JPS587310Y2 - Discharge electrode for electromagnetic ultrasonic generation - Google Patents

Discharge electrode for electromagnetic ultrasonic generation

Info

Publication number
JPS587310Y2
JPS587310Y2 JP635278U JP635278U JPS587310Y2 JP S587310 Y2 JPS587310 Y2 JP S587310Y2 JP 635278 U JP635278 U JP 635278U JP 635278 U JP635278 U JP 635278U JP S587310 Y2 JPS587310 Y2 JP S587310Y2
Authority
JP
Japan
Prior art keywords
discharge
discharge electrode
electrode
ultrasonic
frequency pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP635278U
Other languages
Japanese (ja)
Other versions
JPS54113424U (en
Inventor
室田昭治
川島捷宏
中森幸雄
鈴木久夫
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP635278U priority Critical patent/JPS587310Y2/en
Publication of JPS54113424U publication Critical patent/JPS54113424U/ja
Application granted granted Critical
Publication of JPS587310Y2 publication Critical patent/JPS587310Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 本考案は、電気ならびに磁気との相互作用により、導電
性材料に直接超音波を送入させるために高周波パルス電
流を発生する電磁超音波発生用放電電極の改良に関する
ものである。
[Detailed description of the invention] The present invention relates to an improvement of a discharge electrode for electromagnetic ultrasonic generation that generates high-frequency pulse current to directly send ultrasonic waves to conductive materials through interaction with electricity and magnetism. It is.

電気ならびに磁気との相互作用によって導電性材料に超
音波を発生・検出する、所謂、電磁超音波法の研究が進
み、その効率は、従来の超音波振動子によるものと同等
またはそれ以上になり、探傷、厚み測定などに利用され
ている。
Research into the so-called electromagnetic ultrasonic method, which generates and detects ultrasonic waves in conductive materials through interaction with electricity and magnetism, is progressing, and its efficiency is now equal to or higher than that using conventional ultrasonic transducers. It is used for flaw detection, thickness measurement, etc.

従来、電磁超音波を発生させるために用いる放電電極に
は、空気中に一対の電極を配置したものや、セラミック
またはガラス管内に一対の電極を設け、かつ、ガスを密
封したものがあるが、前者はスパーク時の高温による電
極の損耗はさけがたく、シばしば、電極の研磨や交換を
余儀なくされる。
Conventionally, discharge electrodes used to generate electromagnetic ultrasonic waves include those with a pair of electrodes placed in the air, and those with a pair of electrodes placed in a ceramic or glass tube and sealed with gas. In the former case, wear and tear on the electrodes due to high temperatures during sparking is unavoidable, and it is often necessary to polish or replace the electrodes.

また、放電電極周辺の雰囲気の湿度や、微粉塵の影響で
放電が不安定となったり、放電時のスパークが周辺の引
火性物質への引火、誘爆するなどの危険も実用上の問題
となっている。
In addition, there are practical problems such as the humidity of the atmosphere around the discharge electrode and the influence of fine dust making the discharge unstable, and the spark generated during discharge igniting surrounding flammable materials or causing an explosion. ing.

後者は放電頻蜜が高く、短時間の使用で放電が103〜
105回にもなると、管内ガスがイオン化するなどして
使用不能となり、交換頻度が高く問題である。
The latter has a high discharge frequency, with a discharge rate of 103 ~ after short-term use.
If the number of times exceeds 105, the gas inside the pipe becomes ionized and becomes unusable, which is a problem as the frequency of replacement is high.

本考案は、容器中に一対の金属電極、及びその一方に近
接してトリガー用電極を配置すると共に、その容器内に
不燃性ガスを吹き込む構造の放電電極を製作使用したと
ころ、放電の安定化ならびに寿命が半永久的になるなど
、実用上、顕著な有用性を認めたものである。
This invention uses a discharge electrode with a structure in which a pair of metal electrodes is placed in a container, a trigger electrode is placed close to one of the metal electrodes, and a nonflammable gas is blown into the container, thereby stabilizing the discharge. It has also been recognized for its remarkable practical usefulness, with a semi-permanent lifespan.

