JPH0141394B2 - - Google Patents

Info

Publication number
JPH0141394B2
JPH0141394B2 JP16728781A JP16728781A JPH0141394B2 JP H0141394 B2 JPH0141394 B2 JP H0141394B2 JP 16728781 A JP16728781 A JP 16728781A JP 16728781 A JP16728781 A JP 16728781A JP H0141394 B2 JPH0141394 B2 JP H0141394B2
Authority
JP
Japan
Prior art keywords
hydrochloric acid
titanium
ions
exchange resin
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16728781A
Other languages
Japanese (ja)
Other versions
JPS5870878A (en
Inventor
Hideji Nakamatsu
Masashi Hosonuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PERUMERETSUKU DENKYOKU KK
Original Assignee
PERUMERETSUKU DENKYOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PERUMERETSUKU DENKYOKU KK filed Critical PERUMERETSUKU DENKYOKU KK
Priority to JP16728781A priority Critical patent/JPS5870878A/en
Publication of JPS5870878A publication Critical patent/JPS5870878A/en
Publication of JPH0141394B2 publication Critical patent/JPH0141394B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この出願の発明は、チタンの酸処理液より有価
成分を回収する方法に関し、特に、チタンの塩酸
エツチング又は酸洗廃液を酸化処理、吸着処理及
び溶媒抽出処理して、廃液中の塩酸及びチタンを
高純度で回収する方法に関する。 チタンを基材とする触媒被覆金属電解用電極の
製造等において、チタン基材を塩酸等によりエツ
チング処理又は酸洗処理することが通常行われ、
その際生じる酸処理液中に多量に含まれる塩酸及
びチタンを回収することが公害防止及び省資源上
望ましい。 しかし、該酸処理液中には、鉄、亜鉛等が不純
物金属イオンとして少量溶存し、このような酸処
理液から、従来知られている方法で塩酸と共に純
度の高いチタンを効率良く、分離回収することは
困難であつた。即ち、酸処理廃液を減圧下、低温
で蒸留濃縮する蒸発濃縮法や、該液を噴霧状にし
て熱分解炉中高温で分解する熱分解炉法が、塩酸
を回収する方法として知られているが、これらの
方法は、激しい腐食に耐える高価な装置材料が必
要であり、また蒸発や加熱に多量のエネルギーを
要する上、塩酸を回収する方法であるため、同時
にチタンを高純度に回収することは容易にできな
い。また、溶媒抽出法と電解法を組み合わせて廃
液中の塩酸及び重金属を分離回収する方法が特公
昭56−5827号として知られているが、工程が非常
に複雑で、多数の装置、タンク類を要し、しか
も、微量の不純物金属イオンの分離には効率が低
いため、この方法をチタンの酸処理液に適用する
ことは多くの問題がある。 本発明は、上記の問題を解決するためになされ
たもので、チタンの塩酸処理液より塩酸及びチタ
ンを高純度で効率良く回収する方法を提供するこ
とを目的とする。 本発明は、チタンの塩酸処理液を酸化処理して
Ti3+イオンをTi4+イオンに、及び不純物として
含まれるFe2+イオンをFe3+イオンに転化し、該
酸化処理液をアニオン交換樹脂と接触させて不純
物金属イオンを吸着除去し、次いで吸着除去液を
溶媒抽出法により処理して塩酸とチタンを分離回
収することを特徴とするチタンの酸処理液より有
価成分を回収する方法である。 本発明は、酸処理液中に含まれるFe、Zn等の
微量不純物金属イオンを酸化処理し、アニオン交
換樹脂を用いて吸着除去した後、主成分である塩
酸及びチタンを溶媒抽出法により分類回収するも
ので、かくすることにより、前記した本発明の目
的が十分達成され、小型の装置で、極めて純度の
高いチタン及び塩酸を効率良く容易に分離回収で
きる効果が得られる。 溶媒抽出法による廃塩酸の回収法は、通常第一
工程で不純物金属イオンを抽出除去し、第二工程
で主成分金属イオンを抽出し、同時に塩酸を回収
する有力な方法である。しかし、溶媒抽出法は大
量に存在する成分の分離には極めて有効である
が、数百〜数十ppm程度の微量成分の抽出除去に
おいては、効率が悪く、完全に除去するには多く
の段数を要し、膨大な装置となつて、実際上不可
能である。そこで本発明は、該微量不純物成分を
アニオン交換樹脂を用いて吸着除去し、更に溶媒
抽出を行えば、主成分チタンを効率良く、しかも
高純度で塩酸と共に回収し得ることに着目し、検
討した結果、チタンの塩酸処理液においては、処
理液中に含まれるFe2+及びTi4+はアニオン交換
樹脂に吸着されにくく、一方Zn2+等と共に、
Fe3+は容易に吸着除去できる事実に基き、該酸
処理液を先ず酸化処理し、溶存するFe2+及び
Ti3+をFe3+及びTi4+に転化すれば、アニオン交
換樹脂と接触させて、Fe、Zn等の不純物のみ効
率良く吸着除去することができ、その後主成分で
あるTi4+が残存する該塩酸処理液を溶媒抽出す
ることにより、高純度のチタンと塩酸を小規模の
装置で効率良く容易に分離回収し得ることを見い
出した。 更に詳述すれば、一般にイオン交換樹脂による
イオンの吸着除去は樹脂カラムに充填して使用し
た場合、段数が無限に近い状態となり、微量成分
でもほゞ完全に吸着除去できる。塩酸液中では多
くの金属が錯アニオンを形成し、アニオン交換樹
脂を用いることにより、錯アニオンを形成する金
属が次式で示すような交換反応で効率良く除去さ
れる。 R−Cl+HMClo+1→R−MClo+1+HCl …(1) (Rはアニオン交換樹脂、Mはn価の金属を示
す)該錯アニオンを形成する金属は、Fe3+
Zn2+の他、Ru4+、Ir4+、Pf4+、Pd2+、Cd2+
Ag+、Pb2+、Hg2+、Bi3+、W6+などが知られ、
従つて、これらの金属は、不純物としてアニオン
交換樹脂により除去可能である。而かるにチタン
の塩酸処理液中に鉄分は多量のTi3+イオンが溶
存するためFe2+イオンとして溶存し、このまま
ではアニオン交換樹脂と接触しても吸着されない
ので、本発明においては、前記したように、吸着
可能なFe3+イオンの形に予め酸化する必要があ
る。 本発明において、該酸化処理は、公知の化学的
又は電気化学的種々の酸化法を適用できる。例え
ば酸化剤の注入、酸化性気体の吹込、電解酸化等
があり、処理液を汚染せず、かつ酸化を定量的に
行うため、過酸化水素、オゾン、空気、酸素ガ
ス、塩素ガスによる酸化法又は電解酸化法及びそ
れらの組み合わせが好適である。電解酸化は、該
処理液を公知の隔膜電解槽の陰極室に導いて通電
することにより容易に行うことができる。 該酸化処理により、主成分である溶存Ti3+
オンも同時にTi4+イオンに転化されるが、Ti4+
イオンは前記した塩酸溶液中で錯アニオンを形成
しやすい金属ではないため、次工程のアニオン交
換樹脂によつて吸着されずに残留し、次の溶媒抽
出工程で分離されるので不都合はない。 アニオン交換樹脂による吸着は、アニオンを交
換可能な、三次元に重複合した高分子基体に、交
換基として4級アンモニウム基または1〜3級ア
ミンを結合させた種々市販の如きアニオン交換樹
脂をカラムに充填して行う公知の手段を適用して
行うことができる。該吸着処理において塩酸濃度
が2N以下ではFe3+イオンの除去効率が低く、ま
た8N以上ではTi4+イオンの吸着が一部起るので、
本発明の該吸着工程時の塩酸濃度は2N〜8Nの範
囲であることが好ましい。また、吸着後のアニオ
ン交換樹脂は、水または希塩酸により、次式に示
すように容易に脱着でき、繰り返えし再生使用可
能である。 R−MClo+1+H2O→R−Cl+MClo+H2O …(2) 不純物金属が除去された該塩酸処理液を、次い
で溶媒抽出法により処理して、塩酸とチタンを分
散回収する。溶媒抽出処理は、従来から知られて
いる方法を適用することができ、本発明において
は、塩酸液中のTi4+イオンを抽出可能なジ−2
−エチルヘキシルリン酸(DEHP)等のリン酸エ
ステル、或は、酸化トリオクチルフオスフイン
(TOPO)等が溶媒として好適に使用される。該
溶媒と処理液とは撹拌等により十分接触・混合し
た後放置され、チタンイオンが移行抽出された溶
媒層を塩酸液層とに分離される。溶媒に抽出され
たチタンは、用途により、水酸化物、錯体等の形
で剥離可能である。剥離剤としては、水酸化物の
場合、(NH42CO3、錯体の場合、NH4HF2が好
適であり、剥離後の溶媒は循環再使用することが
できる。 以下、本発明の実施例を添付フローシートを参
照して述べるが、本発明はこれに限定されるもの
ではない。 実施例 チタンの塩酸によるエツチング工程1で生成し
た下記組成の処理液8m3を酸化工程2の隔膜式電
解槽の陰極室に導き、Ti3+イオンをTi4+イオン
に、Fe2+イオンをFe3+イオンに酸化した。
The invention of this application relates to a method for recovering valuable components from an acid-treated titanium solution, and in particular, a method of oxidizing, adsorbing, and solvent extracting a titanium hydrochloric acid etching or pickling waste solution to remove hydrochloric acid and titanium from the waste solution. Concerning a method for recovering with high purity. In the production of catalyst-coated metal electrolytic electrodes using titanium as a base material, etching treatment or pickling treatment of the titanium base material with hydrochloric acid etc. is usually carried out.
