JPS5868968A - Photoelectric transducer - Google Patents

Photoelectric transducer

Info

Publication number
JPS5868968A
JPS5868968A JP56168092A JP16809281A JPS5868968A JP S5868968 A JPS5868968 A JP S5868968A JP 56168092 A JP56168092 A JP 56168092A JP 16809281 A JP16809281 A JP 16809281A JP S5868968 A JPS5868968 A JP S5868968A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
charge storage
light
electric charge
photoconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56168092A
Other languages
Japanese (ja)
Other versions
JPH0337743B2 (en
Inventor
Katsunori Hatanaka
勝則 畑中
Shunichi Uzawa
鵜沢 俊一
Yutaka Hirai
裕 平井
Naoki Ayada
綾田 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56168092A priority Critical patent/JPS5868968A/en
Publication of JPS5868968A publication Critical patent/JPS5868968A/en
Publication of JPH0337743B2 publication Critical patent/JPH0337743B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Abstract

PURPOSE:To increase a SN ratio by forming the photoelectric transducer by a photoconductive element, a charge storage element, an element for discharge connected in parallel with the charge storage element and an exchange amplifying element. CONSTITUTION:With the photoconductive elements S1-0-S54-31 formed by thin- film amorphous silicon or thin-film polycrystal silicon, one ends are connected to a bias power supply VB, and the other ends are connected to capacitors C1-0- C54-31 for storage. Transistors Q1-0-Q54-31 for discharging charges are each connected in parallel with several capacitor. Currents corresponding to incident luminous power flow through the photoconductive elements and charges are stored to the capacitors, potential corresponding to charges stored is supplied to transistors A1-0-A54-31 for conversion and amplification, which can be selected, and signal currents are outputted to data lines D0-D31.

Description

【発明の詳細な説明】 一本発明は人、射光情報を電気信号として送り、出す光
電変換装置に関するものであり、特に7Tククミリ、デ
ジタル・コピア(以下1) Cと略記)レーザ記録装置
等の文字及び画像人力装置等に一適した光電変換装置に
関する。
[Detailed Description of the Invention] The present invention relates to a photoelectric conversion device that transmits and outputs emitted light information as an electrical signal, and particularly relates to a 7T Kukumiri, digital copier (hereinafter abbreviated as 1) laser recording device, etc. The present invention relates to a photoelectric conversion device suitable for text and image human-powered devices, etc.

従来の光電変換装置は変換機能を有する画淋詳と、咳画
素鮮から出力される電気信号を順次時系列に配列された
形で取り出す走査機p′目をもつ回路とを包含するもの
で、フォトダイオードとMOS m PIT(yiel
d Effect t’ransistor)(M+、
)8 typeと略記する)を構成要素として包含する
もの、或いはCCD(Charge Coupled 
l’)evice)やBBD(RacketBriga
de f)evice)、即ち所11(Charge 
Thanster 1)evice)を構成要素として
包含するもの等々各種の方式丙午ら、これ等MO8ty
pe  にしろ、C’rDにしろ5ilk結晶(C−8
i  と略記する)ウェーハー基板を゛使用する為に、
充電変換部の受光面の面積は、C−8i  ウェーハー
基板の大きさで限定されて仕舞う。即ち、現時点に於い
ては、全゛4域に於ける均一性も含めると精々数1nc
h 程度の大きさC−8iウェー−・−幕板が製造され
得るに過ぎない為に、この様なC−8iウエーハー基板
1r]史用するMO8typet或いはc’rolその
構成要素とする充電変換装置に於いては、その受光面d
1先のC−8iウエーハー基板の大きさを超え得るもの
ではない。
A conventional photoelectric conversion device includes a circuit having a conversion function and a scanner P' which extracts electrical signals output from the pixels in a time-series manner. Photodiode and MOS m PIT (yield
d Effect t'transistor) (M+,
) 8 type) as a component, or CCD (Charge Coupled
l')evice) and BBD (RacketBriga)
11 (Charge)
There are various methods such as those that include Thanster 1) device) as a constituent element, etc.
Whether it is pe or C'rD, 5ilk crystal (C-8
In order to use a wafer substrate (abbreviated as i),
The area of the light receiving surface of the charge conversion section is limited by the size of the C-8i wafer substrate. In other words, at present, if uniformity in all four areas is included, it is only a few nc at most.
Since only a C-8i wafer board with a size of about 1.5 h can be manufactured, such a C-8i wafer substrate 1r] is used for MO8 type or c'roll, and a charging conversion device is used as its component. In this case, the light receiving surface d
It cannot exceed the size of the previous C-8i wafer substrate.

従って、受光面がこの様なし艮られた小囲積である光′
戒変換部を有する充電変換装置では、例えばディジタル
コピア(以後IJCと略記)の人力装置として適用する
場合、催小倍率の大きい光学系を複写しLうとする原稿
と受光面との間lで介在させ、該光学系を介して原稿の
九学儂を蛍光面に結像させる必要がある。
Therefore, the light-receiving surface is shaped like this, and the light in a small area is
For example, when a charging conversion device having a conversion section is used as a manual device for a digital copier (hereinafter abbreviated as IJC), an optical system with a large aperture magnification is used to interpose the document between the document to be copied and the light-receiving surface. It is necessary to image the original document on the fluorescent screen through the optical system.

