JPS58704A - Film thickness measuring device - Google Patents

Film thickness measuring device

Info

Publication number
JPS58704A
JPS58704A JP9921581A JP9921581A JPS58704A JP S58704 A JPS58704 A JP S58704A JP 9921581 A JP9921581 A JP 9921581A JP 9921581 A JP9921581 A JP 9921581A JP S58704 A JPS58704 A JP S58704A
Authority
JP
Japan
Prior art keywords
light
substrate
thin film
reflected
shielding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9921581A
Other languages
Japanese (ja)
Inventor
Kosaburo Suzuki
鈴木 幸三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9921581A priority Critical patent/JPS58704A/en
Publication of JPS58704A publication Critical patent/JPS58704A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Abstract

PURPOSE:To exactly measure thickness of a thin film, by constituting so that a light reflected by the surface of a substrate which has formed the thin film on both its surfaces is made to pass through from a transmission part, and intercepting a light refleted by the opposite surface of the substrate, by a light shielding plate. CONSTITUTION:A white light emitted from a white light source 8 is reflected by a reflector 10 through a spectroscope 9, passes through a slit 5a of a light shielding plate 5, and is made incident at a 15 degree incident angle to a substrate 2 which has formed a thin film on both its surfaces. A light reflected by the lower surface of the substrate 2 passes through the slit 5a, and a light reflected by the upper surface is intercepted by the light shielding plate 5. The light which has passed through the slip 5a is made incident to a detector 12 through a reflector 11 and intensity of its light is recorded in a recording meter 13 as a function of spectral wavelength of the spectroscope 9. Since thickness of a film is measured by detecting only an interference light from a film to be measured, thickness of a thin film is measured exactly.

Description

【発明の詳細な説明】 本発明は透明な基板の両面に形成された薄膜の膜厚を測
定する膜厚測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a film thickness measuring device for measuring the thickness of a thin film formed on both sides of a transparent substrate.

光の吸収が少ない薄膜、例えば磁気バブルメモリー用の
結晶として用いられているGd5Gα5012単結晶基
板(以下、GGG基板という)上にエピタキシャル成長
された磁性ガーネット膜の膜厚測定は、通常磁性ガーネ
ッ!・膜による元の反射特性を利用して行なわれている
。第1図(a)に基いてその一例を説明する。磁性ガー
ネット膜に入射した光3は磁性ガーネット膜1の表面で
反射し且つ、磁性ガーネット膜1とGGG基板2との境
界面で反射するので、これらの反射光4ばこの光路差に
よって干渉を起す。従って、各波長における反射強度を
記録すると、第1図(klに示すよ5な干渉波形が得ら
れる。第1図(b)に示した干渉波形の山の位置の波長
をλ1、その位置からN番目の山の波長をλ2とすると
、光の干渉条件から、磁性ガーイーント膜の膜厚りは次
式から但し、θは第1図ta>で示す入射角、n、、n
2ばそれぞれ波長λ1.λ2における磁性ガーネットの
屈折率である。従って膜厚は干渉波形の自重たは谷の位
置の波長を正確に読み取ることにより、原理的には誤差
1%以内の精度の良い測定が可能である。
Thickness measurements of magnetic garnet films epitaxially grown on thin films with low light absorption, such as Gd5Gα5012 single crystal substrates (hereinafter referred to as GGG substrates) used as crystals for magnetic bubble memories, are usually performed using magnetic garnet films.・This is done by utilizing the original reflection characteristics of the film. An example will be explained based on FIG. 1(a). Since the light 3 incident on the magnetic garnet film is reflected on the surface of the magnetic garnet film 1 and also on the interface between the magnetic garnet film 1 and the GGG substrate 2, interference occurs due to the optical path difference between these reflected lights 4. . Therefore, by recording the reflection intensity at each wavelength, five interference waveforms as shown in Figure 1 (kl) can be obtained. Assuming that the wavelength of the Nth peak is λ2, the thickness of the magnetic Garient film is calculated from the following formula based on the light interference condition, where θ is the incident angle shown in Figure 1 ta>, n, , n
2 and 2 each have a wavelength λ1. It is the refractive index of magnetic garnet at λ2. Therefore, in principle, the film thickness can be measured accurately with an error of less than 1% by accurately reading the weight of the interference waveform or the wavelength at the trough position.