It is desirable for pollution prevention and resource saving to recover hydrochloric acid and titanium contained in large amounts in the acid treatment solution produced at this time. However, a small amount of iron, zinc, etc. are dissolved as impurity metal ions in the acid treatment solution, and it is not possible to efficiently separate and recover highly pure titanium along with hydrochloric acid from such acid treatment solution using conventional methods. It was difficult to do so. Specifically, known methods for recovering hydrochloric acid include an evaporative concentration method in which the acid-treated waste liquid is distilled and concentrated under reduced pressure at a low temperature, and a pyrolysis furnace method in which the liquid is made into a spray and decomposed at a high temperature in a pyrolysis furnace. However, these methods require expensive equipment materials that can withstand severe corrosion, require a large amount of energy for evaporation and heating, and are methods for recovering hydrochloric acid, making it difficult to recover titanium at high purity at the same time. cannot be done easily. In addition, a method for separating and recovering hydrochloric acid and heavy metals from waste liquid by combining solvent extraction and electrolysis is known as Japanese Patent Publication No. 56-5827, but the process is extremely complicated and requires a large number of equipment and tanks. Moreover, since the efficiency in separating trace amounts of impurity metal ions is low, there are many problems in applying this method to acid treatment solutions for titanium. The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for efficiently recovering hydrochloric acid and titanium with high purity from a hydrochloric acid treatment solution of titanium. The present invention involves oxidizing a titanium hydrochloric acid treatment solution.
Ti 3+ ions are converted to Ti 4+ ions and Fe 2+ ions contained as impurities are converted to Fe 3+ ions, the oxidation treatment solution is brought into contact with an anion exchange resin to adsorb and remove impurity metal ions, and then This is a method for recovering valuable components from an acid-treated titanium solution, which is characterized in that the adsorption removal solution is treated by a solvent extraction method to separate and recover hydrochloric acid and titanium. The present invention oxidizes trace impurity metal ions such as Fe and Zn contained in the acid treatment solution, adsorbs and removes them using an anion exchange resin, and then classifies and recovers the main components, hydrochloric acid and titanium, using a solvent extraction method. By doing so, the above-mentioned object of the present invention is fully achieved, and it is possible to efficiently and easily separate and recover extremely pure titanium and hydrochloric acid using a small-sized device. The solvent extraction method for recovering waste hydrochloric acid is an effective method in which impurity metal ions are usually extracted and removed in the first step, main component metal ions are extracted in the second step, and hydrochloric acid is recovered at the same time. However, although the solvent extraction method is extremely effective for separating components that exist in large amounts, it is inefficient in extracting and removing trace components of several hundred to several tens of ppm, and requires many stages to completely remove them. This would require a huge amount of equipment, making it practically impossible. Therefore, in the present invention, we focused on and studied that by adsorbing and removing the trace impurity components using an anion exchange resin and further performing solvent extraction, the main component titanium can be efficiently and highly purified together with hydrochloric acid. As a result, in the hydrochloric acid treatment solution for titanium, Fe 2+ and Ti 4+ contained in the treatment solution are difficult to adsorb to the anion exchange resin, while Zn 2+ etc.
Based on the fact that Fe 3+ can be easily adsorbed and removed, the acid treatment solution is first oxidized to remove dissolved Fe 2+ and