以下、実施例を用いて具体的に説明する。Hereinafter, this will be explained in detail using examples.

第1図は、電磁超音波発生ならびに検出の原理を示す概
略図である。
FIG. 1 is a schematic diagram showing the principle of electromagnetic ultrasound generation and detection.

導電性材料1の近傍に磁界発生用コイル2及び鉄心3を
配置し、電源4から磁界発生用コイル2に電圧を印加す
ると、導電性材料1内に点線矢印で示すような磁界5が
発生する。
When a magnetic field generating coil 2 and an iron core 3 are arranged near the conductive material 1 and a voltage is applied to the magnetic field generating coil 2 from a power source 4, a magnetic field 5 as shown by a dotted arrow is generated within the conductive material 1. .

一方、超音波励起用コイル6に、高周波パルス電源7か
ら高周波パルス電流を流すと、導電性材料1内に誘導に
より渦電流8が生じ、該渦電流8と磁界5の相互作用の
結果、フレミングの左手の法則により矢印で示される振
動力9が生ずる。
On the other hand, when a high-frequency pulse current is passed through the ultrasonic excitation coil 6 from a high-frequency pulse power source 7, an eddy current 8 is generated by induction in the conductive material 1, and as a result of the interaction between the eddy current 8 and the magnetic field 5, Fleming The left-hand rule produces a vibrational force 9 shown by the arrow.

この振動力9は以後、超音波として矢印10で示される
方向に進行する。
This vibration force 9 then travels in the direction shown by arrow 10 as an ultrasonic wave.

この超音波は導電性材料1の底面Sまたは内部欠陥に到
達すると反射されて矢印11の方向に進行し、材料表面
近くに達すると振動力12を生じ、これが磁界5と相互
作用し、フレミングの右手の法則により渦電流13を生
ずる。
When this ultrasonic wave reaches the bottom surface S or an internal defect of the conductive material 1, it is reflected and travels in the direction of the arrow 11, and when it reaches near the material surface, it generates a vibration force 12, which interacts with the magnetic field 5, causing Fleming's An eddy current 13 is generated according to the right-hand rule.

該渦電流は検出コイル14によって検出され、増巾器1
5によって増巾され、表示器16によって材料の板厚や
内部欠陥が表示される。
The eddy current is detected by the detection coil 14 and the amplifier 1
5, and the display 16 displays the thickness of the material and internal defects.

本方式はその原理面から高温材料、表面状態の悪い材料
でも適用可能であり、工業上重要な価値を有している。
Due to its principle, this method can be applied to high-temperature materials and materials with poor surface conditions, and has important industrial value.

第2図は、本考案によるガス吹き込み式電磁超音波発生
用放電電極の構造、及び動作を示す概略図である。
FIG. 2 is a schematic diagram showing the structure and operation of the discharge electrode for gas-blown electromagnetic ultrasonic wave generation according to the present invention.

容器17の中に主電極18と19とを対向して配置し、
トリガー用電極20を主電極19に近接して設け、これ
ら電極は、容器17の底部に固定架21,22.23に
よって支持され、間隙調整用ネジ24.25.26によ
って、各電極間の間隙は調整・固定が可能となっており
、トリガー用電極20の固定架23は、矢印27で示す
左右方向への移動が可能な取付けとしである。
Main electrodes 18 and 19 are arranged facing each other in a container 17,
A trigger electrode 20 is provided close to the main electrode 19, and these electrodes are supported by fixed racks 21, 22, 23 at the bottom of the container 17, and the gaps between each electrode are adjusted by gap adjusting screws 24, 25, 26. can be adjusted and fixed, and the fixing rack 23 of the trigger electrode 20 is mounted so as to be movable in the left and right direction as shown by arrow 27.