この峠な場合、以下に述べる様に4像闇を高める上で技
術的な限度がある。
In this case, there are technical limits to increasing the darkness of the four images, as described below.

即ち、光電変換部の解像度が例えば10不/;臘、受光
面の使手方向の長さが3cILであるとし、へ4サイズ
の原稿を複写しようとする場合、受光面に結像される原
稿の光学僧は約1/69に縮小され、A4原稿に対する
前記光電変換部の実画的な解像度は約1.5本/關に低
下して仕舞う。
In other words, if the resolution of the photoelectric conversion unit is, for example, 10 mm, the length of the light-receiving surface in the user's direction is 3 cIL, and an attempt is made to copy a 4-size original, the image of the original on the light-receiving surface is The optical resolution is reduced to about 1/69, and the actual image resolution of the photoelectric conversion unit for an A4 document is reduced to about 1.5 lines/frame.

原稿のサイズが大きくなるに従って、(受光面のサイズ
)/(原稿のサイズ)の割合で低下する。
As the size of the original increases, it decreases at the ratio of (size of light-receiving surface)/(size of original).

従って、この点を解決するには、この様な方式に於いて
は、光電変換部の解像度を高める製、造技術が要求され
ろ・ゲ、先の仔なl艮られた小面積で要求される解像度
を得るには、集積密度を極めて高くし且つ構成素子に欠
陥がない様にして製造しなければならないが、斯かる製
造技術にも自づと限度がある。
Therefore, in order to solve this problem, in such a system, manufacturing technology that increases the resolution of the photoelectric conversion section is required. To achieve this resolution, devices must be manufactured with extremely high integration densities and with no defects in the components, but such manufacturing techniques have their own limits.

他方充電変換部’t−複数配置して、全受光面の長手方
向の長さが複写し得る鰻大サイズの原稿の主走査方向の
長さと、1;IICなる様にし、結像される原稿の光学
イ?を光電変換部の数に分割して実質的な解像度の低下
を避は様とする方式が提案されている。
On the other hand, a plurality of charging conversion units are arranged so that the length in the longitudinal direction of the entire light-receiving surface is equal to the length in the main scanning direction of the eel-sized original that can be copied, and 1; Optical I? A method has been proposed in which the resolution is divided into the number of photoelectric conversion units to avoid a substantial drop in resolution.

両生ら、斯かる方式に於いても、次に述べる様な不都合
さがある。即ち、光電変換部を複数配置すると必然的に
各光電変換部間に受光面の存在しない境界領置が生じ、
全体的に艶る場合、蛍光面は連続的でなくなって什緯い
、原稿の結1束される光学像は分断され、且つ境界領域
に相当する部分は、充電変換部に人力されず、複写され
て来る画渾は線状(白抜けした或いは線状に白抜けする
部分に相当する部分が除かれて結片された不完全なもの
となる。又、複数の受光面に分割されて結゛罐された光
学像は、各受光面に吟いて各々光学的反転像となってす
る為、全体1嫁は、原41ψの光学的反転像とは異って
いる。
Even in such a method, there are disadvantages as described below. In other words, when a plurality of photoelectric conversion parts are arranged, boundary areas where there is no light receiving surface inevitably occur between each photoelectric conversion part.
When the entire surface is glossy, the phosphor screen is no longer continuous and becomes blurred, and the optical image that is bundled together of the original is divided, and the portion corresponding to the boundary area is not manually applied to the charging conversion unit and is not used for copying. The resulting image becomes incomplete in the form of a line (white spots or areas corresponding to white spots in a line shape are removed), and it is divided into multiple light-receiving surfaces and becomes a condensed image. The captured optical image is an optically inverted image on each light-receiving surface, so the overall image is different from the optically inverted image of the original 41ψ.

従って、受光14!iiの納儂された光学像をそのまま
再生したのでは元の原稿憬を6現することは出来ない。
Therefore, light reception 14! If you reproduce the optical image delivered as is, it will not be possible to reproduce the original manuscript.

この様に、従来の、光電変換部t−具備した充電変換装
置に於いては、その受光面が小さい為に4 >8像度で
1#報を再現するのは極めて困峻であった。
As described above, in the conventional charging conversion device equipped with the photoelectric conversion section T-, it is extremely difficult to reproduce the 1# signal with an image resolution of 4>8 because the light receiving surface is small.

