large so as to prevent the temperature from becoming too high, resulting in a large loss in terms of efficiency.

本発明の目的は動翼翼根部近辺の温度を一定に保ち、常
に、必要最少限な冷却空気流量とする高効率で信頼性の
高いガスタービンを提供するにある。
An object of the present invention is to provide a highly efficient and reliable gas turbine that maintains a constant temperature near the roots of rotor blades and always maintains the minimum required flow rate of cooling air.

ガスタービンの効率に大きく影響する冷却空気流量を必
要最少限におさえることを目的に、ガスタービンにおい
て最も高信頼性を要求される動翼翼根部近辺の温度管理
を、翼根部冷却の空気流量を調節するシールフィン間隙
量の自動調整により行なうものである。この自動調整に
シールフィン材料として使用するバイメタルの特性を利
用するもので、翼根部近辺の温度が高い時に間隙量を大
きくして冷却空気を多く流し、逆に翼根部温度が低い時
に間隙量を小さくシ、冷却空気を絞る。本機構を採用す
れば、翼根部近辺の温度を常に一定に保つことができ、
冷却空気を必要最少限におさえることができるため、信
頼性の高い、高効率のガスターピ/とすることができる
With the aim of minimizing the flow rate of cooling air, which greatly affects the efficiency of gas turbines, we control the temperature near the roots of the rotor blades, which require the highest reliability in gas turbines, by adjusting the air flow rate for cooling the blade roots. This is done by automatically adjusting the seal fin gap amount. This automatic adjustment utilizes the characteristics of the bimetal used as the seal fin material.When the temperature near the blade root is high, the gap is increased to allow more cooling air to flow, and conversely, when the blade root temperature is low, the gap is increased. Squeeze the cooling air a little. By adopting this mechanism, the temperature near the blade root can always be kept constant.
Since the amount of cooling air can be kept to the minimum necessary, a highly reliable and highly efficient gas turbine can be achieved.

以下、本発明の一実施例を第3図(a)〜(d)により
説明する。ガスタービンの構造は従来と同じであり、冷
却空気の流れも第1図に示した系統とほぼ同じとなる。
An embodiment of the present invention will be described below with reference to FIGS. 3(a) to 3(d). The structure of the gas turbine is the same as the conventional one, and the flow of cooling air is also almost the same as the system shown in FIG.

ここでに1段動翼前側についてのみ記述するものとする
。1段動翼1翼根部冷却用空気にサポートリング2に埋
め込まれたシールフィン節され、燃焼ガスの逆流を防止
して、カスパス部に流れる。(a) この冷却空気流量は起動時、無負荷時9部分負荷時、全
負荷時等各・運転状態によシ必要流量は当然具なること
になる。従来のガスタービンではこれら運転状態のうち
最悪の状態を考慮し、シールフィンの間隙、冷却空気流
量を設定しており、通常運転においては必要量以上の空
気が流れることになる。
Here, only the front side of the first stage rotor blade will be described. Seal fins embedded in the support ring 2 are used to cool the air for cooling the first blade root of the first stage rotor blade, preventing combustion gas from flowing back into the casus. (a) The required flow rate of this cooling air will naturally vary depending on the operating conditions, such as during startup, no load, partial load, full load, etc. In conventional gas turbines, the gap between the seal fins and the flow rate of cooling air are set taking into account the worst of these operating conditions, and during normal operation, more air than is required flows through the turbine.