If Ti 3+ is converted to Fe 3+ and Ti 4+ , only impurities such as Fe and Zn can be efficiently adsorbed and removed by contacting with an anion exchange resin, and then the main component, Ti 4+ , remains. It has been found that by solvent extraction of the hydrochloric acid treatment solution, highly pure titanium and hydrochloric acid can be efficiently and easily separated and recovered using a small-scale device. More specifically, in general, when an ion exchange resin is used to adsorb and remove ions by filling a resin column, the number of stages becomes nearly infinite, and even trace components can be almost completely adsorbed and removed. Many metals form complex anions in the hydrochloric acid solution, and by using an anion exchange resin, the metals forming the complex anions can be efficiently removed by an exchange reaction as shown in the following formula. R-Cl+HMCl o+1 →R-MClo +1 +HCl...(1) (R is an anion exchange resin, M is an n-valent metal) The metal forming the complex anion is Fe 3+ ,
In addition to Zn 2+ , Ru 4+ , Ir 4+ , Pf 4+ , Pd 2+ , Cd 2+ ,
Ag + , Pb 2+ , Hg 2+ , Bi 3+ , W 6+ , etc. are known.
Therefore, these metals can be removed as impurities by an anion exchange resin. However, since a large amount of Ti 3+ ions are dissolved in the hydrochloric acid treatment solution for titanium, iron is dissolved as Fe 2+ ions, and as it is, it will not be adsorbed even if it comes into contact with the anion exchange resin. As mentioned above, it is necessary to pre-oxidize Fe 3+ ions into adsorbable Fe 3+ ion form. In the present invention, various known chemical or electrochemical oxidation methods can be applied to the oxidation treatment. Examples include injection of an oxidizing agent, blowing of an oxidizing gas, electrolytic oxidation, etc. Oxidation methods using hydrogen peroxide, ozone, air, oxygen gas, chlorine gas, etc. are used to perform quantitative oxidation without contaminating the processing solution. Alternatively, electrolytic oxidation methods and combinations thereof are suitable. Electrolytic oxidation can be easily carried out by introducing the treatment liquid into the cathode chamber of a known diaphragm electrolytic cell and energizing it. Through this oxidation treatment, dissolved Ti 3+ ions, which are the main component, are also converted to Ti 4+ ions, but Ti 4+
Since the ions are not metals that easily form complex anions in the hydrochloric acid solution, they remain without being adsorbed by the anion exchange resin in the next step and are separated in the next solvent extraction step, so there is no problem. Adsorption using an anion exchange resin is performed by using various commercially available anion exchange resins in which a quaternary ammonium group or a primary to tertiary amine is bonded as an exchange group to a three-dimensionally superimposed polymer base capable of exchanging anions. This can be carried out by applying a known means of filling the liquid into the liquid. In this adsorption treatment, if the hydrochloric acid concentration is less than 2N, the removal efficiency of Fe 3+ ions is low, and if it is more than 8N, some adsorption of Ti 4+ ions will occur.
The concentration of hydrochloric acid during the adsorption step of the present invention is preferably in the range of 2N to 8N. Further, the anion exchange resin after adsorption can be easily desorbed with water or dilute hydrochloric acid as shown in the following formula, and can be repeatedly reused. R-MClo +1 + H2O →R-Cl+ MClo + H2O ...(2) The hydrochloric acid treatment solution from which impurity metals have been removed is then treated by a solvent extraction method to disperse and recover hydrochloric acid and titanium. Conventionally known methods can be applied to the solvent extraction treatment, and in the present invention, a di - 2
- Phosphate esters such as ethylhexyl phosphate (DEHP), trioctylphosphine oxide (TOPO), and the like are preferably used as the solvent. The solvent and the treatment liquid are brought into sufficient contact and mixed by stirring or the like, and then left to stand, and the solvent layer in which titanium ions have been transferred and extracted is separated into a hydrochloric acid liquid layer. Titanium extracted into a solvent can be exfoliated in the form of hydroxide, complex, etc. depending on the use. As a stripping agent, (NH 4 ) 2 CO 3 is suitable for a hydroxide, and NH 4 HF 2 is suitable for a complex, and the solvent after stripping can be recycled and reused. Examples of the present invention will be described below with reference to the attached flow sheets, but the present invention is not limited thereto. Example: Etching titanium with hydrochloric acid 8 m 3 of the treatment solution with the following composition generated in step 1 is introduced into the cathode chamber of the diaphragm electrolytic cell in oxidation step 2, and Ti 3+ ions are converted into Ti 4+ ions and Fe 2+ ions are converted into Ti 4+ ions. Oxidized to Fe 3+ ions.