従って、長尺化された受光面を有し、且つ解惰性に優れ
た充電変換部を有する充電変換装置が4まれている。殊
にブrクシミリやDCの人力f!電、或いはその他の、
1瞑塙に臀か−rLだ文字やat読取る装置に適用する
ものとしては、再生される原稿のサイズに相等しい受光
+@ f 44 L、再生像に要求される解像fを低下
させず、原稿t−忠実に再生させ得る光電変換部を具備
した光電変11!装置が不可欠である。
Accordingly, there are four charging conversion devices each having a long light-receiving surface and a charging conversion section having excellent release properties. Especially the manpower f of r bushimiri and DC! electricity or other
1. Buttocks or -rL.Applicable to a device that reads characters or AT, light reception equal to the size of the original to be reproduced + @ f 44 L, without reducing the resolution f required for the reproduced image. , original t-photoelectric converter 11 equipped with a photoelectric converter capable of faithfully reproducing the document t! equipment is essential.

本発明d1上記の諸点に鑑み成されたものであって、ス
の目的とするところは、長尺化された受光面を有し且つ
高解像度化、高感開化された光電変換部を具備し、極め
て軽量化された光電変換装置gc提供することにある。
The present invention d1 has been made in view of the above points, and the object of the present invention is to provide a photoelectric conversion section having an elongated light-receiving surface, high resolution, and high sensitivity. The object of the present invention is to provide a photoelectric conversion device gc which is extremely lightweight.

本発明の情報処理装置はn個の光電変換要素が一列アレ
ー状とされ、該光電変換要素がn個に共通な電極と、n
個の光電変換部間毎に独立して設けられたn個の電極と
、前記共通ゼ悼と前記独立電極との間に光電変換層とを
有する一次元長尺光電変換部:入力された光信号に応茶
して前記n個の光電変換要素から出力される電気信号を
並列に入力し、直列に出力する;走査−I11部及びマ
トリックス配線部とを包含するものである。
In the information processing device of the present invention, n photoelectric conversion elements are arranged in a line array, and the photoelectric conversion elements have an electrode common to the n photoelectric conversion elements, and an electrode common to the n photoelectric conversion elements.
A one-dimensional elongated photoelectric conversion unit having n electrodes provided independently between each photoelectric conversion unit, and a photoelectric conversion layer between the common electrode and the independent electrode: an input light The electrical signals outputted from the n photoelectric conversion elements in response to the signals are inputted in parallel and outputted in series; it includes a scanning-I11 section and a matrix wiring section.

更に本発明の光゛イ変遺装置の特vILを詳述すれ子と
、該光導電素子の別の一爛にそれぞれ個別に一気的に接
続された電荷蓄積時間と、該電荷涛横手段に廖積された
電荷を放電する為の制御可能な放電手段と咳成荷廖積手
段に蓄積され九段とにtつて構成されかつ前記放電手段
の制御信号線が所定の数毎に共通に配線され、かつ前記
端巾手没の変埃増巾出力線が横抗人力の配線マ にしト;じた蔦トリックス配線されているφでるる。
Further details of the features of the phototransformation device of the present invention include a resistor, a charge accumulation time each individually and simultaneously connected to another piece of the photoconductive element, and a charge swell means. It is composed of a controllable discharge means for discharging the accumulated charge and nine stages for discharging the accumulated charge, and a control signal line of the discharge means is commonly wired for every predetermined number. , and the widened output line with the end width hand-reduced is wired with a vine trix to the wiring shaft of the horizontal puller.

1−LF本発明に於ける走査回路の説明を行なう。1-LF The scanning circuit in the present invention will be explained.

41図に本発明に於ける(1の走査回路を掲げる。A4
4手方向に約8画素/龍の密度での画14!r;* 、
永取りを実現する為に必要な1728(=54X32)
の光導電素子5l−PS54−31 は外部バイアス電
源とじて図示されているVBにより給電されてcs4−
st  には各光導電素子への入射光量に応じ九遮変で
電荷が蓄積されていく。結果的に前記ツンデン−?C,
−・〜cs4−stの撰択可能な増巾用MO8)ランジ
スタ五!−・〜kg−Hのゲートへの接続点電位は、一
定の電荷蓄積時間に対しては入射光量に対応した値を持
つ事になる。本走査回路では電荷蓄積用コンデンサは回
路的にはむしろ光導電素子とともに低周波−波回路とし
ての効果が期待されている増巾用MO8)ランジス20
32本毎に共通なドレイン側配線、例えばプロッタ駆動
線b1に排他的に電圧を供給すれば、前記接続点の電位
ltc応じて増巾用MO8(冬は膳l8))ランジスタ
Al−0〜A1−%−S、はバイアスされている亭に成
り、各増巾用MO8(又はMI8))ランジスタ社個々
に接続されている光導電素子への入射光量に対応し九チ
ャンネル抵抗を持つ亭になる。従って自動的に個別デー
タlID0〜D31上へ線光導電素子S宜−・〜S鵞−
31への入射光量に対応した信号電流が出力される事に
なる。上述の動作を確保する為には個別データ4a D
o−Dslは電流増巾器等の低インピーダンス入力回路
へ接続すべきは自明の事である。
Figure 41 shows the scanning circuit (1) in the present invention.A4
Approximately 8 pixels in the 4-handed direction / 14 images with the density of a dragon! r;*,
1728 (=54 x 32) required to achieve Nagatori
The photoconductive element 5l-PS54-31 is powered by VB, which is shown as an external bias power supply, and cs4-
Charges are accumulated in st in accordance with the amount of light incident on each photoconductive element. As a result, the above-mentioned Tsunden-? C,
-・~cs4-st selectable widening MO8) transistor 5! The connection point potential of -.~kg-H to the gate has a value corresponding to the amount of incident light for a certain charge accumulation time. In this scanning circuit, the charge storage capacitor is rather used as a widening MO8) Rungis 20, which is expected to be effective as a low frequency wave circuit together with the photoconductive element.
If a voltage is exclusively supplied to the common drain side wiring for every 32 lines, for example, the plotter drive line b1, the transistors Al-0 to A1 for increasing the width MO8 (in winter, it is 18) depending on the potential ltc at the connection point. -%-S becomes a biased gate and has a nine-channel resistance corresponding to the amount of light incident on the photoconductive element connected to each amplifier MO8 (or MI8) transistor company individually. . Therefore, the individual data ID0 to D31 are automatically transferred to the photoconductive elements.
A signal current corresponding to the amount of light incident on 31 is output. To ensure the above operation, individual data 4a D
It is obvious that the o-Dsl should be connected to a low impedance input circuit such as a current amplifier.