本発明に冷却空気流量の多少及び燃焼ガスの逆流等によ
りシールフィン3近辺の温度が変化することを利用し、
シールフィン3の材料としてバイメタルヲ使用シ、シー
ルフィン3とシールランド4との間隙5を変化させ、冷
、加窒気流量を各運転状態に合せて調節する。(b) 初期間隙量に回転体側の熱伸び、遠心カ伸び、静止体側
の熱伸びを考慮し、必要最小限に設定する。運転中、回
転体またに静止体の温度が高くなり間隙が小さくなると
、冷却空気流量が絞られ、規定量が流れなくなり、シー
ルフィン3の温度カ上昇し、間隙量が増す方向に変形し
、シールフィンの温度がバランスする位置でおちつくこ
とになる。逆に部分負荷時等、回転体の温□度が下がり
、間隙が大きくなると冷却空気流量が増大し、シールフ
ィンの温度が下がり、間隙量が減る方向に変形し、シー
ルフィンの温度がバランスする位置でおちつくことにな
る。((C)、 (d) )本機構を採用すれば、いか
なる運転状態においても、最適な空気   隙。
The present invention utilizes the fact that the temperature near the seal fin 3 changes depending on the amount of cooling air flow and the backflow of combustion gas, etc.
Bimetal is used as the material of the seal fin 3, and the gap 5 between the seal fin 3 and the seal land 4 is changed to adjust the flow rate of cooling and nitrogenizing air according to each operating state. (b) Set the initial gap amount to the minimum necessary value, taking into consideration the thermal elongation on the rotating body side, the centrifugal elongation, and the thermal elongation on the stationary body side. During operation, when the temperature of the rotating body or stationary body increases and the gap becomes smaller, the flow rate of cooling air is restricted and the specified amount no longer flows, the temperature of the seal fin 3 rises, and the seal fin 3 deforms in the direction of increasing the gap. It will settle down at a position where the temperature of the seal fin is balanced. On the contrary, when the temperature of the rotating body decreases and the gap becomes larger, such as during partial load, the cooling air flow rate increases, the temperature of the seal fin decreases, the gap decreases, and the temperature of the seal fin becomes balanced. It will settle down in position. ((C), (d)) If this mechanism is adopted, the air gap will be optimal under any operating condition.

流量を保つことができ、信頼性の高い高効率なガスター
ビンとすることができる。第4図にはシールフィン前後
の圧力比が一定の場合の間隙量と空気流量との関係を示
す。間隙量と空気流量とに比例することになる。
The flow rate can be maintained, and a highly reliable and highly efficient gas turbine can be achieved. FIG. 4 shows the relationship between the gap amount and the air flow rate when the pressure ratio before and after the seal fin is constant. It will be proportional to the gap amount and air flow rate.

本発明によれば、いかなる運転状態においても、動翼翼
根部冷却空気流量を必要量・中限の最適量にすることが
でき、信頼性の高い、高効率なガスタービンが可能とな
る。
According to the present invention, the flow rate of cooling air at the root of the rotor blade can be set to the optimum amount between the required amount and the intermediate limit in any operating state, and a highly reliable and highly efficient gas turbine can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガスタービンの動翼翼根部冷却空気の系
統図、第2図に流量一定の場合のシールフィン前後の圧
力比と間隙量の関係図、第3図(a)。 (bJ、 (C)、 (’)は本発明の冷却空気流量目
j@調節機構の部分断面図、第4図はシールフィン前後
圧比が一定の場合間隙量と空気流量との関係図でろる。 1・・・1段動翼、2′・・・サポートリング、3′・
・・シールフィン、4′・・・シールランド、5′・・
・間第2 目 う−レフィ〉后J喬圧力r巳
Fig. 1 is a system diagram of cooling air at the root of a rotor blade in a conventional gas turbine, Fig. 2 is a diagram showing the relationship between the pressure ratio before and after the seal fin and the amount of gap when the flow rate is constant, and Fig. 3 (a). (bJ, (C), (') are partial sectional views of the cooling air flow rate adjustment mechanism of the present invention, and Figure 4 is a diagram of the relationship between the gap amount and air flow rate when the seal fin front and back pressure ratio is constant. 1...1st stage moving blade, 2'...support ring, 3'...
...Seal fin, 4'...Seal land, 5'...
・Second interval between eyes and referees

Claims (1)