【表】 電解槽はゴムライニング鉄製で、陰極にはTi
板、陽極には貴金属酸化物被覆チタンを使用し
た。また、陰極室と陽極室は陽イオン交換膜(商
品名ナフイオン315)で仕切り、陰極室には3%
HClを循環させ、30℃、電流値5KA、電流密度
1KA/m2、槽電圧3.2Vで約13時間電解し、十分
酸化処理を行つた。 なお、該酸化は、酸化剤8の注入又は吹込によ
つても同様の効果を達成できる。 該酸化処理液と強塩基性アニオン交換樹脂(商
品名ダイヤイオンSA10A)を充填したカラムよ
りなる吸着工程3にSV10で通液したところ、下
記組成の排出液が得られた。
[Table] The electrolytic cell is made of iron with rubber lining, and the cathode is made of Ti.
Titanium coated with a noble metal oxide was used for the plate and anode. In addition, the cathode chamber and the anode chamber are separated by a cation exchange membrane (product name Nafion 315), and the cathode chamber has a 3%
Circulating HCl, 30℃, current value 5KA, current density
Electrolysis was carried out for about 13 hours at 1 KA/m 2 and a cell voltage of 3.2 V to perform sufficient oxidation treatment. Note that the same effect can also be achieved by injecting or blowing the oxidizing agent 8. When the solution was passed through an adsorption step 3 consisting of a column filled with the oxidation treatment solution and a strongly basic anion exchange resin (trade name Diaion SA10A) at SV10, a discharged solution having the following composition was obtained.