ここで電流分雌用ダイオードa1−・〜RI4−11 
 は個別データ線に接続された増巾用MO8(又はMI
8))ランジスタ間の分噛t−(特に非償択時に)確実
にする為に設けられている。さて引き続いて今度は駆動
線す、にやa′抄排他的に電圧1に供給した時放電用M
O8(又はMI8))ランジスタQl−0〜Q1−st
は導通状態どな抄第1の光導素子群も−o=st−st
 K属する蓄積用コンデンサC1−・〜ct−stに蓄
積され光電荷は前記トランジスタQs o−Qt〜31
を通して放電される事になる。
Here, the current female diode a1-...RI4-11
is the width increasing MO8 (or MI
8)) Provided to ensure the distance between the transistors (especially when non-redundant). Next, when the drive line A' is exclusively supplied with voltage 1, the M for discharging
O8 (or MI8)) transistor Ql-0 to Q1-st
Is it in a conductive state?The first light guide element group is also -o=st-st
The photocharge accumulated in the storage capacitor C1-.~ct-st belonging to K is transferred to the transistor Qs o-Qt~31.
It will be discharged through.

放電用トランジスタ9重−・〜Qs−冨霊の共通ゲート
線を第2の光導電素子群S雪−0〜5s−stに属する
L管中用)ランジスタ入鵞−〇〜A雪−31のドレイン
側共通線と接続して駆動する哄は本光電変換手段への外
部機器からの制御線本数を減する利益がちるが、駆′#
J電圧の相違、゛駆動タイピングの設定等の問題により
別個に駆動する場合も容易に類推できる。
The common gate line of the discharging transistor 9 layers...~Qs-Furei is connected to the second photoconductive element group S-0~5s-st (L tube middle) transistors -〇~A Yue-31. Driving by connecting to the common line on the drain side has the advantage of reducing the number of control lines from external equipment to the photoelectric conversion means, but the drive is
It can also be easily assumed that they are driven separately due to problems such as differences in J voltage and drive type settings.

また増巾用トランジスタ八!−・〜A1411のスレッ
ショルド電圧等の伝達特性を考直して放電用トランジス
タQ1−・〜Qsa−鵞1  の共通ソース線を別個の
バイアス電源からの給電で行なうならば素子設計の巾を
拡ける効果を生む事も明らかである。
Eight transistors for increasing the width! - If the transmission characteristics such as the threshold voltage of A1411 are reconsidered and the common source line of the discharging transistor Q1-...Qsa-1 is fed from a separate bias power supply, the range of device design can be expanded. It is also clear that it gives rise to

走査回路の1s2の実施例を第2図に掲げる。第1図に
示した第1の例は入射光量の読み出し精度を亭く要求し
ない場合いもしくは増巾用として使用するトランジスタ
が同一ロッ)11品で伝達特性特にスレッショルド電圧
の分布が小さい場合等には十分な効果が期待でき、回路
も簡単である。しかしながら特に高い精度で光量情報を
読み取る場合等には前記伝達特性の分布が問題に成る場
合がある。第2図に示した例は上記の問題を解決する為
に増巾用トラ/ジスタAt−・〜Al4−m1のソース
回路に抵抗を挿入し、電流帰還によって複合した伝達特
性の均一化を実現し先例である。回路動作の説明は増巾
用トランジスタの動作に電流帰還を利用した負帰還を作
用させる事が理解されれば@10走査回路の説明から明
らかである。
An example of the scanning circuit 1s2 is shown in FIG. The first example shown in Figure 1 is used when high accuracy in reading out the amount of incident light is not required, or when the transistors used for width amplification are 11 products in the same lot and the transfer characteristics, especially the distribution of the threshold voltage, are small. can be expected to have sufficient effects, and the circuit is simple. However, especially when reading light amount information with high accuracy, the distribution of the transfer characteristics may become a problem. In the example shown in Figure 2, in order to solve the above problem, a resistor is inserted into the source circuit of the amplifier/transistor At-...Al4-m1, and the composite transfer characteristics are made uniform by current feedback. This is a precedent. The explanation of the circuit operation will be clear from the explanation of the @10 scanning circuit if it is understood that negative feedback using current feedback is applied to the operation of the amplifier transistor.

