JPS58705A - Inspecting device of spherical body distortion - Google Patents

Inspecting device of spherical body distortion

Info

Publication number
JPS58705A
JPS58705A JP56100048A JP10004881A JPS58705A JP S58705 A JPS58705 A JP S58705A JP 56100048 A JP56100048 A JP 56100048A JP 10004881 A JP10004881 A JP 10004881A JP S58705 A JPS58705 A JP S58705A
Authority
JP
Japan
Prior art keywords
point
image
reflected
distortion
pqr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56100048A
Other languages
Japanese (ja)
Other versions
JPS6351692B2 (en
Inventor
Kuniomi Abe
阿部 国臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konan Camera Research Institue Inc
Original Assignee
Konan Camera Research Institue Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konan Camera Research Institue Inc filed Critical Konan Camera Research Institue Inc
Priority to JP56100048A priority Critical patent/JPS58705A/en
Publication of JPS58705A publication Critical patent/JPS58705A/en
Publication of JPS6351692B2 publication Critical patent/JPS6351692B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2408Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring roundness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To easily inspect whether distortion exists on a spherical surface or not, and also an extent of its distortion, by installing a circular index centering around an optical axis of an observation optical system of a spherical body, and providing a reflection optical member for superposing a transmission light beam and a reflected ray on the observation optical system. CONSTITUTION:A reflected light from an eyeball to be inspected, which has been irradiated by a light from an annular light source 5 is observed 4 through a microscope objective lens 2, an image converter 6 and a microscope eyelens 3. When an image light beam of an ellipse PQR is made incident to the image converter 6, image light beams of a point P and a point Q, which have transmitted a semitransparent reflection surface 11 at a point A and a point D are reflected by prisms 15, 14, and take routes of PABCDEF and QDCBAGH, respectively. Also, image light beams of a point P and a point Q, which have been reflected by a point A and a point B of a semitransparent mirror are reflected by prisms 16, 14, pass through routes of PAJKEF and QDKJGH, respectively, and an observation image PQR and P'Q'R' are doubly seen in the direction as indicated with an arrow 17. Accordingly, it is possible to easily inspect whether distortion exists on an eyeball surface 1 or not, and also an extent of its distortion.

Description

【発明の詳細な説明】 この発明は、眼球やコンタクトレンズ等の球面の歪を検
査する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for inspecting distortion of a spherical surface of an eyeball, contact lens, or the like.

特に眼球の場合は、その表面に測定機を当てて曲率を計
測するのが困雌であるにも拘らず、視力の検査や手術成
果の検査などのために、臨床的に簡易に歪を検出するこ
とが望まれていたが、この発明はこのような用途に適し
た検査装置を実現することを目的とする。
Especially in the case of the eyeball, although it is difficult to measure the curvature by applying a measuring device to the surface of the eyeball, it is easy to detect distortion clinically for purposes such as visual acuity tests and surgical results tests. However, it is an object of the present invention to realize an inspection device suitable for such use.

以下、この発明を図示の実施例に基いて説明する。The present invention will be explained below based on illustrated embodiments.

第1図において、1は被検眼球、2は顕微遺対物レンズ
、3は顕微鏡接眼レンズ、4は観察者を示す。対物レン
ズ2の入射光路の周囲にその光軸を中心とする円環状の
光源5を配置すると、光源5は凸面である眼球1の表面
で反射されて、比較的小さな環状の輝線となって観察さ
れる。若し眼球が歪んでいなければ、観察される5線は
真円をなし、眼球が歪んでいれば観察される輝線は長円
形をなす。この真円、長円の判別、並びに長円の程度の
判別のだめに、対物ンンズ2と接眼レンズ3との間に像
変換装置6が挿入されている。
In FIG. 1, 1 is an eye to be examined, 2 is a microscope objective lens, 3 is a microscope eyepiece, and 4 is an observer. When an annular light source 5 centered on the optical axis is placed around the incident optical path of the objective lens 2, the light source 5 is reflected by the convex surface of the eyeball 1 and becomes a relatively small annular bright line for observation. be done. If the eyeball is not distorted, the observed five lines form a perfect circle, and if the eyeball is distorted, the observed bright line forms an ellipse. An image converting device 6 is inserted between the objective lens 2 and the eyepiece lens 3 in order to determine whether the object is a perfect circle or an ellipse, and to determine the extent of the ellipse.