【表】 次いで該排出液を溶媒抽出工程4において、20
%DEHP(ケロシン希釈)で2段向流抽出し、
Ti4+を0.2g/含む回収塩酸7が得られ、チタ
ンのエツチング用塩酸11として再使用した。 一方、Ti4+を抽出した溶媒12は剥離工程5
でPH8.5に調節した200g/NH4Cl水溶液で洗浄
後、剥離剤14としてPH10の(NH42CO3水溶液
を加えてTi4+を剥離し、生成沈澱を過分離し
て高純度の水酸化チタン6が得られた。分離した
溶媒13及び液15は循環再使用された。 比較例 実施例で使用したと同じ塩酸処理液を実施例と
同じ条件で電解処理した後、アニオン交換樹脂に
よる吸着処理をせずに10%トリオクチルアミン
(TOA、ケロシン希釈)で2段抽出し、下記組成
の回収塩酸を得た。
[Table] Next, the effluent was subjected to solvent extraction step 4 for 20
Two-stage countercurrent extraction with %DEHP (kerosene dilution),
Recovered hydrochloric acid 7 containing 0.2 g/Ti 4+ was obtained and reused as hydrochloric acid 11 for etching titanium. On the other hand, the solvent 12 from which Ti 4+ was extracted is used in the stripping step 5.
After washing with 200 g/NH 4 Cl aqueous solution adjusted to PH 8.5, a (NH 4 ) 2 CO 3 aqueous solution of PH 10 was added as stripping agent 14 to strip Ti 4+ , and the precipitate formed was overseparated to obtain high purity. Titanium hydroxide 6 was obtained. The separated solvent 13 and liquid 15 were recycled and reused. Comparative Example The same hydrochloric acid treatment solution used in the example was electrolytically treated under the same conditions as in the example, and then extracted in two stages with 10% trioctylamine (TOA, diluted with kerosene) without adsorption treatment with an anion exchange resin. , recovered hydrochloric acid having the following composition was obtained.