不発明に於ける第3の走査回路例をf43図(1)。A third example of the scanning circuit according to the invention is shown in Fig. f43 (1).

(blに掲げる。この例では前記の電流帰瞳を実現する
素子として抵抗の代わ抄に非線形動作素子P、−0〜P
14−□(図に一部のみを掲採)を用い、また増巾用ト
ランジスタのドレイン側共通線からの分離手段としてM
OS(又はMI8) トランジスタを用いてお抄、特に
増巾用トランジスタAI−・〜A修じ31、放電用トラ
ンジスタQt−o〜Qsa−s+及び分離用トランジス
タTt e 〜T’5−s1とを同一テクノロジーで製
作される素子で構成する哄によ抄容易に集積化出来ると
いう大きな効果が生まれる。
(Listed in bl. In this example, nonlinear operating elements P, -0 to P
14-□ (only a part of which is shown in the figure) is used, and M is used as a means of separating the width-enhancing transistor from the common line on the drain side.
OS (or MI8) Transistors are used, especially the width increasing transistors AI-...A modification 31, the discharging transistors Qt-o to Qsa-s+, and the isolation transistors Tte to T'5-s1. A great effect is created by easily integrating elements that are manufactured using the same technology.

eK第3図(alの場合には電流帰還用トランジスタp
、−o〜PS4−IIIへの共通ゲートバイアスv。
eK Fig. 3 (in case of Al, current feedback transistor p
, -o to common gate bias v to PS4-III.

への給電電圧を変える事によ□り複合しれ伝達特性をプ
ログラム出来る特徴を有する。種々の共第4図に示す。
It has the feature that the composite shear transfer characteristics can be programmed by changing the power supply voltage to □. Various components are shown in FIG.

以上述べた走査回路では常に光導電素子出力を増巾(上
記例でけ電流に変換増巾している)して!トリックス配
線上に信号を送り出している。一般に光導電素子導電率
は可成り低く、また本光電費換手段の主なる用途である
テイジタルコピア、ファクシミリ等で要求される長尺化
を長い配線を通して処理する事にな抄良好なSN比を期
待出来ぬ場合が多い。本発明の大きな特徴の一つは上側
の様に光導電素子出力横抗素子り一部等の悪影響を大き
く低減せしめた手にある。
In the scanning circuit described above, the output of the photoconductive element is always amplified (in the above example, it is converted into a current and amplified)! It sends a signal on the Trix wiring. In general, the conductivity of photoconductive elements is quite low, and the long wires required for digital copiers, facsimile machines, etc., which are the main uses of this photoelectric conversion means, can be processed through long wiring, and a good signal-to-noise ratio can be obtained. In many cases, we cannot expect it. One of the major features of the present invention is that, as shown above, the adverse effects of a portion of the photoconductive element output transverse resistance element are greatly reduced.

!s5図に不発明の充電変換装置の構成の模式的説明図
を示す。ガラス等の透明な基板50上に一列に作られた
光導電素子群(素子構造は後述) 88x −8、Bs
4Fi、、やは抄同じ基板上に薄膜形成された11tゆ
配線、及びコンデンサ群CB!〜CB54  を・1し
て集積化された走査回路基板!重〜I52にワイヤ・ポ
ンディノグに依って接続されている。まえl!〜to 
 からの出力線もやはりワ終的に出力用電極に導びかれ
る。駆動線bl〜b14−争外部制御線もやはり基板上
の蒸着薄膜電極配線を・1して走査回路基板に導びかれ
る。本実施1タリで示されるハイブリット構造のた電変
遺素子も以下の実施例で示されるモノリシック構造に於
ける光導′、を素子と同一構造を有するのでその・金に
詳細に説明される。
! Fig. s5 shows a schematic explanatory diagram of the configuration of the inventive charging conversion device. A group of photoconductive elements made in a row on a transparent substrate 50 such as glass (the element structure will be described later) 88x -8, Bs
4Fi, 11t wiring and capacitor group CB formed on the same board as a thin film! ~ A scanning circuit board integrated with CB54! It is connected to I52 by a wire pond. Mae l! ~to
The output line from wa is also ultimately led to the output electrode. The drive lines bl to b14 - external control lines are also led to the scanning circuit board through the vapor-deposited thin film electrode wiring on the board. The electric transformer element having the hybrid structure shown in the first embodiment has the same structure as the light guide element in the monolithic structure shown in the following embodiments, so it will be explained in detail.