また、容器17には不燃性ガスGの吹き込み口28が、
主電極18.19に向けて取付けられ、ガスG′の放出
口29があけられた構造となっている。
The container 17 also has an inlet 28 for inflammable gas G.
It is attached facing the main electrodes 18 and 19, and has a structure in which a gas G' discharge port 29 is opened.

この動作に際しては、まず、容器17中に窒素やアルゴ
ンなどの不燃性ガスGを、ガス吹き込み口28から少量
づつ流入させて、放出口29から放出し、容器17中の
空気は不燃性ガスGによって完全に置換し、その後も不
燃性ガスは、少量づつ絶えず流入・放出する状態に維持
しておく。
In this operation, first, a nonflammable gas G such as nitrogen or argon is introduced into the container 17 little by little from the gas blowing port 28 and released from the discharge port 29, and the air in the container 17 is filled with nonflammable gas G. Even after the gas is completely replaced, the nonflammable gas is kept continuously flowing in and out in small amounts.

この状態で直流電圧発生装置30から抵抗31を介して
、コンデンサー32に直流電圧が供給されると、コンデ
ンサー32に放電用の電荷が充電される。
In this state, when DC voltage is supplied from the DC voltage generator 30 to the capacitor 32 via the resistor 31, the capacitor 32 is charged with electric charge for discharging.

一方、主電極19は超音波励起用コイル6に接続されて
おり、この状態でトリガー用電極20に、トリガー電源
33からトリガー用パルス電圧を印加すると、トリガー
用電極20と主電極19との間に微小放電が発生し、こ
れに誘発され主電極18と19の間に主放電を生じ、超
音波励起用コイル6に高周波パルス電流が流れ、以後、
前述したように導電性材料に超音波が送入されることと
なる。
On the other hand, the main electrode 19 is connected to the ultrasonic excitation coil 6, and when a trigger pulse voltage is applied to the trigger electrode 20 from the trigger power source 33 in this state, the difference between the trigger electrode 20 and the main electrode 19 is A micro discharge occurs, which induces a main discharge between the main electrodes 18 and 19, and a high-frequency pulse current flows through the ultrasonic excitation coil 6.
As described above, ultrasonic waves are transmitted to the conductive material.

容器17に窒素ガスを流量0.27117 m i n
、圧力1、5 kg7crlLで、ガス吹込み口27か
ら吹き込み、主電極18と19とには5關φ、トリガー
用電極20として1.0關φのタングステン棒をそれぞ
れ用い、直流電圧20に■、抵抗2MΩ、コンデンサー
容量0.1μF1主電極間の放電間隙10間とし、トリ
ガー用パルス電圧10KVを印加したところ、主電極1
8と19との間に安定した放電を発生させることができ
、出力充分な高周波パルス電流が得られた。
Inject nitrogen gas into the container 17 at a flow rate of 0.27117 m in
, a pressure of 1.5 kg and 7 crlL was blown from the gas inlet 27, 5 mm diameter tungsten rods were used for the main electrodes 18 and 19, and 1.0 mm diameter tungsten rods were used as the trigger electrode 20, and the DC voltage was set to 20 mm. , resistance 2MΩ, capacitor capacity 0.1μF, discharge gap 10 between the main electrodes, and when a trigger pulse voltage of 10KV was applied, the main electrode 1
A stable discharge could be generated between 8 and 19, and a high frequency pulse current with sufficient output was obtained.

この放電の安定化は、容器17に吹き込まれる窒素ガス
によって、主電極18と19との間が一定の雰囲気条件
に維持されることから、従来問題となっていた周辺の湿
度や微粉塵の影響を殆んど受けることがなくなった。
This stabilization of the discharge is achieved by maintaining a constant atmospheric condition between the main electrodes 18 and 19 by the nitrogen gas blown into the container 17. I almost no longer receive it.

また、主電極18.19のスパーク時の高温による損耗
も実用上は皆無に等しいものとなり、半永久的な使用が
可能となった。
In addition, wear and tear on the main electrodes 18 and 19 due to high temperatures during sparking is practically negligible, making semi-permanent use possible.