【表】 更に、実施例と同様にDEHPにより溶媒抽出
し、剥離して得られた水酸化チタンには鉄が
200ppm含まれていた。
[Table] Furthermore, the titanium hydroxide obtained by solvent extraction with DEHP and exfoliation in the same manner as in the example contains iron.
It contained 200ppm.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を説明するフローシート
である。 1;チタンの塩酸エツチング工程、2:酸化工
程、3:吸着工程、4:溶媒抽出工程、5:剥離
工程。
The drawing is a flow sheet explaining an embodiment of the invention. 1: titanium hydrochloric acid etching step, 2: oxidation step, 3: adsorption step, 4: solvent extraction step, 5: peeling step.

Claims (1)

【特許請求の範囲】 1 チタンの塩酸処理液を酸化処理してTi3+
オンをTi4+イオンに、及び不純物として含まれ
るFe2+イオンをFe3+イオンに転化し、該酸化処
理液をアニオン交換樹脂と接触させて不純物金属
イオンを吸着除去し、次いで該吸着除去液を溶媒
抽出法により処理して塩酸とチタンを分離回収す
ることを特徴とするチタンの酸処理液より有価成
分の回収方法。 2 酸化処理を電解酸化により行う特許請求の範
囲第1項の方法。 3 酸化処理を過酸化水素により行う特許請求の
範囲第1項の方法。 4 酸化処理を空気、酸素ガス又は塩素ガスによ
り行う特許請求の範囲第1項の方法。 5 アニオン交換樹脂による吸着時の塩酸濃度を
2N〜8Nとする特許請求の範囲第1項の方法。 6 溶媒抽出における溶媒として、ジ−2−エチ
ルヘキシルリン酸、又は酸化トリオクチルフオス
フインを用いる特許請求の範囲第1の方法。 7 チタンを高純度水酸化チタンとして分離回収
する特許請求の範囲第1項の方法。
[Claims] 1. Oxidizing a titanium hydrochloric acid treatment solution to convert Ti 3+ ions into Ti 4+ ions and converting Fe 2+ ions contained as impurities into Fe 3+ ions, and converting the oxidation treatment solution into is brought into contact with an anion exchange resin to adsorb and remove impurity metal ions, and then the adsorbed and removed liquid is treated by a solvent extraction method to separate and recover hydrochloric acid and titanium. Collection method. 2. The method according to claim 1, wherein the oxidation treatment is performed by electrolytic oxidation. 3. The method according to claim 1, wherein the oxidation treatment is performed using hydrogen peroxide. 4. The method according to claim 1, wherein the oxidation treatment is performed using air, oxygen gas, or chlorine gas. 5 Hydrochloric acid concentration during adsorption by anion exchange resin
2N to 8N. The method according to claim 1. 6. The first method of claim 1, in which di-2-ethylhexyl phosphoric acid or trioctylphosphine oxide is used as a solvent in solvent extraction. 7. The method according to claim 1, in which titanium is separated and recovered as high-purity titanium hydroxide.
JP16728781A 1981-10-21 1981-10-21 Recovery of valuable component from acidic liquid for treating titanium Granted JPS5870878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16728781A JPS5870878A (en) 1981-10-21 1981-10-21 Recovery of valuable component from acidic liquid for treating titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16728781A JPS5870878A (en) 1981-10-21 1981-10-21 Recovery of valuable component from acidic liquid for treating titanium

