JPS587062Y2 - Condensed water separation and discharge device for supercharged engines - Google Patents

Condensed water separation and discharge device for supercharged engines

Info

Publication number
JPS587062Y2
JPS587062Y2 JP1977137898U JP13789877U JPS587062Y2 JP S587062 Y2 JPS587062 Y2 JP S587062Y2 JP 1977137898 U JP1977137898 U JP 1977137898U JP 13789877 U JP13789877 U JP 13789877U JP S587062 Y2 JPS587062 Y2 JP S587062Y2
Authority
JP
Japan
Prior art keywords
air supply
air
supply pipe
intake manifold
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1977137898U
Other languages
Japanese (ja)
Other versions
JPS5463815U (en
Inventor
辻村岩男
Original Assignee
ヤンマーディーゼル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマーディーゼル株式会社 filed Critical ヤンマーディーゼル株式会社
Priority to JP1977137898U priority Critical patent/JPS587062Y2/en
Publication of JPS5463815U publication Critical patent/JPS5463815U/ja
Application granted granted Critical
Publication of JPS587062Y2 publication Critical patent/JPS587062Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Description

【考案の詳細な説明】 近年機関の高過給化に伴い過給機の圧力比が上昇し、空
気冷却器による圧縮空気の冷却の必要性が増大する傾向
にある。
[Detailed Description of the Invention] In recent years, as engines have become highly supercharged, the pressure ratio of superchargers has increased, and the need for cooling compressed air by air coolers has tended to increase.

それに伴い冷却空気中の水滴も増加し、吸気弁の摩耗寿
命に重大な影響を与えつつある。
Along with this, the number of water droplets in the cooling air is also increasing, which is having a serious impact on the wear life of the intake valves.

この対策として、従来は第1図に示すように空気冷却器
1の出口側に水滴分離器2を設けたものが実用化されて
いる。
As a countermeasure against this problem, a system in which a water droplet separator 2 is provided on the outlet side of an air cooler 1 as shown in FIG. 1 has been put into practical use.

この機関3から排出された排気ガスは排気マニホールド
4を経て過給機5に供給され、過給機5内のタービンに
回転力を与え、タービンと直結のブロワ−により加圧さ
れた空気は吐出口6から空気冷却器1に入り、冷却され
た後給気マニホールド7から機関3の各シリンダヘッド
へ供給される。
Exhaust gas discharged from the engine 3 is supplied to the supercharger 5 via the exhaust manifold 4, giving rotational force to the turbine in the supercharger 5, and air pressurized by a blower directly connected to the turbine is discharged. The air enters the air cooler 1 from the outlet 6, and after being cooled, it is supplied to each cylinder head of the engine 3 from the intake manifold 7.

ところが図示の如く空気冷却器1の出口側に水滴分離器
2を設けると、(1)給気の圧力損失が極めて大きくな
る、(2)構造が複雑でコスト高となる、(3)空気冷
却器1の大きさが変るごとに空気冷却器に適合する水滴
分離器に取替える必要がある、(4)給気マニホールド
内蔵型の場合は、この種の水滴分離器を利用することが
できない・・・・・・等の問題点がある。
However, if the water droplet separator 2 is installed on the outlet side of the air cooler 1 as shown in the figure, (1) the pressure loss of the supply air becomes extremely large, (2) the structure becomes complicated and the cost becomes high, and (3) the air cooling becomes difficult. Every time the size of the container 1 changes, it is necessary to replace it with a water droplet separator that is compatible with the air cooler. (4) If the air supply manifold is built-in, this type of water droplet separator cannot be used. There are problems such as...

また従来空気冷却器の出口と給気マニホールド入口との
間に特に曲げられた接続管を設け、冷却空気が接続管内
を湾曲しながら通過する際その内面に凝縮水を生じさせ
るようにしたものも提案されているが、その場合は曲管
部分の流速が遅いため曲管部分に殆ど凝縮水を生じさせ
ることができず、曲管内面に凝縮水が付着する程度の流
速にするため断面積を小さくすれば抵抗が大きくなり過
ぎる。
In addition, conventionally, a particularly curved connecting pipe is provided between the outlet of the air cooler and the inlet of the air supply manifold, so that when the cooling air passes through the connecting pipe in a curved manner, condensed water is generated on the inner surface of the connecting pipe. However, in that case, since the flow velocity in the curved pipe section is slow, almost no condensed water can be generated in the curved pipe section, and the cross-sectional area must be reduced to make the flow velocity such that the condensed water adheres to the inner surface of the curved pipe. If it is made too small, the resistance will become too large.

