JPS5870879A - Recovery of valuable component from liquid used for treating iron with acid - Google Patents

Recovery of valuable component from liquid used for treating iron with acid

Info

Publication number
JPS5870879A
JPS5870879A JP16728881A JP16728881A JPS5870879A JP S5870879 A JPS5870879 A JP S5870879A JP 16728881 A JP16728881 A JP 16728881A JP 16728881 A JP16728881 A JP 16728881A JP S5870879 A JPS5870879 A JP S5870879A
Authority
JP
Japan
Prior art keywords
iron
hydrochloric acid
liquid
solvent
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16728881A
Other languages
Japanese (ja)
Other versions
JPH0141395B2 (en
Inventor
Hideji Nakamatsu
中松 秀司
Masashi Hosonuma
正志 細沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP16728881A priority Critical patent/JPS5870879A/en
Publication of JPS5870879A publication Critical patent/JPS5870879A/en
Publication of JPH0141395B2 publication Critical patent/JPH0141395B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To efficiently separate and recover hydrochloric acid and high-purity iron, by adsorbing and removing metal ion impurities in a liquid used for treating iron with hydrochloric acid by using anion-exchange resin, oxidizing dissolved iron ion, and then treating the liquid by solvent extraction. CONSTITUTION:The liquid used for treating iron with hydrochloric acid is brought into contact with anion-exchange resin at the concentration of hydrochloric acid of 2-8N, to adsorb and remove trace metal ions as impurities, e.g. lead and zinc, contained in the treating liquid. The liquid purified by said adsorption is subjected to oxidation such as electrolytic oxidation to convert Fe<2+> ion contained as a main component into Fe<3+> ion, and then the oxidized treating liquid is treated by an extracting method using a solvent such as phosphates to separate and recover hydrochloric acid and iron. The iron extracted by the solvent is stripped in the form of its chloride, hydroxide or the like in accordance with required uses.

Description

【発明の詳細な説明】 この出願の発明は、鉄の酸処理液よシ有価成分を回収す
る方法KIIL、411に鉄の酸洗廃液を吸着処理、酸
化処理及び溶媒抽出処理して、廃液中の塩酸及び鉄を高
純度で回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention of this application is a method for recovering valuable components from an iron pickling solution in KIIL, 411, in which iron pickling waste is subjected to adsorption treatment, oxidation treatment, and solvent extraction treatment to recover valuable components from the waste solution. This invention relates to a method for recovering hydrochloric acid and iron with high purity.

鉄の酸洗廃液は、例えば、鉄鋼製品の製造における塩酸
による表面清浄工程で大量に生じ、該酸処理液中に多量
に含まれる塩酸及び鉄を回収することは、公害防止及び
省資源上望ましい。
Iron pickling waste liquid is produced in large quantities, for example, during the surface cleaning process using hydrochloric acid in the manufacture of steel products, and it is desirable to recover the large amounts of hydrochloric acid and iron contained in the acid treatment liquid from the viewpoint of pollution prevention and resource conservation. .

しかし、諌酸処理液中には、鉛、亜鉛等が不純物金属イ
オンとして少量溶存し、このような酸処理液から従来知
られていゐ方法で塩酸と共に純度の高い鉄を効率曳く分
離回収することは困難であった。
However, small amounts of lead, zinc, etc. are dissolved as impurity metal ions in the formic acid treatment solution, and it is difficult to efficiently separate and recover high-purity iron along with hydrochloric acid from such acid treatment solutions using conventional methods. was difficult.