しかしながら、基板2が透明で、しかも薄膜1が基板2
の両面に形成されている場合の薄膜の膜厚を測定しよう
とすると、第2図(a)に示すように反射光には測定し
ようとする面からの反射光4とその反対側からの反射光
4′が含まれることとなる。第2図(b)は前基板20
両側に、磁性ガーネット膜1が形成されているものの干
渉波形の測定例である。第2図(telの波形は2つの
磁性ガーネット膜1による干渉波形が干渉し合って、目
的としている磁性ガーネット膜の干渉波形を変形させて
いるため、測定精度は著しく低下する。従って目的とす
る磁性ガーネット膜の膜厚を正確に測定するにはその反
対面からの反射光を弱めることが一必要となる。反対面
からの反射を弱めるには屈折率が等しい液体を反対面に
塗布して反射を防ぐ方法があるが、磁性ガーネットの屈
折率は可視光で2を超える値であり、容易に入手できる
液体がないこと、又特殊な液体金塗布すると、それを完
全に洗浄して取り去ることが必要であり5%にバブルメ
モリー素子等を形成する場合基板を汚染することは、素
子工程での歩留り低下の原因となり工業的には不利な方
法である。
However, if the substrate 2 is transparent and the thin film 1 is
When trying to measure the thickness of a thin film formed on both sides of the surface, as shown in Figure 2(a), the reflected light includes the reflected light 4 from the surface to be measured and the reflected light 4 from the opposite side. Light 4' is included. FIG. 2(b) shows the front board 20.
This is an example of measurement of interference waveforms in which magnetic garnet films 1 are formed on both sides. Figure 2 (The waveform of tel is the interference waveform of the two magnetic garnet films 1 interfering with each other and deforming the interference waveform of the target magnetic garnet film, so the measurement accuracy is significantly reduced. Therefore, the measurement accuracy is significantly reduced. To accurately measure the thickness of a magnetic garnet film, it is necessary to weaken the reflected light from the opposite surface.To weaken the reflection from the opposite surface, apply a liquid with the same refractive index to the opposite surface. There are ways to prevent reflection, but the refractive index of magnetic garnet is greater than 2 in visible light, and there is no readily available liquid, and if a special liquid gold is applied, it must be completely washed away. When forming a bubble memory element or the like at 5%, contaminating the substrate causes a decrease in yield in the element process, and is an industrially disadvantageous method.

本発明は前記問題点を解消するもので、被測定薄膜に入
射する光の光路に周期的に透過部を設けた遮光板を配置
し、該透過部を通り基板の表面で反射した光は透過部を
通過させ且つ透過部を通って基板の反対側で反射した光
は遮光板によシ遮断させることによシ被測定薄膜からの
干渉光のみを検出して膜厚を測定するようにしたことを
特徴とするものである。
The present invention solves the above-mentioned problems by disposing a light-shielding plate having transmission parts periodically in the optical path of the light incident on the thin film to be measured, so that the light that passes through the transmission parts and is reflected on the surface of the substrate is transmitted. The film thickness was measured by detecting only the interference light from the thin film to be measured by blocking the light that passed through the thin film and reflected on the opposite side of the substrate through the transparent part using a light shielding plate. It is characterized by this.

以下、本発明の一実施例を図面によって説明する。An embodiment of the present invention will be described below with reference to the drawings.

第3図は本発明の原理を示す図である。図において、透
明な基板2の表面6からlの間隔をおいて基板2に平行
に、巾ω1周期2ωであって、かつ入射方向に対し直角
となるようなスリット5aの列を有する遮光板5を配置
する。基板2の厚さをtとすると、入射角θで入射する
光がスリブ)5aを通シ、基板2の表面6で反射し、そ
の反射光が全てスリブ)5aを通る条件は次式となる。
FIG. 3 is a diagram showing the principle of the present invention. In the figure, a light shielding plate 5 having a row of slits 5a having a width ω1 and a period 2ω and perpendicular to the incident direction is arranged parallel to the substrate 2 at a distance l from the surface 6 of the transparent substrate 2. Place. When the thickness of the substrate 2 is t, the light incident at an incident angle θ passes through the sleeve 5a and is reflected on the surface 6 of the substrate 2, and the condition that all of the reflected light passes through the sleeve 5a is as follows. .