従って現在は実用化されていない。本考案は給気流速の
比較的増加しているシリンダヘッド入口部近傍の給気管
に湾曲部を形成して、水滴に作用する遠心力を増し、給
気管内面に凝縮水が付着しやすいようにすると共に、シ
リンダヘッド入口部に可及的(こ近い位置で、給気管内
面に付着した凝縮水を効果的に捕獲するようにしたもの
で、第2図に1例を示す。
Therefore, it is not currently put into practical use. This invention forms a curved part in the air supply pipe near the cylinder head inlet where the intake air flow rate is relatively increased, thereby increasing the centrifugal force acting on water droplets and making it easier for condensed water to adhere to the inner surface of the air supply pipe. At the same time, it is designed to effectively capture condensed water adhering to the inner surface of the air supply pipe as close as possible to the cylinder head inlet. An example is shown in Fig. 2.

第2図中9は給気マニホールド内蔵型空気冷却器で、そ
の入口は過給機の加圧空気吐出口に接続され、出口10
は複数個の給気管11を経て各気筒のシリンダヘッド8
の入口部12に環状フランジ13を介して接続されてい
る。
9 in Figure 2 is an air cooler with a built-in intake manifold, the inlet of which is connected to the pressurized air discharge port of the supercharger, and the outlet 10
is connected to the cylinder head 8 of each cylinder via a plurality of intake pipes 11.
is connected to the inlet portion 12 of the inlet via an annular flange 13.

給気管11の上端は概ね垂直であり、下端は概ね水平な
姿勢でシリンダヘッド内の給気通路14に連続し、その
間の部分が渭らかに湾曲している。
The upper end of the air supply pipe 11 is generally vertical, the lower end is generally horizontal and continues to the air supply passage 14 in the cylinder head, and the portion between them is gently curved.

環状フランジ13の内周縁から上流(図の右方)に向い
ベンチユリ一部(鼓形)の薄板筒状部15が延びており
(第3図)、その先端縁16と給気管内面17の間の環
状の隙間が水滴流入口18を形成し、筒状部15を囲む
給気管内面部分に設けた清らかな山形断面の環状溝19
と筒状部15により水滴空間20が形成され、空間20
の下端に設けたねじ孔21に排水管22の上端が接続さ
れ、排水管22の下端は大気に開放している。
A thin plate cylindrical portion 15 having a portion of a bench lily (drum shape) extends upstream (to the right in the figure) from the inner circumferential edge of the annular flange 13 (see FIG. 3), and extends between its tip edge 16 and the inner surface 17 of the air supply pipe. An annular gap forms a water droplet inlet 18, and an annular groove 19 with a clear chevron-shaped cross section is provided on the inner surface of the air supply pipe surrounding the cylindrical part 15.
A water droplet space 20 is formed by the cylindrical part 15 and the space 20
The upper end of the drain pipe 22 is connected to a screw hole 21 provided at the lower end, and the lower end of the drain pipe 22 is open to the atmosphere.

過給機により加圧され温度の上昇した状態の加圧空気は
、空気冷却器9内を通過する間に冷却され、内部に水滴
が生ずる。
The pressurized air, which has been pressurized by the supercharger and whose temperature has increased, is cooled while passing through the air cooler 9, and water droplets are generated inside.

この水滴は冷却空気と共に出口10を下方に向い流出す
るが、給気管11が概ね900湾曲しているため、水滴
は遠心力の作用により破線矢印の如く給気管内面17に
衝突し、大きい水滴に成長しながら流下し、水滴流入口
18を経て空間20内に溜まり、排水管22から速かに
排出される。
These water droplets flow downward through the outlet 10 together with the cooling air, but since the air supply pipe 11 is curved approximately 900 degrees, the water droplets collide with the inner surface of the air supply pipe 17 as shown by the dashed arrow due to the action of centrifugal force, forming large water droplets. The water drops flow down while growing, accumulate in the space 20 through the water droplet inlet 18, and are quickly discharged from the drain pipe 22.