鳴6肉に示す実施例は鷹1 i’4に示された走査回路
を全て薄膜蒸着によって一枚の基板上に実現した本発明
の充電変換装置の例である。第6図(a)は平面図、第
6図(b)は、第6LSI(a)に示されるx−x’ 
で示される位置での断1桓図である。
The embodiment shown in Figure 6 is an example of the charging conversion device of the present invention in which the scanning circuit shown in Figure 1 i'4 is all realized on one substrate by thin film deposition. FIG. 6(a) is a plan view, and FIG. 6(b) is x-x' shown in the 6th LSI(a).
It is a cross-sectional view at the position indicated by .

基板上には光電変換部601 、鑞荷・蓄積部602、
横抗可能な増市部603、及び放電部604と図示され
る紙面右側に位置するマトリックス配線部と信号入出力
及び電源供給電極が作製されている。iトリックス配線
部の櫃略図は第7図で示される一般的なものであって7
0〜74等はスルーホール接続部を75は光導電部及び
走査回路部分に対応する。
On the substrate are a photoelectric conversion section 601, a charge/storage section 602,
A horizontal expansion section 603 and a discharge section 604, a matrix wiring section located on the right side of the drawing, and signal input/output and power supply electrodes are fabricated. The schematic diagram of the i-trix wiring section is the general one shown in Figure 7.
0 to 74 etc. correspond to through-hole connection parts, and 75 corresponds to a photoconductive part and a scanning circuit part.

光電変換部は個別電極として透明基板600を通過して
きた光が入射可能な様にインジウム錫酸化物(ITO)
等の透明導電性蒸着膜605、及び−素形状の均一化の
為のクロム(Cr )  等の遮光用電極蒸着膜607
とをフォト・エツチングし画素毎に独立して作製されて
いる。更に前記個別電極上に8iH4ガス、H雪ガス混
合ガス中でグロー放電を発生せしめSiH4の分解によ
って:)−1 トエッチングにより画素毎の、BPイ導電素子606を
作製する。引き続いて共通対抗電極608がAJ等の金
属材料によって(蒸着エッチングプロセスを経て)R膜
配線される。
The photoelectric conversion section is made of indium tin oxide (ITO) as an individual electrode so that the light that has passed through the transparent substrate 600 can enter.
A transparent conductive vapor deposited film 605 such as, and a light shielding electrode vapor deposited film 607 such as chromium (Cr) for uniformity of elementary shape.
Each pixel is manufactured independently by photo-etching. Further, a glow discharge is generated on the individual electrodes in a mixed gas of 8iH4 gas and H snow gas, and by decomposition of SiH4, a BP1 conductive element 606 is produced for each pixel by etching. Subsequently, the common counter electrode 608 is wired with a metal material such as AJ (through a vapor deposition etching process).

口”4ヒ記グロ一放電分解法による蒸着プロセスに於て
8iH4/H2’ガス中に適当濃変のPH,ガスもしく
はB、H,ガス金混入させる帯で広い範囲の的に各導電
型の;−を堆積できる。例えば上記a−Si ’/f、
導電喚けそのF°画部及び下面部をP原子を弘漫変にド
ープし之計鳩で形成するーに【り電極金属との抵抗性接
触を確保している。
In the vapor deposition process using the discharge decomposition method, 8iH4/H2' gas is mixed with a suitable concentration of PH, gas or B, H, and gas gold to cover a wide range of various conductivity types. ;- can be deposited.For example, the above a-Si'/f,
The conductive layer's F° area and lower surface are doped with P atoms in a large amount to ensure resistive contact with the electrode metal.

:H イieって以後の説明では各導電型のa−8t層の成り
法は一々触れない。
:H ie In the following explanation, the method of forming the a-8t layer of each conductivity type will not be mentioned.

さて電荷蓄lk部602はパターン・エツチングさn、
たスパッタリング法等で形成された5i01父け5il
N4蒸着′4嗅618をはさんで接地電極609を薄膜
配線する率によりって作ら孔たコンデンサで構成される
Now, the charge storage section 602 is pattern etched n,
5il formed by sputtering method etc.
It consists of a capacitor with a hole made by thin film wiring with a ground electrode 609 sandwiching an N4 evaporated '4' 618.