Nω=ltanθ・・・・・・・・・・・・・・・(2
)但しNは0を含む正の整数で、N=Oの時は1’=0
であり、この時S元板5は基板2に密着しており、表面
6での反射光は入射光と同じスリット5aを通る。第3
図はN−1の例であり、スリット5aから入射した光に
対しその反射光はN番目のスリットを通る。次にスリ・
ノド5aから入射し、基板2の反対側の面7で反射した
光が全て遮光板5で遮断される条件を求めると次式とな
る。
Nω=ltanθ・・・・・・・・・・・・(2
) However, N is a positive integer including 0, and when N=O, 1'=0
At this time, the S source plate 5 is in close contact with the substrate 2, and the light reflected from the surface 6 passes through the same slit 5a as the incident light. Third
The figure shows an example of N-1, and the reflected light of the light incident from the slit 5a passes through the Nth slit. Next, pickpocket
The following equation is obtained to find the conditions under which all the light that enters from the nozzle 5a and is reflected on the opposite surface 7 of the substrate 2 is blocked by the light shielding plate 5.

。=t tmα・・・・・・・・・・・・(3)但し 
fθ=nノtα・・・・・・(4)nは基板の屈折率で
ある。
. =t tmα・・・・・・・・・・・・(3) However
fθ=nnotα (4) n is the refractive index of the substrate.

従って(2) 、 (3)、 (4)式を同時に満足す
る形状を有する遮光板を設けることにより、基板の一つ
の面一からの反射光のみを取り出すことができる。但し
厳密には基板2の反対側の面7で反射した光が再び面6
9面7で反射し、面6から出て行く場合(図中破線で示
す)にはスリン)5ai通るが、このように反射を繰り
返した光は強度が弱いので、測定精度を低下させるには
至らない。
Therefore, by providing a light shielding plate having a shape that satisfies equations (2), (3), and (4) at the same time, it is possible to extract only the reflected light from one flush of the substrate. However, strictly speaking, the light reflected from the opposite surface 7 of the substrate 2 returns to the surface 6.
When the light is reflected from surface 7 and goes out from surface 6 (indicated by the broken line in the figure), it passes through Surin) 5ai, but the intensity of the light that is repeatedly reflected in this way is weak, so it is necessary to reduce the measurement accuracy. Not enough.

第4図は本発明を適用した膜厚測定器の構成図の概略で
ある。基板2は被測定薄膜がある側を下向きにして試料
台14の縁部に載置され、また%遮光板5は試料台14
の底部の開口14aに位置させて試料台14に取付けら
れており、基板2を脱着しても基板2と遮光板5は常に
平行に且つ一定の間隔に保たれている。本装置において
GGG基板の厚さ0.5sm、屈折率n=1.97を使
用しているので、(2)、 (3)式のパラメーターは
それぞれ、J=0.5m、ω=0.066mとしている
FIG. 4 is a schematic diagram of a film thickness measuring device to which the present invention is applied. The substrate 2 is placed on the edge of the sample stand 14 with the side with the thin film to be measured facing downward, and the light shielding plate 5 is placed on the edge of the sample stand 14.
The light shielding plate 5 is mounted on the sample stage 14 at the opening 14a at the bottom of the sample table 14, and even if the substrate 2 is attached or detached, the substrate 2 and the light shielding plate 5 are always kept parallel to each other and at a constant distance. Since this device uses a GGG substrate with a thickness of 0.5 sm and a refractive index of n = 1.97, the parameters of equations (2) and (3) are J = 0.5 m and ω = 0.066 m, respectively. It is said that

遮光板5Fi厚さ10μのアルミ板に部分工・ノチング
でスリブl−5a f開口し、試料台14に貼り付けて
使用した。第4図(b)はその平面図である。
A light-shielding plate 5Fi was used by partially machining and notching an aluminum plate having a thickness of 10 μm to form a slot 1-5a f, and pasting it on a sample stage 14. FIG. 4(b) is a plan view thereof.