第2図は像変換装置6の1例を示し、半透明反射面11
を形成させるための直角プリズム12.13と、その3
つの面にそれぞれ接して設けた直角プリズム14.15
.16とよシなる。像光線は、プリズム13の下面から
入射し、プリズム14の上面から射出される。
FIG. 2 shows an example of the image conversion device 6, in which a translucent reflective surface 11
Right angle prism 12.13 for forming
Right angle prism 14.15 provided in contact with each of the two faces
.. 16 and Yoshi Naru. The image ray enters the prism 13 from the bottom surface and exits from the top surface of the prism 14.

今、第2図(a)において、長円PQRの像光線が入射
しだとすると、A点及びD点で半透明反射面11を透過
したP点及びQ点の像光線は、何れもプリズム15及び
14内で反射され、それぞれPABCDEF及びQDC
BAGHの径路をとる。よって、矢印17の方向からは
観察像PQRが見られる。
Now, in FIG. 2(a), if the image ray of the ellipse PQR is incident, the image rays of the points P and Q that have passed through the semi-transparent reflective surface 11 at points A and D will both pass through the prism 15 and 14 and PABCDEF and QDC, respectively.
Take the BAGH route. Therefore, the observation image PQR can be seen from the direction of the arrow 17.

同時に半透明反射鏡11のA点及びB点で反射したP点
及びQ点の像光線は、プリズム16及び14内で反射さ
れ、それぞれPAJKEF及びQDKJGHの径路をと
る。よって矢印17の方向からは観察像p/ Q/ R
/が見られる。観察像PQRとp/ Q/ R/とは、
全く同じものが重なって見える。
At the same time, the image rays at points P and Q reflected at points A and B of the translucent reflector 11 are reflected within the prisms 16 and 14, and take paths PAJKEF and QDKJGH, respectively. Therefore, from the direction of arrow 17, the observed image p/Q/R
/ can be seen. The observation image PQR and p/Q/R/ are
The exact same things appear to overlap.

次に、プリズム16を第2図(b)のように900回転
したとすると、半透明反射面11を透過する像光線は上
述と変わらないが、A点及びD点で反射したP点及びQ
点の像光線は、それぞれPALGH及びQDMFの径路
をとる。よって矢印lフ方向から見た観察像P/ Q/
 R/は、観察像Pq−Hに重なるが、姿勢が180°
回転している。
Next, if the prism 16 is rotated 900 times as shown in FIG.
The point image rays take PALGH and QDMF paths, respectively. Therefore, the observed image P/Q/ seen from the direction of arrow l
R/ overlaps the observation image Pq-H, but the attitude is 180°
It's rotating.

従って、プリズム16を第2゛図(a)及び(b)の中
間の転して重なっている。よって、2つの観察像PQR
とp/ Q/ R/との対照によシ、眼球の歪の有無及
び歪の程度を直観的に知ることができる。
Therefore, the prisms 16 are rotated and overlapped in the middle of FIGS. 2(a) and 2(b). Therefore, the two observed images PQR
By contrasting p/Q/R/, it is possible to intuitively know the presence or absence of eyeball distortion and the degree of distortion.

この実施例で、プリズム16を回転しないで、プリズム
15を回転してもよい。この場合は観察像PQRO方が
回転して見える。。観察像PQRとp/ qlR′とを
対照することにより、眼球の歪の有無及び歪の程度を直
観的に知ることができる。
In this embodiment, prism 15 may be rotated without rotating prism 16. In this case, the observed image PQRO appears to be rotated. . By comparing the observed image PQR and p/qlR', it is possible to intuitively know whether or not the eyeball is distorted and the degree of distortion.