即ち、酸処理廃液を減圧下、低温で蒸留濃縮する蒸発濃
縮法や、該液を噴霧状にして熱分解炉中高温で分解する
熱分解炉法が塩酸を回収する方法として知られているが
、これらの方法紘、激しい腐食に耐える高価な装置材料
が必要であり、を九蒸発や加熱に多量のエネルギーを要
する上、塩酸を回収する方法であるため、同時に鉄を高
純度に回収することは容易にできない。
Namely, the evaporation concentration method in which the acid-treated waste liquid is distilled and concentrated under reduced pressure at low temperature, and the pyrolysis furnace method in which the liquid is made into a spray and decomposed at high temperature in a pyrolysis furnace are known as methods for recovering hydrochloric acid. However, these methods require expensive equipment materials that can withstand severe corrosion, require a large amount of energy for evaporation and heating, and are methods that recover hydrochloric acid, making it difficult to recover iron at high purity at the same time. cannot be done easily.

また、溶媒抽出法と電解法を組み合わせて廃液中の塩酸
及び重金属を分離回収する方法が特会昭56−5827
号として知られているが、工程が非常に複雑で、多数の
装置タンク類を要し、しかも微量の不純物金属イオンの
分離には効率が低いため、この方法を鉄の酸処理液に適
用することは多くの問題がある。
In addition, a method for separating and recovering hydrochloric acid and heavy metals in waste liquid by combining solvent extraction method and electrolytic method was published in 1982-5827.
However, the process is very complicated, requires a large number of equipment tanks, and is inefficient at separating minute amounts of impurity metal ions, so this method is applied to iron acid treatment solutions. There are many problems with that.

本発明は、上記の問題を解決するためになされたもので
、鉄の塩酸処理液よシ塩酸及び鉄を高純度で効率良く回
収する方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for efficiently recovering hydrochloric acid and iron with high purity from a hydrochloric acid treatment solution for iron.

本発明は、鉄の塩酸処理液をアニオン交換樹脂と接触さ
せて不純物金属イオンを吸着除去し、#吸着除去液を酸
化処理して主成分として含まれるFe″+イオンをFe
0イオンに転化し、次いで該酸化処理液を溶媒抽出法に
よシ処理して塩酸と鉄を分離回収することを特徴とする
鉄の酸処理液よシ有価成分を回収する方法である。
In the present invention, impurity metal ions are adsorbed and removed by contacting an iron hydrochloric acid treatment solution with an anion exchange resin, and the # adsorption removal solution is oxidized to remove Fe''+ ions contained as the main component.
0 ions, and then the oxidized solution is treated by a solvent extraction method to separate and recover hydrochloric acid and iron.

本発明は、酸処理液中Ktまれる鉛、亜鉛等の微量不純
物金属イオンをアニオン交換樹脂を用いて吸着除去し、
次いで溶存するF・ イオンをFe l+イオンに酸化
処理した後、主成分である塩酸及び鉄を溶媒抽出法によ
シ分離回収するもので、かくすることによシ、前記し九
本発明の目的が十分達成され、小型の装置で、塩酸と共
に、極めて純度の高い鉄を効率良く容易に分離回収でき
石効来が得られる。
The present invention adsorbs and removes trace impurity metal ions such as lead and zinc contained in the acid treatment solution using an anion exchange resin.
Then, after oxidizing the dissolved F ions to Fe 1+ ions, the main components, hydrochloric acid and iron, are separated and recovered by a solvent extraction method. This has been fully achieved, and with a small device, extremely pure iron can be efficiently and easily separated and recovered together with hydrochloric acid, and stone effects can be obtained.

溶媒抽出法による廃塩酸の回収法は、通常第一工程で不
純物金属イオンを抽出除去し、第二工程で主成分金属イ
オンを抽出し、同時に塩酸を回収する有力な方法である
。しかし、溶媒抽出法は大量に存在する成分の分離には
極めて有効であるが、数、百〜数十ppm 8度の微量
成分の抽出除去においては、効率が悪く、完全に除去す
るには多くの段数を要し、膨大な装置となって実際上不
可能である。
The solvent extraction method for recovering waste hydrochloric acid is an effective method in which impurity metal ions are usually extracted and removed in the first step, main component metal ions are extracted in the second step, and hydrochloric acid is recovered at the same time. However, although the solvent extraction method is extremely effective in separating components that exist in large amounts, it is inefficient in extracting and removing trace components at a few hundred to several tens of ppm. This requires a large number of stages, making the device extremely large and practically impossible.