一方水滴の除去された冷却空気は実線矢印で示す如く筒
状部15、給気通路14、吸気弁23を経て燃焼室へ吸
入される。
On the other hand, the cooling air from which water droplets have been removed is drawn into the combustion chamber through the cylindrical portion 15, the air supply passage 14, and the intake valve 23, as shown by the solid arrow.

第4図の実施例に於ては給気マニホールド25の一端に
空気冷却器(図示せず)が接続され、給気マニホールド
25の本体から各シリンダヘッド8へ連なる給気管部分
26が第2図の給気管11と同様に湾曲し、ヘッド人口
部12との間に環状フランジ13と筒状部15からなる
水滴取出し装置が装着されている。
In the embodiment shown in FIG. 4, an air cooler (not shown) is connected to one end of the air intake manifold 25, and an air intake pipe section 26 extending from the main body of the air intake manifold 25 to each cylinder head 8 is connected to one end of the air intake manifold 25, as shown in FIG. It is curved like the air supply pipe 11 of , and a water droplet extraction device consisting of an annular flange 13 and a cylindrical part 15 is installed between it and the head artificial part 12.

この場合も給気管部分26の湾曲により水滴は遠心力に
よりその内面に衝突付着し、ヘッド人口部12に可及的
に近い位置で捕集される。
In this case as well, due to the curvature of the air supply pipe section 26, water droplets collide and adhere to the inner surface of the air supply pipe section 26 due to centrifugal force, and are collected at a position as close as possible to the head prosthesis section 12.

以上説明したように本考案によると、多気筒機関の給気
マニホールドから各々のヘッドに連通ずる給気管を曲げ
て、その内面に水滴を含む空気(流速が速い)を衝突さ
せ、水滴を分離させると共に、第3図に示す水滴取出し
装置を各シリンダヘッド人口部に設置したので、(1)
給排気系の構造に関係なく、機関により同一の装置が使
用できる。
As explained above, according to the present invention, the air supply pipe that connects the air intake manifold of a multi-cylinder engine to each head is bent, and air containing water droplets (with a high flow rate) collides with the inner surface of the pipe, thereby separating the water droplets. At the same time, a water droplet extraction device shown in Fig. 3 was installed in each cylinder head port, so (1)
The same device can be used depending on the engine, regardless of the structure of the air supply and exhaust system.

即ち空気冷却器の形状に関係なく、シリンダヘッドが同
じ場合は同一の水滴取出し装置を流用でき、量産性が向
上する。
That is, regardless of the shape of the air cooler, if the cylinder head is the same, the same water droplet extraction device can be used, improving mass productivity.

(2)中小型機関に多用されている給気マニホールド内
蔵式の中間冷却器の場合、従来方式では水滴の回収が不
可能であったが、本考案によるとそれが可能となる。
(2) In the case of intercoolers with built-in air supply manifolds, which are often used in small and medium-sized engines, it was impossible to collect water droplets using conventional methods, but this is now possible with the present invention.

(3)大型用の独立型空気冷却器の場合でも給気マニホ
ールドのヘッド人口部に同様に装着可能である(第4図
)。
(3) Even in the case of a large-sized independent air cooler, it can be installed in the head section of the air supply manifold in the same way (Fig. 4).

(4)本考案においては、給気マニホールドの略水平な
本体の複数個所から下向きに延びる各気筒用の給気管1
1を略直角に急激に湾曲してその先端をシリンダヘッド
入口部12に概ね水平に接続するようにしたので、空気
冷却器又は給気マニホールド内蔵型空気冷却器9の出口
10を出た圧縮を気の流速は速くなり、しかも圧縮空気
は出口10の部分から略下方へ流出するので、含まれて
いる水滴には重力の作用が加わって第2図に破線矢印で
示す如く給気管11の底部の内面17土に効果的に衝突
付着し、空気と分離される。
(4) In the present invention, the air supply pipes 1 for each cylinder extend downward from multiple locations on the substantially horizontal main body of the air intake manifold.
1 is sharply curved at approximately right angles and its tip is connected approximately horizontally to the cylinder head inlet portion 12, so that the compression from the outlet 10 of the air cooler or the air cooler 9 with built-in intake manifold is reduced. The flow rate of the air becomes faster and the compressed air flows out from the outlet 10 substantially downward, so that the water droplets contained therein are affected by the action of gravity and are pushed to the bottom of the air supply pipe 11 as shown by the dashed arrow in FIG. The inner surface 17 of the soil effectively collides with the soil and is separated from the air.