第3図は、第2図におけるプリズム15をプリズム12
の側面に取付け、プリズム14を省略した実施例を示す
。半透明反射面11をA点で透過したP点の像光線は、
PAFの径路で直進し、半透明反射面11をA点で反射
したP点の像光線はPAJKCBAFの径路を取る。ま
た、半透明反射面11を透過したQ点の像光線はQDH
の径路をとり、半透明反射面11で反射したQ点の像光
線はQDKJBCDHの径路を取る。よって矢印17方
向からは、第2図(a)に示しだように、観察像PQR
とp/ q/ R/とが正しく重なって見える。
In FIG. 3, the prism 15 in FIG. 2 is replaced with the prism 12.
An embodiment in which the prism 14 is omitted is shown. The image ray at point P that has passed through the semi-transparent reflective surface 11 at point A is
The image ray at point P, which travels straight along the path of PAF and is reflected from the semitransparent reflective surface 11 at point A, takes the path of PAJKCBAF. In addition, the image ray at point Q that has passed through the semi-transparent reflective surface 11 is QDH
The image ray at point Q reflected by the semi-transparent reflective surface 11 takes a path QDKJBCDH. Therefore, from the direction of arrow 17, as shown in FIG. 2(a), the observed image PQR
and p/q/R/ appear to overlap correctly.

そして、第3図におけるプリズム16を45°回転する
ときは、第2図(C)に示すように観察像PQRとP/
 Q/ R/とは90°ずれて重なって見える。なお、
この実施例では、半透明反射11の透過光線と反射光線
の光路長が異なるので、顕微鏡光学系内の像光線の平行
領域に設置する必要がある。
When the prism 16 in FIG. 3 is rotated by 45 degrees, the observation image PQR and P/
It appears to overlap Q/R/ with a 90° shift. In addition,
In this embodiment, since the optical path lengths of the transmitted light beam and the reflected light beam of the translucent reflector 11 are different, it is necessary to install it in a region parallel to the image beam within the microscope optical system.

第4図は、第2図におけるプリズム15の代シに反射鏡
18を用いた実施例を示す。第4図(a)において、半
透明反射面11をA点及びD点で透過したP点及びQ点
の像光線は、それぞれPABAGH及びQDCDEFの
径路をとるので、矢印lフ方向から見られる観察像PQ
Rは裏返し状態となる。また、半透明反射面11をA点
及びD点で反射したP点及びQ点の反射光は、それぞれ
PAJKEF及びqDKJGHの径路を取るので、矢印
17方向から見られる観察像p/ Q/ R/は正しい
状態を取り、裏返し像PQRに重なる。
FIG. 4 shows an embodiment in which a reflecting mirror 18 is used in place of the prism 15 in FIG. In FIG. 4(a), the image rays at points P and Q that have passed through the semi-transparent reflective surface 11 at points A and D take the paths PABAGH and QDCDEF, respectively, so the observation seen from the direction of arrow I Statue PQ
R is turned upside down. In addition, the reflected light at points P and Q that is reflected from the semitransparent reflective surface 11 at points A and D takes the paths PAJKEF and qDKJGH, respectively, so the observed image seen from the direction of arrow 17 is p/Q/R/ assumes the correct state and overlaps the reversed image PQR.

次に、第4図(b)に示すようにプリズム16を90゜
回転すると、半透明反射面11をA点及びD点で反射し
たP点及びQ点の反射光は、それぞれPALGH及びP
DMEFの径路を取るので、矢印17方向から見られる
観察像p/ q/ Hlは180°回転する。そしてプ
リズム16を45°回転したときは、矢印17方向から
は、第4図(c)に示すように、正しい像P′Q′R′
と裏返し像PQRとが90’回転して重なった状態で観
察される。
Next, when the prism 16 is rotated by 90 degrees as shown in FIG.
Since the path of DMEF is taken, the observed image p/q/Hl seen from the direction of arrow 17 is rotated by 180°. When the prism 16 is rotated by 45 degrees, the correct image P'Q'R' is seen from the direction of the arrow 17, as shown in FIG. 4(c).
and the reversed image PQR are observed in a state in which they are rotated by 90' and overlapped.