第4図(aJにおいて、8は白色光源であり、この白色
光は分光器9を通り、反射@10により反射され遮光板
5のスリット5aを通って入射角15°で基板2に入射
する。こ\で前述の原理により基板2の図で示された下
面で反射した光はスリット5aを通過するが、基板2の
上面で反射した光は遮光板5のスリブl−5a以外の部
分にあたって遮断される。スリット5aを通過した光は
反射鏡11によって検出器12に入射し、その強度が電
気信号に変換される。この光の強度と分光器9により分
光された光の波長とを記録計15で記録させることで、
基板両面に薄膜が形成されている試料でも、第1図(b
Jで示された一面のみの干渉波形が得られた。又遮光板
5は、ガラス板上にアルミニウムを蒸着して巾ωの線を
2ω周期で形成してスリット5ai設けたものを用いて
も同様の結果が得られた。なお遮光板のスリットの形状
は第4図fblに示したように直線帯状のものが最も効
率が良く、遮光板がないときの基板表面からの反射の4
の光量が利用できるが、必ずしも巾ω、周期2ωの帯状
である必要はなく1例えば直径ωの円形の孔を2ωおき
に開口しても同じ原理で反対側の面からの反射を遮断す
ることができる。また実施例ではスリットの方向を入射
光の方向に対し直角に配しているが、前述の原理によシ
直角方向の巾が(2)、 (3)、 (4)式を満足す
れば良いので、より狭いスリットを作ってそのスリット
の方向を入射光の方向に対し直角方向からずらすことに
よりスリットの有効中を調節することも可能である。
In FIG. 4 (aJ), 8 is a white light source, and this white light passes through a spectroscope 9, is reflected by a reflection @10, passes through a slit 5a of a light shielding plate 5, and enters the substrate 2 at an incident angle of 15°. Here, according to the above-mentioned principle, the light reflected from the lower surface of the substrate 2 shown in the figure passes through the slit 5a, but the light reflected from the upper surface of the substrate 2 hits a portion of the light shielding plate 5 other than the slit 1-5a and is blocked. The light that has passed through the slit 5a is incident on the detector 12 by the reflecting mirror 11, and its intensity is converted into an electrical signal.The intensity of this light and the wavelength of the light separated by the spectroscope 9 are recorded by a recorder. By recording at 15,
Even in a sample where a thin film is formed on both sides of the substrate, Fig. 1 (b)
An interference waveform of only one plane, indicated by J, was obtained. Similar results were also obtained when the light shielding plate 5 was formed by vapor-depositing aluminum on a glass plate, forming lines of width ω at a period of 2ω, and providing slits 5ai. The shape of the slit in the light shielding plate is the most efficient if it is in the form of a straight strip as shown in Figure 4 fbl, and the slit shape of the light shielding plate is the most efficient, as shown in Figure 4 fbl.
However, it does not necessarily have to be in the form of a strip with a width ω and a period of 2ω.For example, even if circular holes with a diameter ω are opened every 2ω, reflection from the opposite surface can be blocked using the same principle. I can do it. Furthermore, in the embodiment, the direction of the slit is arranged perpendicular to the direction of the incident light, but according to the above-mentioned principle, the width in the perpendicular direction only needs to satisfy equations (2), (3), and (4). Therefore, it is also possible to adjust the effectiveness of the slit by making a narrower slit and shifting the direction of the slit from the direction perpendicular to the direction of the incident light.

以上のように本発明によれば、薄膜を両面に形成した基
板の表面で反射した光を透過部より通過させ、基板の反
対面で反射した光を遮光板で遮断するようにしたので、
被測定膜による干渉波形の変形を防止でき、透明な基板
の両側に形成された薄膜の膜厚を正確に測定できる効果
を有するものである。
As described above, according to the present invention, the light reflected from the surface of the substrate with thin films formed on both sides is allowed to pass through the transmitting portion, and the light reflected from the opposite surface of the substrate is blocked by the light shielding plate.
This has the effect of preventing deformation of the interference waveform due to the film to be measured and accurately measuring the thickness of the thin film formed on both sides of the transparent substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は基板の片側のみに薄膜が形成されている
場合の反射特性図、第1図(bJは干渉波形図、第2図
(a)は透明な基板の両偏に薄膜が形成されている場合
の反射特性図、第2図ib)は干渉波形図、第3図は本
発明の原理図、第4図は本発明の実施例を示す構成図で
ある。 1・・・基板上に形成された薄膜、2・・・基板、°6
・・・入射光。 4・・・反射光、4′・・・反対面からの反射光、5・
・・遮光板。 609.基板の表面、7・・・基板の反対側の面特許出
願人 日本電気株式会社 第21!8 坂 へ
Figure 1 (a) is a reflection characteristic diagram when a thin film is formed on only one side of the substrate, Figure 1 (bJ is an interference waveform diagram, and Figure 2 (a) is a reflection characteristic diagram when a thin film is formed on both sides of a transparent substrate. FIG. 2 ib) is an interference waveform diagram, FIG. 3 is a principle diagram of the present invention, and FIG. 4 is a configuration diagram showing an embodiment of the present invention. 1... Thin film formed on the substrate, 2... Substrate, °6
...Incoming light. 4...Reflected light, 4'...Reflected light from the opposite surface, 5.
... Light shielding plate. 609. Surface of the board, 7... Opposite side of the board Patent applicant NEC Corporation No. 21!8 To the slope