Publications (2)

Publication Number Publication Date
JPS5870878A JPS5870878A (en) 1983-04-27
JPH0141394B2 true JPH0141394B2 (en) 1989-09-05

Family

ID=15846951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16728781A Granted JPS5870878A (en) 1981-10-21 1981-10-21 Recovery of valuable component from acidic liquid for treating titanium

Country Status (1)

Country Link
JP (1) JPS5870878A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3872287D1 (en) * 1987-04-02 1992-07-30 Siemens Ag METHOD FOR CHANGING THE CAPACITY OF AN ION EXCHANGER FOR A SPECIFIC CHEMICAL ELEMENT.
RU2755300C1 (en) * 2020-10-21 2021-09-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Method for extracting highly dispersed titanium (iv) hydroxide from aqueous solutions

Also Published As

Publication number Publication date
JPS5870878A (en) 1983-04-27

Similar Documents

Publication Publication Date Title
JP3383334B2 (en) How to recycle sulfuric acid
CN104641018B (en) Method and apparatus for being produced from metal salt solution or reclaiming hydrochloric acid
US3766036A (en) Process for the removal of ionic metallic impurities from water
CN112299451A (en) Method for preparing lithium hydroxide from lithium-containing low-magnesium brine in lithium phosphate form
JP2023090706A (en) Method for producing lithium hydroxide
CN101554994B (en) Method for recovering iodine in production waste liquid of X-CT series contrast media
US5051187A (en) Process for recovering sulfuric acid
KR20170019246A (en) A recovery method for valuable metal from the LED wastes or electronic wastes
EP0301700A1 (en) Neutralization of sulfuric acid containing iron ions
JP3122948B1 (en) Method for producing high purity cobalt
JPH0141394B2 (en)
JP4607303B2 (en) Method for recovering platinum group metals from metal electrodes
JP4292454B2 (en) Method for treating aqueous solution containing metal fluoride
JPH0141395B2 (en)
US4654131A (en) Recovery of tungsten valves from alkaline solutions
US5676817A (en) Process for the production of pure solutions of tungsten and molybdenum
JP2002212650A (en) Method for recovering platinum group metals from metallic electrode
JP2002194581A (en) Method for recovering platinum group metal from metal electrode
JPS61111917A (en) Recovery of gallium
JPH05139707A (en) Sulfuric acid recovery
JP3043522B2 (en) Method for recovering noble metal ions from pickling waste liquid containing noble metal ions
JP3589708B2 (en) Production method of high purity copper
US2807518A (en) Process for recovery of uranium and vanadium from carbonate solutions by reduction-prcipitation
JPS61133192A (en) Treatment of waste copper liquid containing hydrochloric acid
JP3323585B2 (en) Etching waste liquid treatment method