第5図は第3図におけるプリズム15を反射鏡19に変
えたものである。半透明反射面11をA点及びD点で透
過したP点及びQ点の像光線は、それぞれPAF及びQ
DHの径路を取シ、矢印17方向からは正しい観察像P
QRが得られる。また、半透明反射面11で反射したP
点及びQ点の像光線は、それぞれPAJKCDH及びQ
DKJBAFの径路を取るので、矢印11方向からの観
察像p/ q/ Hlは第5・図(b)に示すように、
左右を反転させた裏返し像になる。そして、プリズム1
6を45°回転するときは、同図(0)に示すように、
半透明反射面11での反射像p/ Q/ R/が900
回転して、透過像PQRに重なって観察される。なお、
この実施例も、第3図示の実施例と同様に、透過像PQ
Rと反射像P′Q′R′との光路長が異なるので、光学
系についての考慮が必要である。
In FIG. 5, the prism 15 in FIG. 3 is replaced with a reflecting mirror 19. The image rays at points P and Q that have passed through the semi-transparent reflective surface 11 at points A and D are PAF and Q, respectively.
Taking the DH route, the correct observation image P is seen from the direction of arrow 17.
You can get QR. In addition, P reflected on the semi-transparent reflective surface 11
The image rays at point and Q point are PAJKCDH and Q, respectively.
Since the path of DKJBAF is taken, the observed image p/q/Hl from the direction of arrow 11 is as shown in Figure 5 (b).
The image becomes an inverted image with the left and right sides reversed. And prism 1
When rotating 6 by 45 degrees, as shown in the same figure (0),
Reflection image p/Q/R/ on semi-transparent reflective surface 11 is 900
It is rotated and observed overlapping the transmitted image PQR. In addition,
This embodiment also has a transmission image PQ similar to the embodiment shown in the third figure.
Since the optical path lengths of R and the reflected image P'Q'R' are different, consideration must be given to the optical system.

以上の諸実施例から明らかなように、この発明は円形像
が歪んだ球面では歪んだ円形の像光線となって反射され
ることを利用し、その像光線にこれを回転した像光線を
重ねることにより、球面の歪の有無及び歪の程度の検査
を容易にしたものである。そして、その検査は、単に円
形像を装置を通して観察するだけで結果が得られるので
、特に眼球の臨床検査に適し、軟質コンタクトレンズの
ような変形し易い球面体の検査にも適している。
As is clear from the above embodiments, the present invention utilizes the fact that a circular image is reflected as a distorted circular image ray on a distorted spherical surface, and adds a rotated image ray to the image ray. By overlapping them, it is easy to inspect the presence or absence of distortion on the spherical surface and the degree of distortion. Since the test results can be obtained simply by observing a circular image through the device, it is particularly suitable for clinical eyeball tests, and is also suitable for testing easily deformable spherical objects such as soft contact lenses.

なお、前記各実施例におけるプリズム16は、回転調節
可能に設置してもよいが、取扱いを簡便にするために予
め45°回転した状態で固定しておいてもよい。
It should be noted that the prism 16 in each of the embodiments described above may be installed so as to be rotatably adjustable, but may also be fixed in a previously rotated state by 45 degrees for ease of handling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を実施した眼球検査装置の光路図、第
2図、第3図、第4図、第5図はそれぞれ第1図におけ
る像変換装置6の各種実施例の説明図である。 1・・・眼球(球体)、2・・・対物レンズ、3・・・
・接眼レンズ、5・・・環状光源(円形指標)、6・・
・反射光学部材、16・・・屋根形プリズム。 特許出願人  株式会社 甲南カメラ研究所代 理 人
   清  水   哲  ほか28奪 1 図
FIG. 1 is an optical path diagram of an eyeball testing device embodying the present invention, and FIGS. 2, 3, 4, and 5 are explanatory diagrams of various embodiments of the image conversion device 6 in FIG. 1, respectively. . 1...Eyeball (sphere), 2...Objective lens, 3...
・Eyepiece, 5... Annular light source (circular index), 6...
- Reflective optical member, 16...roof-shaped prism. Patent applicant: Konan Camera Institute Co., Ltd. Agent: Satoshi Shimizu and 28 others 1 Figure