そこで、本発明は、該微量不純物成分を7ニオン交換樹
脂を用いて吸着除去・し、更に溶媒抽出を行えば、主成
分鉄を効率良<、シかも高純度で塩酸と共に回収し得る
ととに着目し、検討した結果、鉄の塩酸処理液において
は、処理液中に含まれるFe”はアニオン交換樹脂に吸
着されK<<、一方、Pb”、zn”+等は容易に吸着
除去できる事、及び、F@″+は特に低pH域で溶媒抽
出し難いのに対し pe s+は容易に抽出可能である
事実に基き、該酸処理液を先ず、アニオン交換樹脂と接
触させてPb*Zn等の不純物のみ吸着除去し、次いで
該処理液を酸化処理して溶存するFe”十をFe”十に
転化した後、該塩酸処理液を溶媒抽出するととくよシ、
高純度の鉄と塩酸を小規模の装置で効率良く容易に分離
回収し得ることを見い出した。
Therefore, the present invention proposes that by adsorbing and removing the trace impurity components using a 7-ion exchange resin and further performing solvent extraction, the main component iron can be recovered with high efficiency and high purity together with hydrochloric acid. As a result of our studies, we found that in the hydrochloric acid treatment solution for iron, Fe'' contained in the treatment solution is adsorbed by the anion exchange resin, and K<<, while Pb'', zn''+, etc. can be easily adsorbed and removed. Based on the fact that F@″+ is difficult to extract with a solvent especially in a low pH range, whereas pe s+ can be easily extracted, the acid-treated solution is first brought into contact with an anion exchange resin to extract Pb*. Only impurities such as Zn are adsorbed and removed, and then the treated solution is oxidized to convert dissolved Fe to Fe, and then the hydrochloric acid treated solution is extracted with a solvent.
We have discovered that high-purity iron and hydrochloric acid can be efficiently and easily separated and recovered using a small-scale device.

更に詳述すれば、一般にイオン交換樹脂によるイオンの
吸着除去は、樹脂カラムに充填して使用した場合、段数
が無限に近い状態となシ、微量成分でもはソ完全に吸着
除去できる。塩酸液中では、多くの金属が錯アニオンを
形成し、7ニオン交換樹脂を用いることによυ−錯ア1
オンを形成する金属が次式で示すような交換反応で効率
良く除去される。
More specifically, when an ion exchange resin is used to adsorb and remove ions, the number of stages is nearly infinite when the resin column is used, and even trace components can be completely adsorbed and removed. In hydrochloric acid solution, many metals form complex anions, and by using a 7 anion exchange resin, υ-complex anions can be formed.
The metal that forms ions is efficiently removed by an exchange reaction as shown in the following equation.

R−CL +HMC4H+1−+R−MCLn+1+H
CL  、(1)(Rはアニオン交換樹脂、Mはn価の
金属を示す)骸錯アニオンを形成する金属は pbl+
、zn1+の他、 Fe”、Ru”、Ir”、pt番+
+ P d” + Cd” +Ag” + Hg” +
 B i” 、W・十などが知られ、従つ丁これらの金
属は、不純物としてアニオン交換樹脂によシ除去可能で
ある。而かるに鉄の塩酸処理液中の鉄分はFe!+イオ
ンとして溶存するので、アニオン交換樹脂に吸着されず
、pbl+、znl+等の不純物金属のみが吸着除去さ
れる。
R-CL +HMC4H+1-+R-MCLn+1+H
CL, (1) (R is an anion exchange resin, M is an n-valent metal) The metal forming the skeleton complex anion is pbl+
, zn1+, Fe", Ru", Ir", pt number+
+ P d" + Cd"+Ag" + Hg" +
These metals can be removed as impurities by anion exchange resin.However, the iron content in the hydrochloric acid treatment solution for iron is treated as Fe!+ ions. Since it is dissolved, it is not adsorbed by the anion exchange resin, and only impurity metals such as pbl+ and znl+ are adsorbed and removed.