さらに、放電時のスパークは窒素ガスによって包囲され
るため、周辺の引火性物質への引火や誘爆への配慮は不
用となり、実用上、大きな有用性を認めたものである。
Furthermore, since the spark during discharge is surrounded by nitrogen gas, there is no need to take precautions against igniting surrounding flammable substances or causing explosions, which has been recognized as being of great practical utility.

以上のように、本考案によれば、安定な放電発生が可能
、かつ、長寿命の電磁超音波発生用放電電極を供するこ
とができる。
As described above, according to the present invention, it is possible to provide a discharge electrode for generating electromagnetic ultrasonic waves that is capable of generating stable discharge and has a long life.

なお、実施例ではトリガー用電極を設けた放電電極を用
いて説明したが、一対の対電極を利用し、その両極を固
定したものや、いづれか一方を揺動させるなどして放電
させる方式の放電電極への適用も有効である。
In addition, in the example, explanation was given using a discharge electrode provided with a trigger electrode, but a discharge method using a pair of counter electrodes with both electrodes fixed, or a method in which discharge is performed by swinging one of the electrodes is also possible. Application to electrodes is also effective.

電極としてタングステン棒を用いたものについてのべた
が、他の導伝性金属、例えばステンレス鋼などでもよい
Although a tungsten rod is used as the electrode, other conductive metals such as stainless steel may be used.

また、容器17への吹き込みガスは不燃性ガスであれば
特に制限はしない。
Further, the gas blown into the container 17 is not particularly limited as long as it is a nonflammable gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、電極超音波発生ならびに検出の原理を示す概
略図を示す。 第2図は、本考案によるガス吹込み式電磁超音波発生用
放電電極の概略図を示す。 1・・・・・・導電性材料、2・・・・・・磁界発生用
コイル、3・・・・・・鉄心、4・・・・・・電源、5
・・・・・・磁界、6・・・・・・超音波励起用コイル
、7・・・・・・高周波パルス電源、8・・・・・・渦
電流、9・・・・・・振動力、10・・・・・・矢印、
11・・・・・・矢印、12・・・・・・振動力、13
・・・・・・渦電流、14・・・・・・検出コイル、1
5・・・・・・増巾器、16・・・・・・表示器、17
・・・・・・容器、18・・・・・・主電極、19・・
・・・・主電極、20・・・・・・トリガー用電極、2
1・・・・・・固定架、22・・・・・・固定架、23
・・・・・・固定架、24・・・・・・間隙調整用ネジ
、25・・・・・・間隙調整用ネジ、26・・・・・・
間隙調整用ネジ、27・・・・・・矢印、28・・・・
・・ガス吹き込み口、29・・・・・・放出口、30・
・・・・・直流電圧発生装置、31・・・・・・抵抗、
32・・・・・・コンデンサー33・・・・・・トリガ
ー用電源。
FIG. 1 shows a schematic diagram illustrating the principle of electrode ultrasound generation and detection. FIG. 2 shows a schematic diagram of a discharge electrode for gas-blown electromagnetic ultrasonic wave generation according to the present invention. 1... Conductive material, 2... Coil for magnetic field generation, 3... Iron core, 4... Power supply, 5
...Magnetic field, 6 ... Ultrasonic excitation coil, 7 ... High frequency pulse power supply, 8 ... Eddy current, 9 ... Vibration Power, 10...Arrow,
11...Arrow, 12...Vibration force, 13
...Eddy current, 14...Detection coil, 1
5...Amplifier, 16...Display device, 17
...Container, 18...Main electrode, 19...
...Main electrode, 20...Trigger electrode, 2
1...Fixed rack, 22...Fixed rack, 23
... Fixed rack, 24 ... Gap adjustment screw, 25 ... Gap adjustment screw, 26 ...
Gap adjustment screw, 27...arrow, 28...
...Gas inlet, 29...Discharge port, 30.
...DC voltage generator, 31...Resistor,
32... Capacitor 33... Power supply for trigger.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 導電性材料の表面近傍に高周波パルス電流を流すための
超音波励起用コイルを用け、該超音波励起用コイルに流
される高周波電流単独、あるいは、別に設けられた磁界
発生装置による磁界との相互作用により、導電性材料内
に超音波を発生させる電磁超音波発生装置の超音波励起
用コイルへの高周波パルス電流を流す高周波パルス電源
において、放電電極を収納するとともに、不燃性ガス吹
込孔を有する収納容器を設けたことを特゛徴とする電磁
超音波発生用放電電極。
An ultrasonic excitation coil is used to flow a high-frequency pulse current near the surface of a conductive material, and the high-frequency current flowing through the ultrasonic excitation coil alone or mutually with a magnetic field from a magnetic field generator provided separately is used. In a high-frequency pulse power source that flows a high-frequency pulse current to an ultrasonic excitation coil of an electromagnetic ultrasonic generator that generates ultrasonic waves in a conductive material by action, it houses a discharge electrode and has a nonflammable gas blowing hole. A discharge electrode for generating electromagnetic ultrasonic waves characterized by being provided with a storage container.
JP635278U 1978-01-24 1978-01-24 Discharge electrode for electromagnetic ultrasonic generation Expired JPS587310Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP635278U JPS587310Y2 (en) 1978-01-24 1978-01-24 Discharge electrode for electromagnetic ultrasonic generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP635278U JPS587310Y2 (en) 1978-01-24 1978-01-24 Discharge electrode for electromagnetic ultrasonic generation