即ちマニホールドから分岐した給気管11内ではマニホ
ールド内よりも流速が一般に増加していることと、給気
管11がマニホールド出口10から一旦下方へ延びその
後急激に略直角に湾曲していることにより水滴の慣性力
を算犬限に利用して、水滴を給気管内面17上で捕獲す
ることができる。
That is, the flow velocity in the air supply pipe 11 branched from the manifold is generally higher than that in the manifold, and the air supply pipe 11 extends downward from the manifold outlet 10 and then sharply curves at a substantially right angle, so that the flow rate of water droplets is reduced. Water droplets can be captured on the inner surface 17 of the air supply pipe by using the inertial force as a limit.

(5)水滴取出し装置A(第3図)はシリンダヘッド8
の給気通路14の入口部12に近接配置されているので
、そこに至るまでの圧縮空気通路内で十分気水分離を行
うことができ、気水分離効果が最も大きくなり、水滴の
除去された空気が直ちに短い給気通路14を経て機関に
供給されることになる。
(5) Water droplet extraction device A (Fig. 3) is cylinder head 8.
Since it is located close to the inlet 12 of the air supply passage 14 of The air is immediately supplied to the engine via the short air supply passage 14.

即ち気水分離のためにできるだけ長い区間を与えて、機
関への水滴の吸入量を減すことができる利点がある。
That is, there is an advantage in that it is possible to provide as long a section as possible for steam and water separation, thereby reducing the amount of water droplets sucked into the engine.

(6)更に本考案においては、水溜空間20を形成する
ための筒状部15が鼓形としであるため、給気管内面1
7の上半分から筒状部15の上面に移行した水滴は、筒
状部15の外周に形成されている環状溝内を下方へ流下
することになり、一旦捕獲した水滴が給気通路入口部1
2へ到達することを確実に防止し得る利点がある。
(6) Furthermore, in the present invention, since the cylindrical portion 15 for forming the water storage space 20 is hourglass-shaped, the inner surface of the air supply pipe
The water droplets that have migrated from the upper half of 7 to the upper surface of the cylindrical part 15 flow downward in the annular groove formed on the outer periphery of the cylindrical part 15, and once the water droplets are captured, they reach the entrance of the air supply passage. 1
There is an advantage in that it can reliably prevent reaching 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のレイアウトを示す平面部分図、第2図は
本考案の1実施例を示す縦断面部分図、第3図は第2図
中の水滴取出し装置の斜視図、第4図は別の実施例を示
すための一部横断平面図である。 8・・・・・・シリンダヘッド、9・・・・・・給気マ
ニホールド内蔵型空気冷却器、11・・曲給気管、12
・・曲ヘッド入口部、13・曲・環状フランジ、15・
・曲部状部、18・・曲水滴流入口、2o・・曲水溜空
間、22・・・・・・排水管、25・・曲給気マニボー
ルト。
Fig. 1 is a partial plan view showing a conventional layout, Fig. 2 is a partial vertical sectional view showing an embodiment of the present invention, Fig. 3 is a perspective view of the water droplet extraction device in Fig. 2, and Fig. 4 is a partial plan view showing a conventional layout. FIG. 7 is a partially cross-sectional plan view showing another embodiment. 8... Cylinder head, 9... Air cooler with built-in air supply manifold, 11... Curved air supply pipe, 12
...Curved head inlet, 13.Curved annular flange, 15.
- Curved portion, 18... Curved water droplet inlet, 2o... Curved water storage space, 22... Drain pipe, 25... Curved air supply manifold.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 過給機の加圧空気吐出口に空気冷却器を介して給気マニ
ホールドを接続するか、又は給気マニホールド内蔵型空
気冷却器を接続し、給気マニホールドの略水平な本体の
複数個所から下向きに延びる各気筒用の給気管を略直角
に湾曲してその先端をシリンダヘッド入口部に概ね水平
に接続し、シリンダヘッド入口部と上記給気管の間に環
状フランジを挾み、該フランジの内周縁より上流に向い
短い鼓形の筒状部を突出せしめ、筒状部先端縁と給気管
内面の間に環状の水滴流入口を設け、水滴流入口に連続
して筒状部のまわりに形成した環状の水溜空間の下端に
排水管を接続したことを特徴とする過給機関の凝縮水分
離排出装置。
Connect the intake manifold to the pressurized air discharge port of the turbocharger via an air cooler, or connect an air cooler with a built-in intake manifold, and connect the intake manifold downward from multiple points on the nearly horizontal body of the intake manifold. An air supply pipe for each cylinder extending from the air supply pipe is curved at a substantially right angle and its tip is connected approximately horizontally to the cylinder head inlet, an annular flange is sandwiched between the cylinder head inlet and the air supply pipe, and the inside of the flange A short, drum-shaped cylindrical part protrudes upstream from the periphery, and an annular water droplet inlet is provided between the tip edge of the cylindrical part and the inner surface of the air supply pipe, and is formed around the cylindrical part in continuation with the water droplet inlet. A condensed water separation and discharge device for a supercharged engine, characterized in that a drain pipe is connected to the lower end of an annular water storage space.
JP1977137898U 1977-10-13 1977-10-13 Condensed water separation and discharge device for supercharged engines Expired JPS587062Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1977137898U JPS587062Y2 (en) 1977-10-13 1977-10-13 Condensed water separation and discharge device for supercharged engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1977137898U JPS587062Y2 (en) 1977-10-13 1977-10-13 Condensed water separation and discharge device for supercharged engines