本発明において、アニオン交換樹脂による吸着は、公知
の手段を適用して行うことができ、アニオンを交換可能
な、三次元に重縮合した高分子基体に、交換基として4
級アンモニウム基または1〜5級アミンを結合させた種
々市販の如きアニオン交換樹脂をカラムに充填して行う
方法が好適である。該吸着処理において、塩酸濃度が2
N以下では不純物金属イオンの除去が不十分であシ、ま
た8N以上ではFe!+イオンの吸着が一部起るので、
本発明の該吸着工程時の塩酸濃度は2N〜8Nの範囲で
あることが好ましい。また吸着後のアニオン交換樹脂は
、水または希塩酸によシ次式に示すように容易に脱着で
き、繰シ返えし再生使用可能である。
In the present invention, adsorption by an anion exchange resin can be carried out by applying known means, and anion exchange resin is attached to a three-dimensionally polycondensed polymer base as an exchange group.
A suitable method is to fill a column with a variety of commercially available anion exchange resins to which a grade ammonium group or a primary to 5 grade amine is bonded. In this adsorption treatment, the hydrochloric acid concentration is 2
If it is less than N, the removal of impurity metal ions will be insufficient, and if it is more than 8N, Fe! Since some adsorption of + ions occurs,
The concentration of hydrochloric acid during the adsorption step of the present invention is preferably in the range of 2N to 8N. Further, the anion exchange resin after adsorption can be easily desorbed with water or dilute hydrochloric acid as shown in the following equation, and can be recycled and used repeatedly.

RMCtn−N +Hz O→RCL 十Mczn+H
mO−(2)かくして、不純物が除去された酸処理液は
純粋な鉄分と塩酸の溶液として得られるが、該液中の鉄
分は、前記したように、溶媒抽出しにくいFel+イオ
ンとしで存在するため、溶媒抽出する前に該p61+イ
オンを抽出可能なドe1+イオンに酸化処理する必要が
ある。
RMCtn-N +Hz O→RCL 1 Mczn+H
mO-(2) In this way, the acid treatment solution from which impurities have been removed is obtained as a solution of pure iron and hydrochloric acid, but as mentioned above, the iron in this solution exists as Fel + ions, which are difficult to extract with solvents. Therefore, it is necessary to oxidize the p61+ ions to extractable e1+ ions before solvent extraction.

本発明において、該酸化処理は、公知の化学的又は電気
化学的種々の酸化法を適用できる。
In the present invention, various known chemical or electrochemical oxidation methods can be applied to the oxidation treatment.

例えば酸化剤の注入、酸化性気体の吹込、電解酸化等が
あシ、処理液を汚染せず、かつ酸化を定量的に行うため
、過酸化水素、オゾン、空気、酸素ガス、塩素ガスによ
る酸化法又は、電解酸化法及びそれらの組み合わせが好
適である。電解酸化は、該処理液を公知の隔膜電解槽の
陽極室に導いて通電することによシ容易に行うことがで
きる。次いで、該酸化処理液を溶媒抽出法により処理し
て、塩酸と鉄を分離回収する。溶媒抽出処理は、従来か
ら知られている方法を適用でき、本発明においては、塩
酸液中のFel+イオンを抽出可能な、リン酸エステル
類、例えばDEHP(ジー2−エチルへキシルリン酸)
、DBP(ジプチルリン酸)、TBP(リン酸トリブチ
ル)及び第1〜4級アミン類、例えばTOA()!Jイ
ソオクチルアミン)等が溶媒として好適に使用される。
For example, injection of oxidizing agent, blowing of oxidizing gas, electrolytic oxidation, etc. are not possible, but in order to perform oxidation quantitatively without contaminating the processing solution, oxidation using hydrogen peroxide, ozone, air, oxygen gas, chlorine gas, etc. method, electrolytic oxidation method, and combinations thereof are preferred. Electrolytic oxidation can be easily carried out by introducing the treatment liquid into the anode chamber of a known diaphragm electrolytic cell and energizing it. Next, the oxidized solution is treated by a solvent extraction method to separate and recover hydrochloric acid and iron. Conventionally known methods can be applied to the solvent extraction process, and in the present invention, phosphoric acid esters, such as DEHP (di-2-ethylhexyl phosphate), which can extract Fel+ ions from the hydrochloric acid solution, are used.
, DBP (diptyl phosphate), TBP (tributyl phosphate) and primary to quaternary amines, such as TOA ()! Jisooctylamine) etc. are preferably used as the solvent.