Publications (2)

Publication Number Publication Date
JPS54113424U JPS54113424U (en) 1979-08-09
JPS587310Y2 true JPS587310Y2 (en) 1983-02-08

Family

ID=28813055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP635278U Expired JPS587310Y2 (en) 1978-01-24 1978-01-24 Discharge electrode for electromagnetic ultrasonic generation

Country Status (1)

Country Link
JP (1) JPS587310Y2 (en)

Also Published As

Publication number Publication date
JPS54113424U (en) 1979-08-09

Similar Documents

Publication Publication Date Title
Johnson et al. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air
CN101713021B (en) Method for reducing residual stress of ferromagnetic metal material
JP4611409B2 (en) Plasma temperature control device
SE504199C2 (en) Device for measuring resonant frequency and / or dissipation factor of a piezoelectric crystal microwave
Rikken et al. Measurement of the Abraham force and its predicted QED corrections in crossed electric and magnetic fields
JPS587310Y2 (en) Discharge electrode for electromagnetic ultrasonic generation
US3620083A (en) Wide range dynamic pressure sensor
Weber et al. The electrodeless Lorentz force (ELF) thruster experimental facility
CN204008809U (en) Electrostatic potential testing sensor
Tichý et al. Langmuir probe diagnostics of a plasma jet system
RU2686897C1 (en) Device for production of titanium carbide-based powder
Fadeev et al. Experimental installation to study the influence of acoustic oscillations on the characteristics of a glow discharge
Pekárek Experimental study of pulse polarity and magnetic field on ozone production of the dielectric barrier discharge in air
Wang et al. Effects of electrical parameters on weak shock waves induced by spark discharge
Steib et al. High-voltage conditioning at large gaps in industrial vacuum
Béquin et al. Air plasma sensor for the measurement of sound pressure using millimetric and micrometric discharges
Stokes Apparatus for the measurement of Young's modulus, between 200 and 700° C by transverse vibration in vacuum
Ganguly et al. Shock wave dispersion in nonequilibrium plasmas
Sato et al. Ballistic Contributions to Ion Acoustic Waves in a Plasma
SU750359A1 (en) Device for determining igniting ability of electric sparking
Yan et al. Experimental and theoretical investigation of an enclosed free burning arc in SF6
Karasik et al. Experiments and modeling of an instability of an atmospheric pressure arc
Ben-Yosef et al. Electrode configuration and power output for a transverse flow CO2 laser
CA1070809A (en) Electron beam pumped gas laser
Williams et al. Several high sensitivity radio-frequency detectors for permanent gas analysis