Publications (2)

Publication Number Publication Date
JPS5463815U JPS5463815U (en) 1979-05-07
JPS587062Y2 true JPS587062Y2 (en) 1983-02-07

Family

ID=29110547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1977137898U Expired JPS587062Y2 (en) 1977-10-13 1977-10-13 Condensed water separation and discharge device for supercharged engines

Country Status (1)

Country Link
JP (1) JPS587062Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741864Y2 (en) * 1989-08-03 1995-09-27 日産ディーゼル工業株式会社 Condensation water outflow prevention structure of water-cooled aftercooler
JP6146567B2 (en) * 2013-08-29 2017-06-14 三菱自動車工業株式会社 Engine intake system structure
JP6252076B2 (en) * 2013-09-30 2017-12-27 三菱自動車工業株式会社 Condensate separator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4727046U (en) * 1971-03-12 1972-11-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4727046U (en) * 1971-03-12 1972-11-27

Also Published As

Publication number Publication date
JPS5463815U (en) 1979-05-07

Similar Documents

Publication Publication Date Title
CN103534457B (en) The intake structure of internal combustion engine
CN202970888U (en) Internal combustion engine and internal combustion engine system
CN1023506C (en) Intaking apparatus for ic engin with one or two stage boosting
US4459966A (en) Apparatus for the return of crankcase vapors into a combustion chamber of an internal combustion engine
CN106414986B (en) Internal combustion engine
CN101960105A (en) Intake pipe structure of internal combustion engine
JPS587062Y2 (en) Condensed water separation and discharge device for supercharged engines
JP2742809B2 (en) Multi-cylinder engine intake system
CN101353979B (en) Two-stroke diesel combustion engine
US4867634A (en) Turbocharger turbine housing particulate debris trap
JP2007332874A (en) Trap device for blow-by gas
JPS5652522A (en) Air suction device for internal combustion engine
JP3156414B2 (en) Blow-by gas cooling device
CN216950628U (en) Engine with supercharger
JPS6081416A (en) Processing device of blow-bye gas in engine with supercharger
CN109469531B (en) Crankcase ventilation system oil and gas separator assembly and vehicle
RU2005127740A (en) OIL COOLANT VENTILATION SYSTEM FOR TURBOCHARGED INTERNAL COMBUSTION ENGINE
JPS58137812U (en) Blow-by gas treatment device for internal combustion engine with turbocharger
JPH0748966Y2 (en) Crankcase ventilation system for internal combustion engine
JPH0515537Y2 (en)
JP2540860Y2 (en) Blow-by gas recirculation device
JP7371518B2 (en) Oil separation structure
JP3160511B2 (en) Blow-by gas extraction device for internal combustion engine
JP7128101B2 (en) internal combustion engine
JP3189658B2 (en) Intake device for internal combustion engine