該溶媒と処理液とは攪拌等により十分接触混合した後装
置され、鉄イオンが移行抽出された溶媒層と塩酸液層と
に分離される。溶媒に抽出された鉄は、用途によシ塩化
物、水酸化物等の形で剥離可能′である。剥離剤として
は水、塩酸等が好適であり、剥離後の溶媒は循環再使用
することができる。また、水によってF e CLmと
して剥離された液は電解による酸化工程の陰極液として
用いれば、電解電圧を低下させることができ、電力の節
約効果が得られる。
The solvent and the treatment liquid are sufficiently contacted and mixed by stirring, etc., and then separated into a solvent layer in which iron ions have been transferred and extracted and a hydrochloric acid liquid layer. Iron extracted into a solvent can be exfoliated in the form of sulfuride, hydroxide, etc. depending on the application. Water, hydrochloric acid, etc. are suitable as the stripping agent, and the solvent after stripping can be recycled and reused. Furthermore, if the liquid stripped off as F e CLm by water is used as a catholyte in an oxidation process by electrolysis, the electrolytic voltage can be lowered, resulting in a power saving effect.

以下、本発明を添付70−ジートを参照して述べるが、
本発明はこれに限定されるものではない。
The present invention will now be described with reference to Attachment 70-Jito.
The present invention is not limited to this.

実施例 鉄の塩酸による酸洗工程1で生成した下記組成の酸処理
液を吸着工程20強塩基性アニオン交換樹脂(商品名ダ
イヤイオン5A10A)を充填したカラムに5V10で
通液した。
Example Pickling Iron with Hydrochloric Acid The acid treatment solution having the following composition produced in step 1 was passed through a column packed with a strongly basic anion exchange resin (trade name Diaion 5A10A) at 5V10 in adsorption step 20.

得られた排出液の組成は次の通電であり、不純物金属は
十分除去されていた′。
The composition of the resulting discharged liquid was as follows, and impurity metals were sufficiently removed.

吸着された不純物8は脱着剤9として水を用い、P b
 CLx + Z n C1鵞として除去された。該排
出液5Rを酸化工程3の隔膜式電解槽の陽極室に導き、
Fe1+をFe”十に酸化した。電解槽はゴムライニン
グ鉄製で陰゛極にはTi板、陽極には貴金属酸化物被榎
チタンを使用した。また、陰極室と陽極室は陽イオン交
換膜(商品名すフイオン315)で仕切り、陰極室には
、後述する剥離工程5より回収し九FeCtm酸性水溶
液15を通液して、p e″+→Fe″+の還元反応に
より電解電圧の低減を図った。40℃、5KA、電流書
度IKA/m”で電解電圧は2.4vとなり、約12時
間電解して十分酸化処理を行った。
The adsorbed impurities 8 are removed using water as the desorbent 9, P b
It was removed as CLx + Z n C1. The discharged liquid 5R is led to the anode chamber of the diaphragm electrolytic cell in the oxidation step 3,
Fe1+ was oxidized to Fe"0. The electrolytic cell was made of rubber-lined iron, the cathode was a Ti plate, and the anode was titanium coated with a noble metal oxide. The cathode chamber and anode chamber were equipped with a cation exchange membrane ( The 9-FeCtm acidic aqueous solution 15 recovered from the stripping process 5 described later is passed through the cathode chamber to reduce the electrolytic voltage by the reduction reaction of pe''+→Fe''+. The electrolytic voltage was 2.4 V at 40° C., 5 KA, current reading IKA/m”, and electrolysis was carried out for about 12 hours to perform sufficient oxidation treatment.