【特許請求の範囲】[Claims] 1、冷却空気流量の調節のため、廻転体側と静止体側の
間にシールフィンを備えたガスタービンにおいて、前記
シールフィンの材料に″バイメタルを利用することを特
徴とするガスタービン冷却空気流量の自動調節機構。
1. In a gas turbine equipped with a seal fin between a rotating body side and a stationary body side for adjusting the cooling air flow rate, the automatic gas turbine cooling air flow rate is characterized in that a bimetal is used as the material of the seal fin. Adjustment mechanism.
JP17276281A 1981-10-30 1981-10-30 Mechanism for automatically adjusting flow quantity of gas turbine cooling air Pending JPS5874801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17276281A JPS5874801A (en) 1981-10-30 1981-10-30 Mechanism for automatically adjusting flow quantity of gas turbine cooling air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17276281A JPS5874801A (en) 1981-10-30 1981-10-30 Mechanism for automatically adjusting flow quantity of gas turbine cooling air

Publications (1)

Publication Number Publication Date
JPS5874801A true JPS5874801A (en) 1983-05-06

Family

ID=15947858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17276281A Pending JPS5874801A (en) 1981-10-30 1981-10-30 Mechanism for automatically adjusting flow quantity of gas turbine cooling air

Country Status (1)

Country Link
JP (1) JPS5874801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604750A1 (en) * 1986-10-01 1988-04-08 Snecma TURBOMACHINE PROVIDED WITH A DEVICE FOR AUTOMATICALLY CONTROLLING TURBINE VENTILATION FLOW RATES
JP2005009441A (en) * 2003-06-20 2005-01-13 Hitachi Ltd Gas turbine
WO2014137444A2 (en) * 2012-12-29 2014-09-12 United Technologies Corporation Multi-ply finger seal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604750A1 (en) * 1986-10-01 1988-04-08 Snecma TURBOMACHINE PROVIDED WITH A DEVICE FOR AUTOMATICALLY CONTROLLING TURBINE VENTILATION FLOW RATES
JP2005009441A (en) * 2003-06-20 2005-01-13 Hitachi Ltd Gas turbine
WO2014137444A2 (en) * 2012-12-29 2014-09-12 United Technologies Corporation Multi-ply finger seal
WO2014137444A3 (en) * 2012-12-29 2014-11-27 United Technologies Corporation Multi-ply finger seal
US10138742B2 (en) 2012-12-29 2018-11-27 United Technologies Corporation Multi-ply finger seal

Similar Documents

Publication Publication Date Title
US8186952B2 (en) Blade arrangement
US5157914A (en) Modulated gas turbine cooling air
US7427188B2 (en) Turbomachine blade with fluidically cooled shroud
EP0231952B1 (en) Method and apparatus for controlling temperatures of turbine casing and turbine rotor
JP3105277B2 (en) Axial gas turbine
US4173120A (en) Turbine nozzle and rotor cooling systems
US20070253815A1 (en) Cooled gas turbine aerofoil
US7465145B2 (en) Tip clearance control system
JPH07253003A (en) Gas-turbine engine
EP2235328A1 (en) Blade cooling
IT8922053A1 (en) DEVICE FOR THE SUPPLY OF COOLING AIR FOR GAS TURBINE ROTOR BLADES.
US7547190B1 (en) Turbine airfoil serpentine flow circuit with a built-in pressure regulator
US20080271459A1 (en) Method and system for regulating a cooling fluid within a turbomachine in real time
EP1790824B1 (en) A cooling arrangement
GB2127105A (en) Improvements in cooled gas turbine engine aerofoils
JPS5874801A (en) Mechanism for automatically adjusting flow quantity of gas turbine cooling air
JPS5893903A (en) Variable inlet guide vane
US6832891B2 (en) Device for sealing turbomachines
US4643635A (en) Vapor core centrifugal pump having main and low flow impellers
US5224332A (en) Modulated gas turbine cooling air
JP3316424B2 (en) gas turbine
US4629394A (en) Centrifugal pump having low flow diffuser
JP2000186502A (en) Gas turbine
JPS6364601B2 (en)
JPS60159304A (en) Disk cooling device for steam turbine