Claims (1)

【特許請求の範囲】[Claims] (1)透明な基板両面に形成された薄膜に斜め方向より
光を入射させ該薄膜により反射された光の各波長におけ
る反射特性を利用して薄膜の厚さ全測定する膜厚測定器
において、被測定薄膜に平行に、入射光及び反射光の光
路上に複数の透過部を周期的に設けた遮光板を設置した
ことを特徴とする膜厚測定装置。
(1) In a film thickness measuring device that measures the total thickness of a thin film by making light obliquely incident on a thin film formed on both sides of a transparent substrate and utilizing the reflection characteristics of the light reflected by the thin film at each wavelength, A film thickness measuring device characterized in that a light-shielding plate having a plurality of transmission parts periodically provided on the optical path of incident light and reflected light is installed parallel to a thin film to be measured.
JP9921581A 1981-06-26 1981-06-26 Film thickness measuring device Pending JPS58704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9921581A JPS58704A (en) 1981-06-26 1981-06-26 Film thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9921581A JPS58704A (en) 1981-06-26 1981-06-26 Film thickness measuring device

Publications (1)

Publication Number Publication Date
JPS58704A true JPS58704A (en) 1983-01-05

Family

ID=14241426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9921581A Pending JPS58704A (en) 1981-06-26 1981-06-26 Film thickness measuring device

Country Status (1)

Country Link
JP (1) JPS58704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924236A (en) * 1987-11-03 1990-05-08 Raytheon Company Patch radiator element with microstrip balian circuit providing double-tuned impedance matching
JP2015141176A (en) * 2014-01-30 2015-08-03 浜松ホトニクス株式会社 Film thickness measurement method and film thickness measurement device
US9277035B2 (en) 2013-03-26 2016-03-01 Chiun Mai Communication Systems, Inc. Releasing mechanism for housing of portable electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924236A (en) * 1987-11-03 1990-05-08 Raytheon Company Patch radiator element with microstrip balian circuit providing double-tuned impedance matching
US9277035B2 (en) 2013-03-26 2016-03-01 Chiun Mai Communication Systems, Inc. Releasing mechanism for housing of portable electronic device
JP2015141176A (en) * 2014-01-30 2015-08-03 浜松ホトニクス株式会社 Film thickness measurement method and film thickness measurement device
WO2015114895A1 (en) * 2014-01-30 2015-08-06 浜松ホトニクス株式会社 Film thickness measurement method and film thickness measurement device
US9846028B2 (en) 2014-01-30 2017-12-19 Hamamatsu Photonics K.K. Film thickness measurement method and film thickness measurement device

Similar Documents

Publication Publication Date Title
US4147435A (en) Interferometric process and apparatus for the measurement of the etch rate of opaque surfaces
US2708389A (en) Spectral wedge interference filter combined with purifying filters
US20040032584A1 (en) Optical channel monitoring device
EP0017461B1 (en) Apparatus for determining the thickness, moisture content or other parameter of a film or coating
KR100311557B1 (en) Electro-optic sampling
KR920700449A (en) Optical reading device of optical record carrier
JPS58704A (en) Film thickness measuring device
EP0223485A2 (en) Absorption gauge for determining the thickness, moisture content or other parameter of a film or coating
US6115153A (en) Reflection-type hologram scale and optical displacement measuring apparatus therewith
JP2009198255A (en) Tunable filter, and light source device and spectrum measuring instrument using the filter
US4633078A (en) Optical interference eliminator
US7477392B2 (en) Electromagnetic energy measurement apparatus and method
Ledsham et al. Dispersive reflection spectroscopy in the far infrared using a polarising interferometer
JPH07110966A (en) Method and apparatus for measurement of warp of substance
Smith An automated scanning ellipsometer
US2375260A (en) Device for testing crystals
US3446961A (en) X-ray interferometer using three spaced parallel crystals
US2364825A (en) Spectrophotometer attachment for rejecting specular reflection
CN215219147U (en) High-spectrum light splitting device for environment monitoring laser radar
SU1610259A1 (en) Arrangement for checking roughness of optical surface
JPS6244215B2 (en)
JPH09119821A (en) Method and device for measuring parallax of incident angle of ray
JP2580943B2 (en) Measuring method for unevenness of single crystal substrate
SU1095092A1 (en) Optical spectrum analyzer
SU911251A1 (en) Channel refractometer