次いで、得られた酸化処理液を抽出工s4において、1
0XTOA(ケロシン希釈)を溶媒として用い、2段抽
出して次式の如(p、l+を溶媒層に抽出分離し、他層
で塩酸を分離回収した。
Next, the obtained oxidation treatment liquid was extracted with 1
Two-stage extraction was performed using OXTOA (kerosene dilution) as a solvent, and as shown in the following formula (p, l+ were extracted and separated into the solvent layer, and hydrochloric acid was separated and recovered in the other layer).

H”(FeCt、)−十RsN −+  RsNH”(
:  FeC44、l−・・ (a)回収塩酸7中のF
e3+はQ、 1 g/lであり、繭記酸洗工程用の塩
酸11として再使用することができる。
H"(FeCt,)-10RsN-+RsNH"(
: FeC44, l-... (a) F in recovered hydrochloric acid 7
e3+ is Q, 1 g/l, and can be reused as hydrochloric acid 11 for the Mayuki pickling process.

溶媒に抽出されたFe婁+は剥離工程5で次式の如く、
剥離剤14としての水と接触させて水相に高純度のF 
e CLs酸性溶液として剥離された。
The Fe + extracted into the solvent is processed as shown in the following formula in the peeling step 5.
High purity F is added to the aqueous phase by contacting with water as a release agent 14.
e CLs was peeled off as an acidic solution.

Rm NH”CF’eCL6  ) −+ Is O→
RsN十FeCLs +HCL 十Hm O剥離後の溶
媒15は溶媒抽出工程4に微積再使用された。
Rm NH”CF'eCL6 ) −+ Is O→
RsN + FeCLs + HCL + Hm O The solvent 15 after stripping was reused in a small amount in the solvent extraction step 4.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の詳細な説明するフローシートである。 1 : 鉄の酸洗工程 2 :#&着工程 5 二酸化工程 4 : 溶媒抽出工程 5 ; 剥離工程 %許出11人   鈴木敏弘外1名 什廻人 The drawing is a detailed illustrative flow sheet of the invention. 1: Iron pickling process 2: # & wearing process 5 Dioxidation process 4: Solvent extraction step 5; Peeling process % permission: 11 people, Toshihiro Suzuki and 1 other person servant

Claims (6)

【特許請求の範囲】[Claims] (1)  鉄の塩酸処理液をアニオン交換樹脂と接触さ
せて不純物金属イオンを吸着除去し、誼吸 五諌酸化処
理液を溶媒抽出法によシ処理して塩酸と鉄を分離回収す
ることを特徴とする鉄の酸処理液よシ有価成分の回収方
法。
(1) The iron hydrochloric acid treatment solution is brought into contact with an anion exchange resin to adsorb and remove impurity metal ions, and the hydrochloric acid treatment solution is treated by a solvent extraction method to separate and recover hydrochloric acid and iron. Features: A method for recovering valuable components from acid treatment solutions for iron.
(2)  アニオン交換樹脂による吸着時の塩酸濃度を
2N〜8Nとする特許請求の範囲第(1)項の方法。
(2) The method according to claim (1), wherein the concentration of hydrochloric acid during adsorption by the anion exchange resin is 2N to 8N.
(3)  酸化処理を電解酸化によシ行う特許請求の範
囲第(1)項の方法。
(3) The method according to claim (1), wherein the oxidation treatment is performed by electrolytic oxidation.
(4)酸化処理を過酸化水素によシ行う特許請求の範囲
第(1)項の方法。
(4) The method according to claim (1), in which the oxidation treatment is performed using hydrogen peroxide.
(5)  酸化処理を空気、酸素ガス又は塩素ガスによ
り行う特許請求の範囲第(1)項の方法。
(5) The method according to claim (1), wherein the oxidation treatment is performed using air, oxygen gas, or chlorine gas.
(6)  溶媒抽出における溶媒として、第1〜4級ア
ミン類又は、リン酸エステル類を用いる特許請求の範囲
第1項の方法。 (η 鉄を高純度塩化鉄として分離回収する特許請求の
範囲第(1)項の方法。
(6) The method according to claim 1, in which primary to quaternary amines or phosphoric acid esters are used as the solvent in solvent extraction. (η The method according to claim (1) for separating and recovering iron as high-purity iron chloride.
JP16728881A 1981-10-21 1981-10-21 Recovery of valuable component from liquid used for treating iron with acid Granted JPS5870879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16728881A JPS5870879A (en) 1981-10-21 1981-10-21 Recovery of valuable component from liquid used for treating iron with acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16728881A JPS5870879A (en) 1981-10-21 1981-10-21 Recovery of valuable component from liquid used for treating iron with acid