によ粉発生する電位を該MI8構造トランジスング速度
がドープしたP原子aWlに依存する嘔を利用してn土
層を収り去っておりドレイン電極610の材料としてA
LA等の金属を用いる嚇により、f41図に於いて山−
・〜R14−Hで示される分離ダイオードとしての機能
を持つショットキー・バリヤーダイオードを形成してい
る。またソース側電極613接触□部分はn土層が残さ
れてお9抵抗性接触を保っている。絶=層619はやは
抄8LHN4.8 iol  スバ7タ+fi等の絶縁
膜で作製され、特に横抗電極610と光電変換部からの
出力線である逍光電極607との静電結合を小さ゛くす
る目的で形成されている。
The material of the drain electrode 610 is A, which uses the potential generated by the dust to remove the n soil layer by utilizing the fact that the transition speed of the MI8 structure depends on the doped P atoms aWl.
Due to the use of metal such as LA, the mountain - in the f41 diagram
- Forms a Schottky barrier diode designated by ~R14-H which functions as an isolation diode. Further, an n-soil layer is left in the □ portion where the source side electrode 613 is in contact, maintaining a 9-resistance contact. The absolute layer 619 is made of an insulating film such as 8LHN4.8 iol 7LHN4.8IOL SUBATA+FI, and is particularly designed to reduce the electrostatic coupling between the lateral resistance electrode 610 and the luminescent electrode 607, which is the output line from the photoelectric conversion section. It is formed for the purpose of stimulating.

放電部604を構成するMI8構造トランジスつべくn
 層を介して接続される。ドレイン電極614及びソー
ス電極616との間のa−8i層中のn+1−はフォト
エツチングによって除去される。
The MI8 structure transistor constituting the discharge section 604
Connected through layers. The n+1- layer in the a-8i layer between the drain electrode 614 and the source electrode 616 is removed by photoetching.

48図fa)、 (blに示す光電変換gcI11は第
2図に不す電流帰還用抵抗”1 o−F’54st を
挿入した例で第8図(a>は模式的平面図、2窮8図(
b)は、′48□  −図1alに於けるX−X’での
切断面図である。部材配置1は第6図とほぼ同じであり
異なる点は抵抗もLいし、適当な金属の酸化吻、ホウ化
物、窒化拗等を用いて構成されてもよい。
(Fig. 48fa), (The photoelectric conversion gcI11 shown in BL is an example in which a current feedback resistor "1 o-F'54st" not shown in Fig. 2 is inserted, and Fig. 8 (a> is a schematic plan view, figure(
b) is a sectional view taken along line X-X' in '48□--Figure 1al. The member arrangement 1 is almost the same as that shown in FIG. 6, except that the resistance is low, and it may be constructed using an appropriate metal oxide, boride, nitride, etc.

4漬帰還素子と17てM2S)ランジスタを用いた例を
第9図1a)、 (b)に示す。対応する走査回シ・&
は哨3図(a)で既に示した。この実施例に於いても#
fS13Mに示した部材配置と多くの点で同様であり、
放電用615に平行な位置に電流帰還用と、してMis
?ランジスタ900を、また電荷蓄積4602と増rj
Ji1M18)ランジスタ904との°I11に分離用
素子として同じ(MI8)ランジスタ901とを形成し
た点が異なるだけである。尚 、レインが電極金属と抵
抗性接触を保つように設計されている。また分離用MI
8)ランジスタグートは債択信号線biの入力線902
と豊川して更にドレイン側はトランジスタ電源線VDと
共用して使われている亭を図への補足説明としてつ形成
した         例を掲けた。
An example using a four-way feedback element and a 17M2S) transistor is shown in FIGS. 9A and 9B. Corresponding scanning times
has already been shown in Figure 3 (a). In this example also #
It is similar in many respects to the component arrangement shown in fS13M,
A current feedback 615 is placed parallel to the discharge 615, and a Mis
? The transistor 900 is also connected to the charge storage 4602.
The only difference is that the same (MI8) transistor 901 is formed as an isolation element at °I11 with the Ji1M18) transistor 904. Note that the rain is designed to maintain resistive contact with the electrode metal. Also, MI for separation
8) Ranjistagut is input line 902 of bond selection signal line bi
Toyokawa also posted an example of forming a bow which is shared with the transistor power supply line VD on the drain side as a supplementary explanation to the figure.

以上実施例で示した如く本発明では従来多数の光情報を
走査し出力する光電変換装置に於て、尺 長天化が精変良実現可能で、増巾機能を持つ走査回路を
構成する4kKよってインピーダンスの高い光導電素子
を広く配置した場合に問題となる雑音の影響を大きく低
減した光電変換装置を1゛「成する半を可能ならしめた
As shown in the embodiments above, in the present invention, in a conventional photoelectric conversion device that scans and outputs a large amount of optical information, it is possible to achieve a longer length, and a 4kK Therefore, we have made it possible to create a photoelectric conversion device that greatly reduces the influence of noise, which is a problem when photoconductive elements with high impedance are widely arranged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図(at、 (b)は各々、本発明に係
わる走査回路を説明する為の走査回路図、第4図6・↑
、本発明に於ける共通ゲートバイヤス値に対する伝達特
性の変化全示す図、$5図及び第6図fa)、 (bl
は各々本発明の実施態様例を説明する為の説明図、第7
図は、本発明に於ける!トリックス配線部を説明する為
の説明図、第8図fal、 (bl及び第9図(a)、
 (b)は暮々他の本発明の実10咋様例金説明する為
の説明図である。 出 劇 人  キャノン株式会社   −
FIGS. 1 to 3 (at, (b) are scanning circuit diagrams for explaining the scanning circuit according to the present invention, and FIG. 4 6 ↑
, Figures 5 and 6 fa), (bl
are explanatory diagrams for explaining embodiments of the present invention, respectively.
The figure is in the present invention! Explanatory diagrams for explaining the Trix wiring section, Figure 8 fal, (bl and Figure 9 (a),
(b) is an explanatory diagram for explaining another example of the present invention. Actor Canon Co., Ltd. −