Claims (1)

【特許請求の範囲】[Claims] (+)  球体の観察光学系における入射観察光路を囲
んでその光軸を中心とする円形の指標を設置し、上記観
察光学系中に、半透明反射面と、この半透明反射面での
透過光及び反射光を再び重畳させる反射光学部材とを介
在させてなり、この反射光学部材の中には、入射像の姿
勢を回転して射出するようにその姿勢が回転された屋根
形プリズムが含まれていることを特徴とする球体歪検査
装置。
(+) A circular index is installed surrounding the incident observation optical path in the spherical observation optical system and centered on the optical axis, and a semi-transparent reflective surface is provided in the observation optical system, and the transmission through the semi-transparent reflective surface is A reflective optical member that superimposes the light and the reflected light again is interposed, and the reflective optical member includes a roof-shaped prism whose attitude is rotated so that the attitude of the incident image is rotated and the incident image is emitted. A spherical strain inspection device characterized by:
JP56100048A 1981-06-26 1981-06-26 Inspecting device of spherical body distortion Granted JPS58705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56100048A JPS58705A (en) 1981-06-26 1981-06-26 Inspecting device of spherical body distortion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56100048A JPS58705A (en) 1981-06-26 1981-06-26 Inspecting device of spherical body distortion

Publications (2)

Publication Number Publication Date
JPS58705A true JPS58705A (en) 1983-01-05
JPS6351692B2 JPS6351692B2 (en) 1988-10-14

Family

ID=14263611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56100048A Granted JPS58705A (en) 1981-06-26 1981-06-26 Inspecting device of spherical body distortion

Country Status (1)

Country Link
JP (1) JPS58705A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786401A (en) * 1987-09-25 1988-11-22 Mobil Oil Corporation Liquid sludge disposal process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786401A (en) * 1987-09-25 1988-11-22 Mobil Oil Corporation Liquid sludge disposal process

Also Published As

Publication number Publication date
JPS6351692B2 (en) 1988-10-14

Similar Documents

Publication Publication Date Title
US4046463A (en) Indicating an asphericity of the cornea of an eye
JP6153119B2 (en) Optical measuring apparatus and apparatus provided with optical system
CN104697465B (en) The absolute method of inspection of aberrationless of ellipsoid
JPH102714A (en) Method and device for measurement
US9239237B2 (en) Optical alignment apparatus and methodology for a video based metrology tool
US5742381A (en) Apparatus for measuring refractive power and radius of curvature of a lens
EP0210722B1 (en) Apparatus for measuring the refractive power or radius of curvature of an optical system
US4130361A (en) Lens meter without relatively moving optical parts
US4067646A (en) Eyeground inspecting contact lens
JPS58705A (en) Inspecting device of spherical body distortion
US4834529A (en) Apparatus and method for determining the symmetry of a surface
US2394949A (en) Refractometer
JPS5889235A (en) Apparatus for providing sight test mark to person to be inspected
JPH06311965A (en) Cornea shape measuring instrument
Johnson Optics and optical instruments: an introduction with special reference to practical applications
JPH0143042Y2 (en)
JPH0757218B2 (en) Curvature radius measuring device
JPS582603A (en) Device for checking distortion in spherical body
SU1292727A1 (en) Keratometer
RU2369999C1 (en) Laser positioner for x-ray emitter
RU2290626C2 (en) Device for visual observation and measuring inner spaces
JPH0154055B2 (en)
SU1337042A1 (en) Keratometer
Liberati Measure of surface and bulk defects in any transmitting or reflecting optical component
Trujillo-Schiaffino et al. Refractive correction measurement in an ophthalmic lens