Publications (2)

Publication Number Publication Date
JPS5870879A true JPS5870879A (en) 1983-04-27
JPH0141395B2 JPH0141395B2 (en) 1989-09-05

Family

ID=15846970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16728881A Granted JPS5870879A (en) 1981-10-21 1981-10-21 Recovery of valuable component from liquid used for treating iron with acid

Country Status (1)

Country Link
JP (1) JPS5870879A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619290U (en) * 1992-08-18 1994-03-11 日本航空電子工業株式会社 Board-to-board connector
US11975412B2 (en) 2020-01-16 2024-05-07 Newfrey Llc Device and method for feeding and fastening a part

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699824B2 (en) * 2005-07-08 2011-06-15 株式会社神戸製鋼所 Equipment for removing heavy metals in hydrochloric acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619290U (en) * 1992-08-18 1994-03-11 日本航空電子工業株式会社 Board-to-board connector
US11975412B2 (en) 2020-01-16 2024-05-07 Newfrey Llc Device and method for feeding and fastening a part

Also Published As

Publication number Publication date
JPH0141395B2 (en) 1989-09-05

Similar Documents

Publication Publication Date Title
CN104641018B (en) Method and apparatus for being produced from metal salt solution or reclaiming hydrochloric acid
JP3383334B2 (en) How to recycle sulfuric acid
US8282903B2 (en) Method for recovering nitric acid and purifying silver nitrate electrolyte
US5051187A (en) Process for recovering sulfuric acid
US20120156126A1 (en) Process and apparatus for precipitating cationic metal hydroxides and the recovery of sulfuric acid from acidic solutions
JPS5870879A (en) Recovery of valuable component from liquid used for treating iron with acid
CN104030510A (en) Method for recycling acid and heavy metal in gold smelting acid wastewater
EP0301700A1 (en) Neutralization of sulfuric acid containing iron ions
CN111020633A (en) Treatment method of acidic etching waste liquid
JP4292454B2 (en) Method for treating aqueous solution containing metal fluoride
JPH0141394B2 (en)
JPS59123730A (en) Method for recovering iridium from metallic electrode
AU2004319088A1 (en) Method of recovering gallium
JP2002212650A (en) Method for recovering platinum group metals from metallic electrode
JPS62500388A (en) Production of zinc from ores and concentrates
JPS61111917A (en) Recovery of gallium
JP2002194581A (en) Method for recovering platinum group metal from metal electrode
JP5818053B2 (en) Method for treating boron-containing groundwater
JP2004130175A (en) Method for separating metal ion from solution of metal complex
Turygin et al. Electrochemical arsenic extraction from nonferrous metals industry waste
TW200417626A (en) Treatment method of waste tin lead stripping solution
TWI535854B (en) Resource recovery of gallium from scrap sapphire wafer
US642023A (en) Process of purifying brine.
JPH05139707A (en) Sulfuric acid recovery
JPS6220838A (en) Installation for treating waste pickling liquid and solid residue