Claims (1)

【特許請求の範囲】[Claims] 給電用配線によって一端を共通に配線された多数の薄膜
シリコンで作られた光導電素子と、該光導電素子の別の
一端にそれぞれ個別に電気的に接続された電荷蓄積手段
と、該電荷蓄積手段に蓄積された電荷を放電する為の制
御可能な放電手段と該電荷蓄積手段に蓄積された電荷量
に対応して、発生する電圧を読み取り電圧もしくは電流
に変換増巾し、選択可能であって、多結晶シリコンから
成る増巾手段とによって構成されかつ前記放、wL手段
の制御信号線が所定の数毎に共通に配線され、かつ前記
増巾手段の変換増rjj出力線が選択入力の配線に応じ
たマトリックス配線され、ている事を特徴とjる光電変
換装置。
A photoconductive element made of a plurality of thin film silicones having one end commonly wired by a power supply wiring, a charge storage means individually electrically connected to another end of the photoconductive element, and the charge storage. A controllable discharging means for discharging the electric charge accumulated in the electric charge storage means, and a controllable discharging means for reading the generated voltage and converting and amplifying it into a voltage or a current according to the amount of electric charge accumulated in the electric charge storage means, which can be selected. and amplification means made of polycrystalline silicon, control signal lines of the output and wL means are wired in common for every predetermined number, and the conversion and amplification rjj output lines of the amplification means are connected to selection inputs. A photoelectric conversion device characterized by matrix wiring according to the wiring.
JP56168092A 1981-10-21 1981-10-21 Photoelectric transducer Granted JPS5868968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56168092A JPS5868968A (en) 1981-10-21 1981-10-21 Photoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56168092A JPS5868968A (en) 1981-10-21 1981-10-21 Photoelectric transducer

Publications (2)

Publication Number Publication Date
JPS5868968A true JPS5868968A (en) 1983-04-25
JPH0337743B2 JPH0337743B2 (en) 1991-06-06

Family

ID=15861691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56168092A Granted JPS5868968A (en) 1981-10-21 1981-10-21 Photoelectric transducer

Country Status (1)

Country Link
JP (1) JPS5868968A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352462A (en) * 1989-07-20 1991-03-06 Hamamatsu Photonics Kk Solid-state image pickup device
US9077288B2 (en) 2013-05-17 2015-07-07 Nlt Technologies, Ltd. Amplifier circuit and image sensor using amplifier circuit
US9698184B2 (en) 2014-07-23 2017-07-04 Nlt Technologies, Ltd. Image sensor and driving method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352462A (en) * 1989-07-20 1991-03-06 Hamamatsu Photonics Kk Solid-state image pickup device
US9077288B2 (en) 2013-05-17 2015-07-07 Nlt Technologies, Ltd. Amplifier circuit and image sensor using amplifier circuit
US9698184B2 (en) 2014-07-23 2017-07-04 Nlt Technologies, Ltd. Image sensor and driving method thereof
US9865644B2 (en) 2014-07-23 2018-01-09 Nlt Technologies, Ltd. Image sensor

Also Published As

Publication number Publication date
JPH0337743B2 (en) 1991-06-06

Similar Documents

Publication Publication Date Title
RU2668949C2 (en) Image capturing device and image capturing system
JP2911519B2 (en) Photoelectric conversion device
EP0046396A1 (en) Solid state image pickup device
US4390791A (en) Solid-state photoelectric transducer
JPH02165674A (en) Photosensitive device having
US6583456B2 (en) Image sensor with light receiving elements of differing areas and image reader both having semiconductor device
JPH0237108B2 (en)
JPS5868968A (en) Photoelectric transducer
JPH0730084A (en) Two-dimensional contact image sensor
JP3135309B2 (en) Photoelectric conversion device and information processing device
JPH022301B2 (en)
JP3154850B2 (en) Photoelectric conversion device and method of manufacturing the same
JPH07234737A (en) Sync formation circuit
GB2175478A (en) Photosensor array
JPH0337744B2 (en)
US4916326A (en) Long array photoelectric converting apparatus with reduced crosstalk
JPH022302B2 (en)
JPS61189065A (en) Image sensor
JPS6042666B2 (en) solid state imaging device
JPH06164924A (en) Image senor
JP3450413B2 (en) Solid-state imaging device
JPS6091759A (en) Reader
JPS5868967A (en) Photoelectric transducer
KR960007915B1 (en) Image sensor
JPH084128B2 (en) Image reader